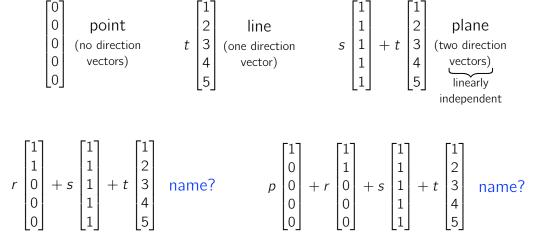
Subspaces, basis, dimension, and rank

Math 40, Introduction to Linear Algebra Wednesday, February 8, 2012

Subspaces of \mathbb{R}^n

One motivation for notion of subspaces of \mathbb{R}^n

algebraic generalization of geometric examples of lines and planes through the origin



Subspace

Definition A subspace S of \mathbb{R}^n is a set of vectors in \mathbb{R}^n such that

- (1) $\vec{0} \in S$ [contains zero vector]
- (2) if $\vec{u}, \vec{v} \in S$, then $\vec{u} + \vec{v} \in S$ [closed under addition]
- (3) if $\vec{u} \in S$ and $c \in \mathbb{R}$, then $c\vec{u} \in S$ [closed under scalar mult.]

Subspace

Example	Definition A subspace S of \mathbb{R}^n is a set of vectors in \mathbb{R}^n such that
	(1) $\vec{0} \in S$
Is $S = \{ \begin{bmatrix} x \\ y \end{bmatrix} : x \ge 0, y \ge 0 \}$	(2) if $\vec{u}, \vec{v} \in S$, then $\vec{u} + \vec{v} \in S$
a subspace of \mathbb{R}^2 ?	(3) if $\vec{u} \in S$ and $c \in \mathbb{R}$, then $c\vec{u} \in S$

No!

$$\begin{bmatrix} 1\\1 \end{bmatrix} \in S \text{ but } - \begin{bmatrix} 1\\1 \end{bmatrix} = \begin{bmatrix} -1\\-1 \end{bmatrix} \notin S$$

 \implies S is not closed under scalar multiplication

Subspace

ExampleDefinition A subspace S of \mathbb{R}^n is a set of vectors in \mathbb{R}^n such thatIs $S = \left\{ \begin{bmatrix} a \\ b \\ 0 \end{bmatrix} : a, b \in \mathbb{R} \right\}$
a subspace of \mathbb{R}^3 ?(1) $\vec{0} \in S$
(2) if $\vec{u}, \vec{v} \in S$, then $\vec{u} + \vec{v} \in S$
(3) if $\vec{u} \in S$ and $c \in \mathbb{R}$, then $c\vec{u} \in S$ YES!(1) $\vec{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in S$ \Rightarrow contains zero vector \checkmark (2) Let $\vec{u}, \vec{v} \in S$. Then $\vec{u} = \begin{bmatrix} a_1 \\ b_1 \\ 0 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} a_2 \\ b_2 \\ 0 \end{bmatrix}$ for some $a_1, a_2, b_1, b_2 \in \mathbb{R}$.
It follows that
 $\vec{u} + \vec{v} = \begin{bmatrix} a_1 + a_2 \\ b_1 + b_2 \\ 0 \end{bmatrix} \in S$ (3) Let $\vec{u} \in S, c \in \mathbb{R}$. Then $\vec{u} = \begin{bmatrix} a \\ b \\ 0 \end{bmatrix}$ for some $a, b \in \mathbb{R}$. It follows that
 $c\vec{u} = c \begin{bmatrix} a \\ b \\ 0 \end{bmatrix} = \begin{bmatrix} ca \\ cb \\ 0 \end{bmatrix} \in S$

Span is a subspace!

Theorem. Let $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_k} \in \mathbb{R}^n$. Then $S = \text{span}(\vec{v_1}, \vec{v_2}, \ldots, \vec{v_k})$ is a subspace of \mathbb{R}^n .

Proof. We verify the three properties of the subspace definition.

(1) $\vec{0} = 0\vec{v}_1 + 0\vec{v}_2 + \dots + 0\vec{v}_k$ $\Rightarrow \vec{0} \text{ is a linear comb. of } \vec{v}_1, \vec{v}_2, \dots, \vec{v}_k \Rightarrow \vec{0} \in S$ (2) Let $\vec{u}, \vec{w} \in S$. Then $\vec{u} = c_1\vec{v}_1 + \dots + c_k\vec{v}_k$ and $\vec{w} = d_1\vec{v}_1 + \dots + d_k\vec{v}_k$ for some scalars c_i, d_i . Thus, $\vec{u} + \vec{w} = (c_1\vec{v}_1 + \dots + c_k\vec{v}_k) + (d_1\vec{v}_1 + \dots + d_k\vec{v}_k)$ $= \underbrace{(c_1 + d_1)\vec{v}_1 + \dots + (c_k + d_k)\vec{v}_k}_{\text{linear comb. of } \vec{v}_1, \dots, \vec{v}_k} \Rightarrow \vec{u} + \vec{w} \in S$

(3) Let $\vec{u} \in S$, $c \in \mathbb{R}$. You finish the proof (show that $c\vec{u} \in S$).

Definition For an $m \times n$ matrix A with column vectors $v_1, v_2, \ldots, v_n \in \mathbb{R}^m$, the *column space* of A is span (v_1, v_2, \ldots, v_n) .

 $\operatorname{col}(A)$ is a subspace of \mathbb{R}^m since it is the span of a set of vectors in \mathbb{R}^m

Definition For an $m \times n$ matrix A with row vectors $r_1, r_2, \ldots, r_m \in \mathbb{R}^n$, the *row space* of A is span (r_1, r_2, \ldots, r_m) .

row(A) is a subspace of \mathbb{R}^n since it is the span of a set of vectors in \mathbb{R}^n

Important relationships:

• Column space \exists scalars $x_1, x_2, ..., x_n$ such that $\vec{b} \in \operatorname{col}(A) \iff \operatorname{span} \operatorname{of} \iff x_1 \begin{bmatrix} i \\ \vec{v}_1 \\ i \end{bmatrix} + \cdots + x_n \begin{bmatrix} i \\ \vec{v}_n \\ i \end{bmatrix} = \vec{b} \iff \operatorname{is \ consistent} (\operatorname{has \ a \ sol'n})$ • Row space $\vec{b} \in \operatorname{row}(A) \iff \vec{b}^T \in \operatorname{col}(A^T) \iff A^T \vec{x} = \vec{b}^T \text{ has \ a \ solution}$ since columns of A^T are the rows of AOR $\vec{b} \in \operatorname{row}(A) \iff \operatorname{linear \ comb.} \iff \left[\frac{A}{\vec{b}} \right] \frac{R_i + kR_j}{\operatorname{for \ } i > j} \left[\frac{A'}{\vec{0}} \right]$

Null space of a matrix

Definition For an $m \times n$ matrix A, the <u>null space</u> of A is the set of all solutions to $A\vec{x} = \vec{0}$, i.e., <u>null(A)</u>

$$\operatorname{null}(A) = \{ \vec{x} : A\vec{x} = \vec{0} \}.$$

 $\operatorname{null}(A)$ is a set of vectors in \mathbb{R}^n

Question Is null(A) a subspace of \mathbb{R}^n ? **YES!**

This statement requires proof, and we will tackle this on Friday.

Basis

Definition A set of vectors $B = {\vec{v_1}, ..., \vec{v_k}}$ is a *basis* for a subspace *S* of \mathbb{R}^n if

- span(B) = S,
- and *B* is a linearly independent set.

Example Standard basis for
$$\mathbb{R}^3$$
 is $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$
but another basis for \mathbb{R}^3 is $\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$.

More on basis

Theorem. Any two bases of a subspace have the same number of vectors.

Definition The number of vectors in a basis of a subspace *S* is called the *dimension* of *S*.

Example dim
$$(\mathbb{R}^n) = n$$

since $\{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\} = \begin{cases} \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\\vdots\\0 \end{bmatrix}, \dots, \begin{bmatrix} 0\\0\\\vdots\\1 \end{bmatrix}, \end{cases}$ is a basis for \mathbb{R}^n

Side-note The trivial subspace $\{\vec{0}\}$ has no basis since any set containing the zero vector is linearly dependent, so dim $(\{\vec{0}\}) = 0$.

Important basis results

Theorem. Given a basis $B = {\vec{v_1}, ..., \vec{v_k}}$ of subspace *S*, there is a **unique** way to express any $\vec{v} \in S$ as a linear combination of basis vectors $\vec{v_1}, ..., \vec{v_k}$.

Proof sketch on Friday.

Theorem. The vectors $\{\vec{v}_1, \ldots, \vec{v}_n\}$ form a basis of \mathbb{R}^n if and only if rank(A) = n, where A is the matrix with columns $\vec{v}_1, \ldots, \vec{v}_n$.

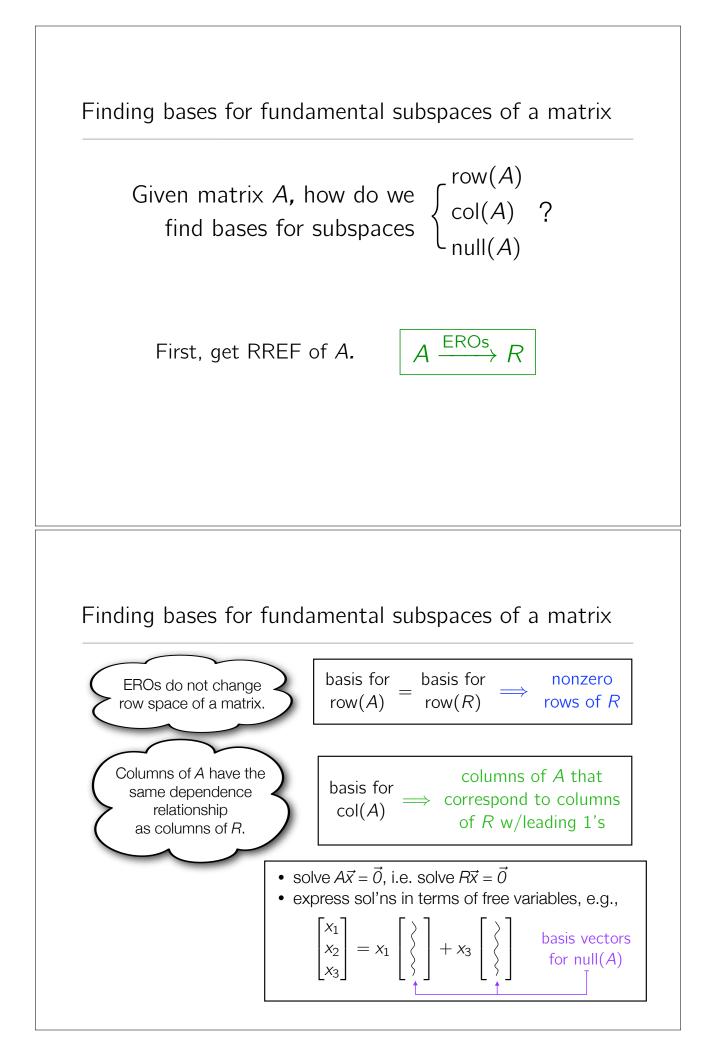
 $\begin{array}{ccc} Proof \ sketch \ (\Rightarrow). \\ rank(A) = n \Rightarrow & \begin{array}{c} A\vec{x} = \vec{0} \ has \ only \\ \Rightarrow \ trivial \ sol'n \ \vec{x} = \vec{0} \end{array} \Rightarrow & \begin{array}{c} cols \ of \ A \ are \\ linearly \ indep. \end{array} \\ \begin{array}{c} \Rightarrow \ cols \ of \ A \ are \\ basis \ for \ \mathbb{R}^n \end{array} \end{array}$

Same ideas can be used to prove converse direction.

Fundamental Theorem of Invertible Matrices (extended)

Theorem. Let A be an $n \times n$ matrix. The following statements are equivalent:

- A is invertible.
- $A\vec{x} = \vec{b}$ has a unique solution for all $\vec{b} \in \mathbb{R}^n$.
- $A\vec{x} = \vec{0}$ has only the trivial solution $\vec{x} = \vec{0}$.
- The RREF of A is I.
- A is the product of elementary matrices.
- $\operatorname{rank}(A) = n$.
- Columns of A form a basis for \mathbb{R}^n .



Example of matrix subspaces' bases

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{bmatrix} A \xrightarrow{\text{EROs}} R = \begin{bmatrix} 1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

basis for
row(A) = { [1 & 0 & -1 & -2 & -3], [0 & 1 & 2 & 3 & 4] }
basis for
col(A) = { { [1 & 0 & -1 & -2 & -3], [0 & 1 & 2 & 3 & 4] }

Example of matrix subspaces' bases

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 & 10 \\ 11 & 12 & 13 & 14 & 15 \end{bmatrix} A \xrightarrow{\text{EROS}} R = \begin{bmatrix} 1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$x_1 \qquad -x_3 - 2x_4 - 3x_5 = 0$$
$$x_2 + 2x_3 + 3x_4 + 4x_5 = 0$$
$$x_3, x_4, x_5 \quad \text{free} \qquad basis \text{ for } = \left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} x_3 + 2x_4 + 3x_5 \\ -2x_3 - 3x_4 - 4x_5 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 3 \\ -4 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

