MATH 40 LECTURE 14: MORE EIGENVALUES AND EIGENVECTORS

DAGAN KARP

Theorem 1. Let A be a square matrix, let \vec{x} be an eigenvector of A with eigenvalue λ . For any $n \in \mathbb{N}$, \vec{x} is an eigenvalue of A^n with eigenvalue λ^n . If A is invertible, this holds for all $n \in \mathbb{Z}$.

Remark 2. Let A be as above. If A is invertible, the $1/\lambda$ is an eigenvalue of A^{-1} .

PROOF. First, consider the case $n \in \mathbb{N}$. We prove by induction. The base case $A\vec{x} = \lambda \vec{x}$ holds by assumption. Now assume $A^k \vec{x} = \lambda^k \vec{x}$. Then we compute

$$A^{k+1}\vec{x} = A(A^k\vec{x}) = A(\lambda^k\vec{x}) = \lambda^k(A\vec{x}) = \lambda^k(\lambda\vec{x}) = \lambda^{k+1}\vec{x}.$$

Therefore the result holds for n > 0. The case n = 0 is trivial.

Now consider n = -1. We compute

$$\vec{x} = I\vec{x} = (A^{-1}A)\vec{x} = A^{-1}(A\vec{x}) = A^{-1}(\lambda\vec{x}) = \lambda(A^{-1}\vec{x}).$$

Since the n = -1 case assumes A^{-1} exists, A is invertible therefore 0 is not an eigenvalue of A. Therefore $\lambda \neq 0$. Therefore we can solve the above equation, yielding

$$A^{-1}(\vec{x}) = \frac{1}{\lambda}\vec{x}.$$

Thus the result holds if n = -1.

It remains to establish the result in case n < 0. But this follows from an induction argument similar to the one above.

Example 3. Again, let
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$$
. Let $\vec{x} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$. Compute $A^4\vec{x}$.

We use eigenvectors and eigenvalues. As above, the eigenvalues are 2 and -1. These have eigenvectors $\vec{v}_1 = (2, 1)$ and $\vec{v}_2(-1, 1)$ respectively. Note that these eigenvectors are linearly independent, and thus span \mathbb{R}^n . In particular, we see

$$\begin{pmatrix} 3\\3 \end{pmatrix} = 2 \begin{pmatrix} 2\\1 \end{pmatrix} + \begin{pmatrix} -1\\1 \end{pmatrix}.$$

Date: February 17, 2012.

These are lecture notes for HMC Math 40: Introduction to Linear Algebra and roughly follow our course text *Linear Algebra* by David Poole.

Therefore

$$A^{4}\vec{x} = A^{4}(2\vec{v}_{1} + \vec{v}_{2})$$

= $2A^{4}\vec{v}_{1} + A^{4}\vec{v}_{2}$
= $2(2^{4})\vec{v}_{1} + (-1)^{4}\vec{v}_{2}$
= $32\vec{v}_{1} + \vec{v}_{2}$
= $32\begin{pmatrix}2\\1\end{pmatrix} + \begin{pmatrix}-1\\1\end{pmatrix}$
= $\begin{pmatrix}63\\33\end{pmatrix}$.

Theorem 4. *Eigenvectors corresponding to distinct eigenvalues are linearly independent.*

Remark 5. The above example shows that it is often very convenient to write a vector as a linear product of the eigenvectors of A. By the above theorem, if an $n \times n$ matrix has n distinct eigenvalues, then they must form a **basis** of \mathbb{R}^n . Therefore any vector can be written as a linear combination of the eigenvectors. The general idea here is that of *coordinates*.

Definition 6. Let $\mathcal{B} = {\vec{v}_1, ..., \vec{v}_k}$ be a basis of the subspace $S \subset \mathbb{R}^n$. Then any vector $\vec{x} \in S$ can be written as a unique linear combination

$$\vec{\mathbf{x}} = \mathbf{c}_1 \vec{\mathbf{v}}_1 + \dots + \mathbf{c}_k \vec{\mathbf{v}}_k.$$

The vector

$$[\vec{v}]_{\mathcal{B}} = (c_1, \dots, c_k)$$

is called the coordinate vector of \vec{v} in basis \mathcal{B} .

Example 7. Let $\mathcal{B}_1 = \{\vec{e}_1, \vec{2}\}$ be the standard basis of \mathbb{R}^2 , and let

$$[\vec{v}]_{\mathcal{B}_1} = (3,3).$$

Now consider the basis $\mathbb{B}_2 = \{ \vec{v}_1 = (2, 1), \vec{v}_2 = (-1, 1) \}$. In the above example, we have

 $[\vec{v}]_{\mathcal{B}_2} = (2, 1).$

Definition 8. Let λ be an eigenvalue of A. The algebraic multiplicity of λ is the degree of λ as a root of the characteristic polynomial. The geometric multiplicity of λ is the dimension of the eigenspace E_{λ} .

Example 9. Consider the identity matrix I_2 . The characteristic equation of I_2 is

$$\det(\mathbf{I} - \lambda \mathbf{I}) = \begin{vmatrix} 1 - \lambda & 0 \\ 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2.$$

Therefore $\lambda = 1$ *is the only eigenvalue of* I*, and it is an eigenvalue of algebraic multiplicity* 2*.*

On the other hand, $I\vec{x} = 1\vec{x}$ for all $\vec{x} \in \mathbb{R}^2$, and therefore $E_{\lambda} = \mathbb{R}^2$. Thus $\lambda = 1$ has geometric multiplicity 2.