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We describe a multiple-scale technique for solving the initial boundary-value

problem over the positive x-axis for a one-dimensional pair of hyperbolic

conservation laws. This technique involves decomposing the solution into

waves and incorporating slow temporal and stretched spatial scales in different

parts of the solution domain. We apply these ideas to a wavemaker problem for

shallow water flow and show why the presence of source terms in the

conservation laws makes the analytic solution more complicated.

1. Introduction

In this article, we show how to solve the initial boundary-value problem over

the positive x-axis for a one-dimensional pair of hyperbolic conservation laws

using multiple-scale techniques. These solution techniques apply to weakly

nonlinear problems, which commonly arise by perturbing a nonlinear system of

equations about a constant steady-state solution.

The novelty of this article is the treatment of problems with both boundary

and initial conditions. Kevorkian showed that the appropriate solution strategy

for an initial-value problem of this type is to use slow temporal scales (for

example, t~= � t , where 0 < � � 1) in addition to the usual x and t scales, to

capture any nonlinear effects (Section 8.3.2 of [1]). Signaling problems, in
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which boundary conditions represent signals that propagate into an initially

quiescent medium, necessitate the use of stretched spatial scales, such as x~ = �x
(Section 6.2.4 of [2]). For a problem with both initial and boundary conditions,

we anticipate that the correct solution procedure involves both slow temporal

and stretched spatial scales. In particular, we show that different scales must be

used in different parts of the solution domain. The part of the solution domain

influenced solely by the initial conditions requires the use of t~only, whereas
the part of the solution domain influenced by the boundary condition requires

both t~and x~.
In [3], Chikwendu and Easwaran show that this particular combination of

temporal and spatial scales is appropriate for weakly nonlinear wave equations

of the form

utt � uxx þ �h u; ut; uxð Þ ¼ 0;

where 0 < � � 1. Our work generalizes these findings to encompass pairs of

hyperbolic conservation laws that arise naturally in many physical examples.

Although it is possible to transform a pair of weakly nonlinear hyperbolic

equations to a single weakly nonlinear wave equation for one of the dependent

variables, it is more efficient to solve the problem in its original setting.

We begin by studying the one-dimensional wavemaker problem for shallow

water flow in Section 2. Next, we generalize our results to a pair of nonlinear,

hyperbolic, spatially and temporally homogeneous conservation laws, extend-

ing Section 6.2.1 of [2] to include an x~ dependence. To avoid the possibility of

resonant interactions between the dependent variables for certain periodic initial

conditions, we do not consider systems of three or more conservation laws [4].

The main lesson from Section 3 is that source terms in the conservation laws

produce a perturbation problem that is more difficult to solve analytically.

Finally, in Section 4, we discuss the implications of including an x~ dependence.

2. Wavemaker problem for shallow water flow

To illustrate the main ideas, let us consider a wavemaker problem for one-

dimensional shallow-water waves. Let h(x, t; �) and u(x, t; �) be the height and
velocity of water in a one-dimensional tank. The governing equations,

ht þ uhð Þx ¼ 0; ð1aÞ

ut þ hx þ uux ¼ 0; ð1bÞ
are derived from physical principles in Section 3.2 of [1]. Because we are more

interested in how the solution procedure is affected by boundaries rather than

obtaining highly accurate solutions, we have ignored higher-order correction

terms in (1b) that account for motion in the vertical direction [2].
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Equations (1) have been normalized so that the resting state of the water

corresponds to u = 0 and h = 1. Suppose that our tank is semi-infinitely long

with a wavemaker situated near the origin at xp = �p(t), where 0 < � � 1 is our

usual small parameter. The wavemaker introduces the boundary condition

u �p tð Þ; t; �ð Þ ¼ �p0 tð Þ: ð2Þ
In addition, let us prescribe some initial height and velocity perturbations:

h x; 0; �ð Þ ¼ 1þ �g xð Þ; ð3aÞ

u x; 0; �ð Þ ¼ �v xð Þ: ð3bÞ
Figure 1 depicts the setup of our one-dimensional tank.

Through Equation (2), we implicitly assume that the wavemaker does not

move very much, allowing us to use a Taylor series expansion to replace a

moving boundary problem with a fixed boundary problem:

u �p tð Þ; t; �ð Þ ¼ u 0; t; �ð Þ þ �ux 0; t; �ð Þp tð Þ þ 1

2
�2uxx 0; t; �ð Þp2 tð Þ þ O �3

� �

¼ �p0 tð Þ; ð4Þ
as � ! 0. The solution domain for our problem is now the quarter space x > 0

and t > 0.

We assume that the unknown functions have the asymptotic expansions

u x; t; �ð Þ ¼ �u 1ð Þ x; ~x; t; ~tð Þ þ �2u 2ð Þ x; ~x; t; ~tð Þ þ O �3
� �

; ð5aÞ

h x; t; �ð Þ ¼ 1þ �h 1ð Þ x; ~x; t; ~tð Þ þ �2h 2ð Þ x; ~x; t; ~tð Þ þ O �3
� �

; ð5bÞ
as �! 0. (Throughout rest of this article, we omit the reminder ‘‘�! 0,’’ which

the reader should implicitly assume anytime the symbol O(�n) appears in an

h

χ

1

χp

Figure 1. Wavemaker problem for one-dimensional shallow-water waves.
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asymptotic expansion.) We include the slow scales x~ = �x and t~ = �t to capture
the nonlinear behavior of (1), and to avoid secular terms that cause our solution

to grow linearly in time and space.

2.1. O ð �Þ System

Now we substitute (5) into (1) and collect all terms proportional to �, obtaining
theOð�Þ system of equations,

h
1ð Þ
t þ u 1ð Þ

x ¼ 0; ð6aÞ

u
1ð Þ
t þ h 1ð Þ

x ¼ 0; ð6bÞ

which are subject to the initial and boundary conditions

h 1ð Þ x; ~x; 0; 0ð Þ ¼ g xð Þ; ð7aÞ

u 1ð Þ x; ~x; 0; 0ð Þ ¼ v xð Þ; ð7bÞ

and

u 1ð Þ 0; 0; t; ~tð Þ ¼ p0 tð Þ: ð7cÞ

We solve (6) by introducing the characteristic independent variables, � = x – t

and � = x + t, along with the characteristic dependent variables, R(i) = h(i) + u(i)

and L(i) = h(i) � u(i). We find that

R 1ð Þ
� ¼ L

1ð Þ
� ¼ 0;

which implies that R(1) represents waves traveling to the ‘‘right’’ in the x–t

plane, and L(1) represents waves traveling to the ‘‘left.’’ We cannot determine

anything about the x~- and t~-dependencies of R(1) and L(1) until we consider the

equations arising at the next order of �. The initial and boundary conditions (7)

will be used later.

2.2. O ð �2Þ System
Collecting terms proportional to �2 yields

h
1ð Þ
~t

þ h
2ð Þ
t þ u

1ð Þ
~x þ u 1ð Þh 1ð Þ þ u 2ð Þ

h i
x
¼ 0;

u
1ð Þ
~t

þ u
2ð Þ
t þ h

1ð Þ
~x þ h 2ð Þ

x þ u 1ð Þu 1ð Þ
x ¼ 0;

which can be written in terms of characteristic independent and dependent

variables as
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R 2ð Þ
� ¼ � 1

2
R

1ð Þ
~t

þ R
1ð Þ
~x þ 3

4
R 1ð ÞR

1ð Þ
�

� �
þ 1

8
L 1ð ÞL 1ð Þ

� þ R 1ð ÞL 1ð Þ
� þ L 1ð ÞR

1ð Þ
�

� �
ð8aÞ

L
2ð Þ
� ¼ 1

2
L

1ð Þ
~t

� L
1ð Þ
~x � 3

4
L 1ð ÞL 1ð Þ

�

� �
þ 1

8
R 1ð ÞR

1ð Þ
� þ R 1ð ÞL 1ð Þ

� þ L 1ð ÞR
1ð Þ
�

� �
: ð8bÞ

The quantity in the square brackets in (8a) is independent of �, so simply

integrating (8a) with respect to � will result in secular terms. Likewise, the

quantity inside the square brackets in (8b) must be set to zero. Therefore, to

avoid all secular terms the pair of consistency conditions (sometimes also

known as solvability conditions)

R
1ð Þ
~t

þ R
1ð Þ
~x þ 3

4
R 1ð ÞR

1ð Þ
� ¼ 0; ð9aÞ

and

L
1ð Þ
~t

� L
1ð Þ
~x � 3

4
L 1ð ÞL 1ð Þ

� ¼ 0; ð9bÞ

must be satisfied, subject to the conditions

L 1ð Þjt¼ 0¼ g xð Þ � v xð Þ; ð10aÞ

R 1ð Þjt¼ 0 ¼ g xð Þ þ v xð Þ; ð10bÞ

and

R 1ð Þjx¼ 0 � L 1ð Þjx¼ 0¼ 2p0 tð Þ: ð10cÞ

Note that the boundary condition (10c) now involves a linear combination of

L(1) and R(1).

The key to solving (9) is choosing the correct scales for R(1) and L(1).

Because L(1) represents waves that are traveling to the left in the x–t plane

(toward the wavemaker), these left-going waves are primarily defined by the

initial condition (10a) and do not interact with the boundary condition until they

meet the wavemaker. Therefore, we should choose scales that are appropriate

for an initial-value problem; in other words, we let L(1) = L(1)(�, t~).
The situation for R(1) is a little more complicated, because there are some

outgoing waves that are influenced solely by the initial height and velocity

perturbation, and there are some that are caused by the wavemaker. To make

this distinction clear, we separate the solution domain, x > 0 and t > 0, into two

regions by introducing a positive, monotone increasing function J(t) with

J(0) = 0 so that x = J(t) is the interface between the two regions. We choose
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Region A to have x = 0 and x = J(t) as its boundaries, Region B to have t = 0 as

one of its boundaries (see Figure 2).

We denote R(A) and R(B) for R(1) in Regions A and B, respectively. Because

Region B is ahead of the interface, the water there is not yet influenced by the

boundary. Therefore, we should choose the scales that are appropriate for an

initial-value problem in Region B; in other words, we let R(B) = R(B)(�, t~).
In Region A, we will allow R(A) to depend on both x~ = �x and t~ by defining

R(A) = R(A)(�, x~, t~). To summarize,

L 1ð Þ ¼ L 1ð Þ �; ~tð Þ;

Rð1Þ ¼ RðAÞð�; ~x ; ~t Þ if x < JðtÞ
RðBÞð�; ~t Þ if x > JðtÞ:

	

The governing equations for L(1) and R(B) are

Rt~

Bð Þ
þ 3

4
R Bð ÞR

Bð Þ
� ¼ 0;

and

L
1ð Þ
t~

� 3

4
L 1ð ÞL 1ð Þ

� ¼ 0;

because they do not depend on x~. These first-order, quasilinear partial differential
equations are easily solved using the method of characteristics. Keeping in

mind that the initial conditions are given in (10a) and (10b), their solutions are

t

χ

Region A

Region B

0

χ = J(t)

Figure 2. Solution domain divided into two regions.
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R Bð Þ �; ~tð Þ ¼ g �xð Þ þ v �xð Þ; where �x solves � ¼ 3

4
~t g �xð Þ þ v �xð Þ½ � þ�x; ð11aÞ

L 1ð Þ �; ~tð Þ ¼ g �xð Þ þ v �xð Þ; where �x solves � ¼ � 3

4
~t g �xð Þ þ v �xð Þ½ � þ�x: ð11bÞ

Without knowing more about the specific functions g(x) and v(x), these

solutions can only be expressed as implicitly defined functions.

Once L(1) is known, the boundary condition (10c) becomes

R Að Þ �t; 0; ~tð Þ ¼ L 1ð Þ t; ~tð Þ þ 2p0 tð Þ:

Using the method of characteristics again, we can now obtain an implicitly

defined solution for R(A):

R Að Þ �; ~x; ~tð Þ ¼ f ���; ~t � ~x
� �

; where �� solves � ¼ 3

4
~x f ���; ~t � ~x

� �
þ ��; ð12Þ

and f (t, ~t ) = L(1)(t, t~) + 2p0(t). At this point, the need for ~x is evident, because if
R(A) is not allowed to depend on ~x, there will be insufficient degrees of freedom
to satisfy the initial and boundary conditions in (10).

Because (9a) and (9b) are first-order, quasilinear partial differential equations

(sometimes referred to as inviscid Burgers’s equations), they admit solutions

with shocks. Even when the initial conditions are continuous, wave steepening

can lead to shocks forming at later times. When a shock forms, we must return

to the integral formulation of the original conservation laws instead of using (9)

to determine the shock trajectory.

The fundamental conservation laws for shallow water flow exhibiting the

proper flux and conserved quantities are

ht þ uhð Þx ¼ 0; massð Þ ð13aÞ

uhð Þt þ
�
u2hþ h2

2

�
x
¼ 0; momentumð Þ: ð13bÞ

Therefore, the correct shock speed is governed by the pair of equations

ds

dt
h½ �þ� ¼ uh½ �þ�; ð14aÞ

and

ds

dt
uh½ �þ� ¼ u2hþ h2

2

� �þ
�
; ð14bÞ

where s(t) is the shock trajectory and the notation [�]�+ denotes the value of the

jump of a quantity across its discontinuity (see Section 5.3.4 of [1]). For
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example, if the shock occurs in R(1), substituting the expansion (5) into (14)

gives the ordinary differential equation

dK

d~�
¼

3
8

R 1ð Þ� �2h iþ
�

R 1ð Þ½ �þ�
þ O �ð Þ ¼ 3

8
R Að Þ þ R Bð Þ
h i

�¼K ~�ð Þ
þO �ð Þ; ð15Þ

which governs the shock trajectory, here written as � ¼ x� t ¼ K ~�ð Þ, where
~� ¼ ��. See Section 6.2.4 of [2] for more details of this derivation.

Now, the only remaining task is to find J(t), the trajectory of the interface

between Regions A and B. When the initial velocity perturbation (3b) exactly

matches the water velocity imposed by the wavemaker in (2), the interface J(t)

is simply the characteristic emanating from the origin, which we know from the

form of the characteristic independent variables to be x = t. In more realistic

situations, the initial condition and boundary condition will not match exactly,

and a shock or a fan will result.

The case of a fan is exemplified in a dam-breaking problem in Section 4.3.4

of [1]. In this situation, the solution domain should be divided into three

regions: Region A (water under the influence of the wavemaker), Region B

(water under the influence of the initial height and velocity perturbations), and a

fan region between Regions A and B.

In the case of a shock, the trajectory of the interface between Regions A and

B is the shock itself. To determine x = J(t), we solve the differential equation

(15) subject to the initial condition K(0) = 0 and rewrite the resulting equation

in physical variables.

2.3. Numerical verification

To check the validity of our solution technique, we compared our asymptotic

solutions with numeric solutions calculated using the CLAWPACK software

package [5] written by LeVeque. For our test problem, we chose the initial and

boundary conditions

u x; 0; �ð Þ ¼ 0;

h x; 0; �ð Þ ¼ 1þ �
x

xþ 1
;

and

u �p tð Þ; t; �½ � ¼ �p0 tð Þ with p tð Þ ¼ t

t þ 1
;

so that a shock forms because of a mismatch of the velocity at x = t = 0 and no

additional shocks will form at later times. To simulate a semi-infinite domain,

we made the computational domain large enough so that the boundary
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conditions at the right edge do not affect the part of the solution that is of

interest.

Figure 3 shows the numeric and asymptotic solutions five units of time after

the initial height and velocity perturbations. We chose � = 0.1, a spatial step size

of 0.0004. The agreement between the two solutions is very good except in the

vicinity of the shock, because the numeric and asymptotic solutions predict

different locations for the shock. The asymptotic solution predicts that the shock

lies at x 
 5.08 when t = 5, whereas the numerical solution puts the shock near x


 5.26. This discrepancy is attributable to the fact that the asymptotic solution

we have calculated only predicts the shock location to Oð�2tÞ [see Equation

(15), keeping in mind that d~�=d� ¼ �].
Figure 4 demonstrates that the analytic solution is asymptotically correct—it

approaches the numerical solution, at the correct rate, as � ! 0. To produce this

graph, we compared the asymptotic and numeric solutions for various � at t = 5,

and measured the error between them over different parts of the solution

domain. We use the 1-norm of their difference to calculate this error:

absolute error in h ¼
Z b

a

���hnumeric x; tð Þ � hasymptotic x; tð Þ
���dx:

Figure 4a shows the three different regions of the solution domain from which

we calculated the absolute errors: regions corresponding to the water behind the

0 1 2 3 4 5 6 7 8 9 10

1.06

1.08

x

0 1 2 3 4 5 6 7 8 9 10
-0.04

-0.02

0

0.02

0.04

x

numerical     
analytic      

numerical     
analytic      

1.10

1.12

he
ig

ht
v

Figure 3. Comparison of a numeric versus asymptotic solution of a wavemaker problem for the

shallow-water wave equations at t = 5.
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shock (Fig. 4c), on top of the shock (Fig. 4b), and ahead of the shock (Fig. 4d).

Note that the absolute error approaches zero like �2 in the regions away

from the shock, which is appropriate, because we have only calculated the Oð�Þ
contribution to the asymptotic solution. The convergence in the vicinity of the

shock is slower, because of the discrepancy of the shock location and the fact

that h and u are discontinuous across the shock.

3. General pair of hyperbolic conservation laws

Now that we have seen how to solve initial boundary-value problems for the

shallow-water equations, let us apply these solution techniques to a broader

class of problems. Consider now a pair of hyperbolic conservation laws written

in differential form,

pt þ qx ¼ s; ð16Þ

where the conserved quantity p, the flux q, and the source s are all two-

component vectors. Again, let � be a small, positive parameter: 0 < � � 1.We

assume that pi, qi, and si are functions of the two dependent variables, u1 and u2,

so that the conservation laws are spatially and temporally homogeneous.

Figure 4. Analysis of error between numeric and calculated solutions over three spatial domains

at t = 5.
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Without source terms, Equation (16) can represent shallow water flow and

nearly isentropic gas dynamics (see Section 3.3.4 of [1]). Examples with source

terms include glacier flow, chemical exchange processes, chromatography,

sedimentation in glaciers, and flow in a channel (see Chapter 3 of [6]).

To obtain a differential equation in terms of the dependent variable, we

evaluate derivatives with respect to t and x in (16) to obtain

ut þ A uð Þux ¼ r uð Þ; ð17Þ

where

A uð Þ ¼ P�1Q and r uð Þ ¼ P�1s

and P and Q are the Jacobian matrices

P ¼ @ p1; p2ð Þ
@ u1; u2ð Þ and Q ¼ @ q1; q2ð Þ

@ u1; u2ð Þ :

To make progress on an analytic solution to (17), we assume the existence of

a constant steady-state solution, u(0), about which we construct a perturbation

expansion:

u x; t; �ð Þ ¼ u 0ð Þ þ �u 1ð Þ x; ~x; t; ~tð Þ þ u 2ð Þ x; ~x; t; ~tð Þ þ O �3
� �

: ð18Þ

If the conservation law (16) has no sources, then any pair of constants can serve

as a constant steady-state solution; otherwise, the constant steady-state solution

must satisfy s(u(0)) = 0. If the steady-state solution depends on x, or if the

original conservation law is not spatially and temporally homogeneous, we end

up with a system of linear first-order partial differential equations with

coefficients that depend on x or t. At present, there are no analytic methods to

solve such problems. However, if we assume that the spatial dependence of the

coefficients in (16) is on the fast spatial scale x* = x/�, then we can make some

progress through the theory of multiple-scale homogenization. This is the focus

of [7].

With our choice of scales in (18), derivatives with respect to x and t become

@

@x
! @

@x
þ �

@

@~x
ð19aÞ

@

@t
! @

@t
þ �

@

@~t
: ð19bÞ

We expand the matrix A (u) as

A uð Þ ¼ A u 0ð Þ þ �u 1ð Þ þ . . .
� �

¼ A 0ð Þ þ �A 1ð Þ þ O �2
� �

ð20Þ
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where

A 0ð Þ ¼ A u 0ð Þ
� �

A
1ð Þ
ij ¼ @Aij

@um
u 0ð Þ

� �
u 1ð Þ
m :

Similarly, we expand r(u) as

r uð Þ ¼ r u 0ð Þ þ �u 1ð Þ þ . . .
� �

¼ r 0ð Þ þ �r 1ð Þ þ O �2
� �

ð21Þ

where

r 0ð Þ ¼ r u 0ð Þ
� �

r
1ð Þ
i ¼ @ri

@um
u 0ð Þ

� �
u 1ð Þ
m :

(We adopt the summation convention for repeated indices on m and n.)

We substitute expansions (18), (21), and (20) into (17), use the change of

derivatives (19), and collect like powers of � to obtain a hierarchy of equations

governing u(i)(x, t). The governing equations for u(1),

u
1ð Þ
t þ A 0ð Þu 1ð Þ

x þ Bu 1ð Þ ¼ 0; ð22Þ

are the most important, because the differential operator represented by the left-

hand side determines the behavior of all higher-order corrections to the solution.

The entries of the matrix B are given by

Bij ¼
@ri
@uj

:

Using characteristic dependent and independent variables, (22) transforms to

@U1

@�2
þ C11U1 þ C12U2 ¼ 0; ð23aÞ

and

@U2

@�1
þ C21U1 þ C22U2 ¼ 0; ð23bÞ

where �i = x � 
i t, 
i are the eigenvalues of A
(0), and C is similar to B under the

same similarity transformation that diagonalizes A(0).
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Now we see that effect of source terms in (16) is to couple the pair of

equations (23). Although we could make some progress on the analytic solution,

it would involve integrals of Bessel functions (see Section 3.7.2 of [1]).

For example, consider again the conservation laws for shallow water flow

from the previous section. We can add source terms to (13) by placing the

one-dimensional tank on a slight decline away from the wavemaker. The

conservation laws become

ht þ uhð Þx¼ 0; ð24aÞ

uhð Þt þ u2hþ 1
2
h2

� �
x
¼ h� u2=F2; ð24bÞ

where F is the Froude constant, which increases with the angle of decline of the

channel (see Section 4.3.4 of [1]). The new steady-state solution for this system

of equations is h = 1, u = F, which corresponds to a perfect balance between

frictional and gravitational forces. Linearizing about this steady state,

h x; t; �ð Þ ¼ 1þ �h 1ð Þ x; tð Þ þ O �2
� �

;

u x; t; �ð Þ ¼ F þ �u 1ð Þ x; tð Þ þ O �2
� �

;

leads to the system of equations

hð1Þ

uð1Þ

� �
t

þ F 1

1 F

� �
hð1Þ

uð1Þ

� �
x

þ 0 0

�1 2=F

� �
hð1Þ

uð1Þ

� �
¼ 0;

corresponding to (22). As discussed in [8], when F 
 2, this problem provides

an example in which the system of equations (23) can be solved sequentially,

because C21 = 0.

The propagation of plane-polarized electromagnetic waves provides us with

an example of an essentially coupled hyperbolic system. Instead of deriving a

weakly nonlinear problem by perturbing a pair of conservation laws, this

instance of (22) comes directly from Maxwell’s equations. Let E = E(x, t)j and

H = H(x, t)k be the electric and magnetic fields, respectively. If the current

density is exactly proportional to the electric field, J = �E, where � is the

conductivity of the medium, then E and H satisfy

@E

@t
þ 1

�

@H

@x
þ �E ¼ 0; ð25aÞ

@H

@t
þ 1

�

@E

@x
¼ 0; ð25bÞ

where � is the dielectric constant (not to be confused with the small parameter),

and � is the permeability. Note that the presence of � essentially couples the
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two equations together, because if the equations are written in terms of

characteristic dependent and independent variables, we obtain

2��1=2��1=2 @u1
@�

þ �

2
u1 þ u2ð Þ ¼ 0;

�2��1=2��1=2 @u2
@�

þ �

2
u1 þ u2ð Þ ¼ 0;

where E = �1/2(u1 + u2), H = �1/2(u1 � u2), � = x � ��1/2��1/2 t, and � = x +

��1/2��1/2t. Although the general solution to these equations can be written in

terms of Bessel functions, obtaining the solvability conditions at the next order

of � becomes extremely cumbersome.

If source terms are absent in the original conservation laws, we can easily

apply the methods from the last section. Using the eigenvalues and eigen-

vectors of A(0), we use characteristic dependent and independent variables to

decompose the solution into left-going and right-going waves. (This

decomposition relies on the fact that A(0) has one positive and one negative

eigenvalue, something that can be accomplished through an appropriate change

of independent variables.) The solution domain for the right-going wave must

be divided into two regions, separating points in the solution domain by their

dependence on initial and boundary data. We then include the appropriate

temporal and spatial scales for each wave and solve quasilinear first-order

partial differential equations to obtain the solution to as high a degree of � as
desired. Finally, we determine the curve that divides the two regions of the

solution domain.

4. Discussion

All of the problems solved in this article have the feature that the Oð�Þ solution
can be decomposed into two waves, each traveling in a different direction (for

example L(1) and R(1) for the wavemaker problem). The wave that is traveling

toward the boundary condition is primarily determined by its initial condition,

so it is the wave that travels away from the boundary that has the responsibility

of satisfying the boundary condition. In these problems, we have used the

stretched spatial scale ~x to give this ‘‘outbound’’ wave the extra freedom to

satisfy the boundary condition.

Let us look more closely at how the extra freedom is achieved. The effect of

including ~x first presents itself in the consistency conditions. For example, in

the wavemaker problem, the consistency conditions for the wave traveling to

the right are
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R
Að Þ
~t

þ R
Að Þ
~x þ 3

4
R Að ÞR

Að Þ
� ¼ 0; ð26aÞ

and

R
Bð Þ
~t

þ 3

4
R Bð ÞR

Bð Þ
� ¼ 0: ð26bÞ

We do not include ~x in (26b), because the water in Region B is primarily

influenced by the initial conditions, and the appropriate solution procedure for

an initial value problem is to add the slow temporal scale ~t only. What is the

difference between (26a) and (26b)?

First, we point out that once we convert (26a) and (26b) back to physical

coordinates, they actually represent very similar equations. Let f (�, ~x, ~t ) = R(1)

+ �R(2) + . . . in Region A and g(�, ~t ) = R(1) + �R(2) + . . . in Region B represent

the wave traveling to the right, with the contributions from all orders of �
combined.

In Equation (26a), the variables ~t , ~x, and � are not really independent

variables, because � = x � t = (~x � ~t )/�. Because it is not possible to change

from three independent variables to two independent variables, we must

maintain the formalism that � is independent of ~t and ~x. The correct change of
variables requires us to consider two separate sets of variable changes: first the

change from ~x and ~t to x and t, then the change from � = x � t and � = x + t to x

and t. When we perform these changes, (26a) becomes

Ft þ Fx þ
�

2
F Fx � Ftð Þ þ O �2

� �
¼ 0; ð27Þ

where F(x, t) = f (�, ~x, ~t ).
Because (26b) only contains two independent variables, the correct change

of variables involves the relationships

~t ¼ �t t ¼ ~t =�

� ¼ x� t x ¼ � þ ~t =�:

After some algebra, (26b) becomes

Gt þ Gx þ �GGx þ O �2
� �

¼ 0; ð28Þ

where G(x, t) = G(�, ~x, ~t ). Although (27) and (28) look different, once we use

the fact

1

2
Gt þ

1

2
Gx þ O �ð Þ ¼ 0

in (28), the two equations match to Oð�Þ.
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So we see that the addition of ~x does not significantly affect the qualitative

behavior of the outgoing wave, because the governing equations with and

without ~x are essentially the same once we revert to physical independent

variables. The effect of adding ~x, therefore, can only be seen while maintaining

the formalism that � and � are independent of ~x and ~t . For example, when we

used the method of characteristics to obtain R(A) in (12), we considered ~t, ~x, and
� to be three independent variables.

To summarize, the presence of boundaries necessitates the addition of

stretched spatial scales to our multiple-scale solution so that there are enough

degrees of freedom to satisfy all initial and boundary conditions. These

stretched spatial scales do not significantly affect the qualitative behavior of

the solution, and their benefit is only achieved by solving consistency

conditions under the assumption that all scales are independent of one

another.
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