
Matrix inverses

Recall...

Definition A square matrix A is invertible (or nonsingular) if ∃ matrix
B such that AB = I and BA = I. (We say B is an inverse of A.)

Remark Not all square matrices are invertible.

Theorem. If A is invertible, then its inverse is unique.

Remark When A is invertible, we denote its inverse as A−1.

Theorem. If A is an n × n invertible matrix, then the system of

linear equations given by A~x = ~b has the unique solution ~x = A−1~b.

Proof. Assume A is an invertible matrix. Then we have
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Theorem (Properties of matrix inverse).

(a) If A is invertible, then A−1 is itself invertible and (A−1)−1 = A.

(b) If A is invertible and c �= 0 is a scalar, then cA is invertible and

(cA)−1 = 1
cA

−1.

(c) If A and B are both n×n invertible matrices, then AB is invertible

and (AB)−1 = B−1A−1.

“socks and shoes rule” – similar to transpose of AB

generalization to product of n matrices

(d) If A is invertible, then AT is invertible and (AT )−1 = (A−1)T .

To prove (d), we need to show that the matrix B that satisfies

BAT = I and ATB = I is B = (A−1)T .
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by associativity of 
matrix mult.

by def'n of 
inverse

by def'n of 
identity

Thus, ~x = A−1~b is a solution to A~x = ~b.

Suppose ~y is another solution to the linear system. It follows that A~y = ~b,

but multiplying both sides by A−1 gives ~y = A−1~b = ~x. �
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“socks and shoes rule” – similar to transpose of AB

generalization to product of n matrices

(d) If A is invertible, then AT is invertible and (AT )−1 = (A−1)T .

To prove (d), we need to show that the matrix B that satisfies

BAT = I and ATB = I is B = (A−1)T .

Proof of (d). Assume A is invertible. Then A−1 exists and we have

(A−1)TAT = (AA−1)T = IT = I

and

AT (A−1)T = (A−1A)T = IT = I.

So AT is invertible and (AT )−1 = (A−1)T . �

Recall...
How do we compute the inverse of a matrix, if it exists?

Inverse of a 2 × 2 matrix: Consider the special case where A is a
2× 2 matrix with A = [ a b

c d ]. If ad− bc 6= 0, then A is invertible and its
inverse is

A−1 =
1

ad− bc

[
d −b

−c a

]
.

How do we find inverses of matrices that are larger than 2× 2 matrices?

Theorem. If some EROs reduce a square matrix A to the identity matrix
I, then the same EROs transform I to A−1. A I

 I A-1EROs

If we can transform A into I, then we will obtain A−1. If we cannot do
so, then A is not invertible.
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Can we capture the effect of an ERO through matrix multiplication?

Definition An elementary matrix is any matrix obtained by doing an

ERO on the identity matrix.

Examples

R1↔R2
on 4× 4 identity


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 R1−4R3
on 3× 3 identity

1 0 −4

0 1 0

0 0 1


Notice that1 0 −4

0 1 0

0 0 1

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

a11 − 4a31 a12 − 4a32 a13 − 4a33

a21 a22 a23

a31 a32 a33


Left mult. of A by row vector is a linear comb. of rows of A.

Remark An elementary matrix E is invertible and E−1 is elementary

matrix corresponding to the “reverse” ERO of one associated with E.

Example If E is 2nd elementary matrix above, then “reverse” ERO is

R1 + 4R3 and E−1 =

1 0 4

0 1 0

0 0 1

.

Remark When finding A−1 using Gauss-Jordan elimination of [ A | I ],

if we keep track of EROs, and if E1, E2, . . . , Ek are corresponding elem.

matrices, then we have

EkEk−1 · · ·E1A = I =⇒ A = E−1
1 · · ·E−1

k−1E
−1
k .
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Theorem (Fundamental Thm of Invertible Matrices).

For an n× n matrix, the following are equivalent:

(1) A is invertible.

(2) A~x = ~b has a unique solution for any ~b ∈ Rn.

(3) A~x = ~0 has only the trivial solution ~x = 0.

(4) The RREF of A is I.

(5) A is product of elementary matrices.
1

2

34

5

Proof
strategy

Proof.

(1) ⇒ (2):
Proven in first theorem
of today’s lecture

(2) ⇒ (3):
If A~x = ~b has unique sol’n for any
~b ∈ Rn, then in particular, A~x = ~0
has a unique sol’n. Since ~x = ~0 is a
solution to A~x = ~0, it must be the
unique one.

(3) ⇒ (4):
If A~x = ~0 has unique sol’n ~x = 0,
then augmented matrix has no free
variables and a leading one in every
column: 

1 0
1 0

. . . ...
1 0


so RREF of A is I.

(4) ⇒ (5):
Ek · · ·E1A = RREF of A = I

and elem. matrices are invertible
=⇒ A = E−1

1 · · ·E−1
k−1E

−1
k .

(5) ⇒ (1):
Since A = Ek · · ·E1 and Ei invertible
∀ i, A is product of invertible matri-
ces so it is itself invertible.

�
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Theorem. Let A be a square matrix. If B is a square matrix such

that either AB = I or BA = I, then A is invertible and B = A−1.

Proof. Suppose A, B are n×n matrices and that BA = I . Then consider

the homogeneous system A~x = ~0. We have

B(A~x) = B~0 =⇒ (BA)︸ ︷︷ ︸
I

~x = ~0 =⇒ ~x = ~0.

Since A~x = ~0 has only the trivial solution ~x = ~0, by the Fundamental

Thm of Inverses, we have that A is invertible, i.e., A−1 exists. Thus,

(BA)A−1 = IA−1 =⇒ B (AA−1)︸ ︷︷ ︸
I

= A−1 =⇒ B = A−1.

We leave the case of AB = I as an exercise. �

Definition The vectors ~e1, ~e2, . . . , ~en ∈ Rn, where ~ei has a one in its

ith component and zeros elsewhere, are called standard unit vectors.

Example The 4× 4 identity matrix can be expressed as

I4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 =

 | | | |~e1 ~e2 ~e3 ~e4

| | | |



Theorem. If some EROs reduce a square matrix A to the identity

matrix I, then the same EROs transform I to A−1.

Why does this work?

Want to solve AX = I , with X unknown n× n matrix.

If ~x1, . . . , ~xn are columns of A, then want to solve n linear systems

A~x1 = ~e1, . . . , A~xn = ~en. Can do so simultaneously using one

“super-augmented matrix.”
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