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1 Introduction

The one-dimensional elastic wave equations for compressional waves have the
form

εt(x, t) − ux(x, t) = 0

(ρ(x)u(x, t))t − σ(ε(x, t), x)x = 0
(1)

where ε(x, t) is the strain and u(x, t) the velocity. We consider a heterogeneous
material with the density specified by ρ(x) and a nonlinear constitutive rela-
tion for the stress given by a function σ(ε, x) that also varies explicitly with
x. This is a hyperbolic system of conservation laws with a spatially-varying
flux function, qt + f(q, x)x = 0.

In particular, we consider a periodic layered medium (a laminate) in which
ρ(x) and σ(ε, x) are given by

(ρ(x), σ(ε, x)) =

{

(ρA, σA(ε)) if jδ < x < (j + α)δ for some integer j
(ρB, σB(ε)) otherwise.

(2)
The two layers have widths αδ and (1 − α)δ respectively. Here we consider
the case α = 1/2 and δ = 1.

For sufficiently small strains, the response can be modeled by linear con-
stitutive relations

σA(ε) = KAε, σB(ε) = KBε, (3)

where the bulk moduli KA and KB of each material are constants. The equa-
tions are then equivalent to acoustics equations in the periodic medium, a
case discussed for example in [2], [6]. Here we primarily consider nonlinear
equations with

σA(ε) = exp(KAε) − 1, σB(ε) = exp(KBε) − 1. (4)

A numerical method for solving more general systems of conservation laws
with spatially-varying flux functions has been introduced in [1] and applied
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to the nonlinear systems given above in [4] and [5]. See also [3] for more
discussion of the numerical methods used.

An interesting phenomenon has been observed from computations of this
nonlinear system: the appearance of solitary waves that arise due to the
combination of nonlinearity in the equations and the dispersion induced by
reflections at the material interfaces. These solitary waves are investigated
in our recent paper [5], where multi-scale homogenization is also applied to
obtain a set of homogenized equations that do an excellent job of modeling the
behavior seen in the layered medium. The layered medium is also related to
the Toda lattice, a discrete nonlinear system that has exact soliton solutions.

Here we present some observations on the structure of these waves that
arise from viewing the solitary waves in the phase plane. We observe that
Riemann invariants of a related autonomous nonlinear system (with appro-
priately averaged values of ρ and K) appear to be significant to the study of
wave propagation in this layered medium.

2 Waves in layered media

In Fig. 1 we show results of a numerical experiment that is discussed in more
detail in [5]. Initially q(x, 0) = 0 and a wave is generated at the left boundary
by the boundary conditions

u(0, t) =

{

0.2(1 + cos(π(t − 10)/10)) if 0 ≤ t ≤ 20,
0 if t > 20.

(5)

The left edge is pulled outwards for 0 < t < 20, generating a strain wave
that propagates to the right. Once the wave has been generated, we switch
to periodic boundary conditions so that the wave loops through the domain
and the long-time behavior can be studied. In the plot at t = 40 we see that
the smooth hump starts to steepen into a shock followed by a rarefaction,
but that oscillations begin to appear behind the shock due to the dispersive
nature of the layered medium. At later times these oscillations cause the
hump to break up into a train of solitary waves.

Fig. 1 shows the stress, which is continuous at the layer interfaces. Fig. 2
shows a close up view of the first two solitary waves at t = 600 from Fig. 1,
and also shows the corresponding strain ε. The strain is discontinuous at the
interfaces and so we observe that each solitary wave has a width of about
ten layers. These waves are called “stegotons” in [5] because of their ridged
appearance. It is not clear whether these waves could possibly be solitons
in the technical sense, but they do appear to interact in the same manner
as classical solitons. Taller stegotons propagate faster than shorter ones, and
when two collide they later separate cleanly into stegotons of the original
amplitudes with only a shift in phase (see [5]).

These waves are not smooth when viewed as functions of x at a fixed
time t. However, if we fix a location x0 and record q(x0, t) as a function of
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time, then the solution is seen to be smoothly varying, as seen in Fig. 3. This
approach is used in [5] to study the scaling properties of these waves.
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Fig. 1. Propagation in a layered nonlinear medium with impedance mis-match at
the interfaces. The left column shows the stress at three times and the right column
at three later times, illustrating breakup into a train of solitary waves.
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Fig. 2. Close-up view of the first two solitary waves from Fig. 1 at time t = 600,
showing both the strain and the stress.

Here we begin to explore a different view of these waves that we hope may
ultimately lead to new insights into their nature. We plot the waves from
Fig. 3 in the σ-u plane, a variant of the phase plane for this system. What
we observe depends on where the point x0 lies within the layered structure
of the medium. Fig. 4 shows the curves obtained for various locations of x0.
This computation was performed with 19 grid cells in each layer and the
solution was recorded in grid cells 1 through 38 (throughout an A layer and
a B layer) over the time period 660 ≤ t ≤ 700 as shown in Fig. 3. (Fig. 3
shows the trace for i = 10, in the middle of the A layer.) The left column of
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Fig. 3. Time trace of the stress σ(x0, t) ≥ 0 and velocity u(x0, t) ≤ 0 at a fixed
point x0 as four stegotons pass by.

Fig. 4 shows results at five locations in the A layer, while the right column
shows 5 locations in the B layer. In each case four excursions from the origin
are observed, corresponding to the four solitary waves.

Note that in the middle of each layer (i = 10 and i = 19), the solitary
waves are symmetric in t and the same curve is traced out during the rising
and falling portions of the wave. Away from the center of a layer, the excursion
traces out a loop, indicating that the wave would not look so symmetric in t.
In each case, however, the loops appear quite similar for the four stegotons,
and scale with the height of the wave.

Note that if we solved the linear equations in a homogeneous medium (i.e.,
using σ(ε) = Kε with K and ρ constant), then a right-going wave would be a
simple wave with u = −σ/Z everywhere, where Z =

√
ρK is the impedance

(see [5]). Hence, plots corresponding to Fig. 4 in the homogeneous linear case
would show that all values (σ(x0, t), u(x0, t)) lie on a line through the origin
with slope −1/Z.

For a homogeneous nonlinear material (with σ(ε) = exp(Kε)−1 and K, ρ
constant), the system (1) becomes

εt − ux = 0

ρut − exp(Kε)x = 0.
(6)

A right-going simple wave would have values (σ, u) lying on an integral curve
of the eigenvector r2 of the Jacobian matrix

f ′(q) =

[

0 1/ρ
σ′(ε) 0

]

=

[

0 1/ρ
KeKε 0

]

. (7)

The eigenvectors of f ′(q) are
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Fig. 4. Solutions of the form shown in Fig. 3 when plotted in the σ-u plane. The
resulting curves are shown at 5 different locations within each of the two layers (A
layer on the left, B layer on the right). The time trace shown in Fig. 3 is at i = 10,
in the middle of an A-layer.

r1 =

[

1
Z

]

, r2 =

[

1
−Z

]

,

where Z =
√

ρσ′(ε) =
√

ρKeKε varies with ε(x, t) in the nonlinear case.
The Riemann invariants are

w1 = ρu − 2
√

ρ/KeKε/2 = ρ

(

u − 2√
ρK

√
σ + 1

)

(8)

and

w2 = ρu + 2
√

ρ/KeKε/2 = ρ

(

u +
2√
ρK

√
σ + 1

)

. (9)
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So a right-going simple wave has w2 ≡ constant. For a solitary wave that
makes an excursion from u = ε = 0, we must have w2 ≡ 2

√

ρ/K and so

u =
2√
Kρ

(

1 −
√

σ + 1
)

. (10)

Note that du/dσ|σ=0 = −1/
√

Kρ = −1/Z0, where Z0 is the impedance of the
corresponding linearized problem, so this is consistent with the linear case
for small amplitude waves.

Homogenization theory (see [5] and [6]) suggests that we might compare
the results from the layered medium with integral curves corresponding to a
homogenized nonlinear medium with parameters

ρ̄ =
1

2
(ρA + ρB) = 5/2, K̂ =

(

1

2KA

+
1

2KB

)

−1

= 8/5, (11)

and

√

ρ̄K̂ = 2. There is in fact a close connection. Fig. 5 shows a comparison

of two sets of curves from Fig. 4 (for i = 10 and i = 19, in the center of each
layer) with the integral curve of r2 obtained using the values ρ̄ and K̂ from
(11), i.e., the curve u = 1 −

√
σ + 1.
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Fig. 5. The curves from Fig. 4 for i = 10 and i = 29, together with the integral
curve u = 1 −

√
σ + 1.
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3 Homogenization theory

Nonlinear homogenization theory is developed in [5]. For the case considered
here, the following approximate equations are derived:

ut =
2σx

5
+

3σxxx

500
+

(

3σxxxσ2
x

15625(σ + 1)2
− 72u2

xxσx

15625(σ + 1)
− 12σxxxxσx

15625(σ + 1)

− 96uxxuxxx

15625
− 12σxxσxxx

15625(σ + 1)
− 357σxxxxx

1000000

)

+ · · · (12a)

σt =
8(σ + 1)ux

5
+

(

3(σ + 1)uxxx

125
+

3uxxσx

50

)

+

(

48uxu2
xx

15625
− 48σxσxxuxx

15625(σ + 1)
− 4761σxxxuxx

500000
− 72uxxxσ2

x

15625(σ + 1)

− 357(σ + 1)uxxxxx

250000
− 3543uxxxxσx

500000
− 3891uxxxσxx

500000

)

+ · · · .

(12b)

These equations have been solved using a pseudospectral method and shown
to give results that agree well with solutions to the original layered media
equations. Fig. 6 shows solutions to (12) with initial data

u(x, 0) = 0, σ(x, 0) = sech2((x − 100)/5) on 0 ≤ x ≤ 200,

with periodic boundary conditions. This hump splits up into left-going and
right-going pulses that break up into solitary waves in exactly the same man-
ner as observed in the layered medium. At time t = 200 these wave trains
are approaching each other again due to the periodic boundary conditions.
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Fig. 6. Solution σ(x, t) to the homogenized system of equations (12) at two dif-
ferent times. The Riemann invariants w1 and w2 corresponding to the first-order
hyperbolic system (6) with parameters (11) are computed from this solution and
also plotted.
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In these plots, along with σ(x, t) we have also plotted the Riemann invari-
ants w1 and w2 evaluated from the u and σ values. Note that the expressions
(8) and (9) are based on the simple first-order hyperbolic system for a ho-
mogeneous medium (using the parameters (11)), while u and σ result from
solving the dispersive homogenized equations (12), a system that has very
different behavior from the purely hyperbolic system. There is no reason a

priori to expect that a left-going train of solitary waves appearing in the so-
lution to (12) will exhibit a constant value of w1, but in fact this appears to
be true. We see that w1 is essentially constant (to about 10−3) through the
left-going wave train while w2 is essentially constant through the right-going
wave train. In Fig. 7 we plot the solution values (σ, u) computed from the
homogenized equations at t = 200 together with the integral curves of r1 and
r2, the curves u = ±(1−

√
σ + 1). The solution values lie very close to these

curves.
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Fig. 7. Solution values from solving the homogenized equations (12), plotted in the
σ-u plane at time t = 200. The solid lines are the integral curves u = ±(1−

√
σ + 1).

4 Conclusions

In the linear case, the constant coefficient system with averaged parameters
(11) gives the correct homogenized system to leading order. A pulse prop-
agating in the layered medium is well described by the constant coefficient
first-order system for small time, though eventually dispersive effects are
visible (see [2], [5], [6]). For the nonlinear problem, however, the first-order
nonlinear hyperbolic system (6) with parameters (11) does not adequately
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describe the behavior seen in the layered medium, where the pulse rapidly
breaks up into solitary waves. In spite of this, the Riemann invariants of
the first order system with averaged parameters appear to be preserved in
the wave trains computed using the proper homogenized equations. We are
continuing to explore the implications of this observation.
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