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Important characteristic of a basis
Theorem. Given a basis B = {�v1, . . . ,�vk} of subspace S, there is
a unique way to express any �v ∈ S as a linear combination of
basis vectors �v1, . . . ,�vk .

Proof sketch.

ci = di ∀i

c1 − d1 = 0
c2 − d2 = 0

...

ck − dk = 0

⇒
linearly independent

Suppose

for scalars ci , di
�v = c1�v1 + c2�v2 + · · ·+ ck�vk
�v = d1�v1 + d2�v2 + · · ·+ dk�vk

Then 0 = (c1 − d1)�v1 + (c2 − d2)�v2 + · · ·+ (ck − dk)�vk

Recall from Wednesday....

span(B) = S

�



Example of matrix subspaces’ bases

A =




1 2 3 4 5
6 7 8 9 10
11 12 13 14 15



 A
EROs−−−→ R =




1 0 −1 −2 −3
0 1 2 3 4
0 0 0 0 0





basis for
row(A)

=

basis for
col(A)

=

��
1 0 −1 −2 −3

�
,
�
0 1 2 3 4

��
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Recall from Wednesday....

Example of matrix subspaces’ bases

A =




1 2 3 4 5
6 7 8 9 10
11 12 13 14 15



 A
EROs−−−→ R =




1 0 −1 −2 −3
0 1 2 3 4
0 0 0 0 0





x1 − x3 − 2x4 − 3x5 = 0
x2 + 2x3 + 3x4 + 4x5 = 0

x3, x4, x5 free

basis for
null(A)

=










1
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0
0
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0
1
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−4
0
0
1










x =





x1
x2
x3
x4
x5




=





x3 + 2x4 + 3x5
−2x3 − 3x4 − 4x5

x3
x4
x5




= x3





1
−2
1
0
0




+ x4





2
−3
0
1
0




+ x5





3
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0
0
1
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Dimensions of fundamental subspaces

basis for
row(A)

=
��
1 0 −1 −2 −3

�
,
�
0 1 2 3 4

��

basis for
col(A)

=









1
6
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 ,




2
7
12









basis for
null(A)

=










1
−2
1
0
0




,





2
−3
0
1
0




,





3
−4
0
0
1










Note that dim(row(A)) = 2
dim(col(A)) = 2

dim(null(A)) = 3

row rank of A
column rank of A
nullity of A

Question:  Is it a coincidence that
   row rank of A = column rank of A ?

Question:  Is it a coincidence that
 nullity of A + row/col rank of A = # of cols of A?

For the 3 x 5 matrix from the last example, we have

Rank of a matrix
Theorem. For any matrix A,

row rank of A = column rank of A.� �� �
rank of A

Theorem (Rank Theorem). For any m × n matrix A,

nullity(A) + rank(A) = n.

# of columns without 
leading 1’s in RREF of A

# of columns with leading 
1’s in RREF of A

# of nonzero rows of 
RREF of A

# of leading 1’s in 
RREF of A

Consequence:  rank(A) = rank(AT)



Fundamental Theorem of Invertible Matrices (extended)
Theorem. Let A be an n x n matrix.  The following statements are  
equivalent:

• A is invertible.
•            has a unique solution for all          .
•             has only the trivial solution         . 
• The RREF of A is I.
• A is the product of elementary matrices.
• rank(A) = n.
• nullity(A) = 0.
• Columns of A are linearly independent.
• Columns of A span    .
• Columns of A form a basis for    .
• Rows of A are linearly independent.
• Rows of A span    .
• Rows of A form a basis for    .

A�x = �b �b ∈ Rn

A�x = �0 �x = �0

Rn
Rn

Rn
Rn

R3, under
vector addition and
scalar multiplication

(scalars: R)

Examples of vector spaces and subspaces

Rn, under
vector addition and
scalar multiplication

(scalars: R)

span (v1, v2, . . . , vk)

vector spaces

S =









a
b
0



 : a, b ∈ R






subspaces



Thinking beyond Euclidean vectors:  
     more examples of vector spaces and subspaces

set of all functions from R to R,
under function addition

and scalar multiplication
(scalars: R)

set of all
continuous
functions

set of all
differentiable

functions

set of all polynomials
of degree at most 3

with real coefficients,
with addition and scalar mult.

defined in usual way
(scalars: R)

set of all
polynomials

of degree at most 1
w/real coefficients

set of m× n matrices
with entries from C,

under matrix addition and
scalar multiplication

(scalars: C)

set of n× n
diagonal
matrices

vector spaces

subspaces

A central idea of linear algebra:  linear transformations

Example

T : R3 → R2 and T
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T
R2R3

Definition A function T : Rn → Rm is a linear transformation if
∀�u,�v ∈ Rn and scalars c ,

• T (�u + �v) = T (�u) + T (�v),
• and T (c�v) = cT (�v). { streamlined as

T (c1�u + c2�v) = c1T (�u) + c2T (�v)



A central idea of linear algebra:  linear transformations

Non-example

T : R2 → R2 and T

��
x
y

��
=

�
x + y
xy

�

�= 2
��
2
1

��
= 2 T

��
1
1

��
T

��
2
2

��
=

�
4
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�
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�
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�
1
1
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Definition A function T : Rn → Rm is a linear transformation if
∀�u,�v ∈ Rn and scalars c ,

• T (�u + �v) = T (�u) + T (�v),
• and T (c�v) = cT (�v). { streamlined as

T (c1�u + c2�v) = c1T (�u) + c2T (�v)

Kernel and range of linear transformation

T

• 0 range(T)ker(T)

Let                   be a linear transformation. T : Rn → Rm

set of all 
images under T

Rn Rm

Definition The kernel or null space of T is

ker(T ) = {�v ∈ Rn : T (�v) = �0}.

The image or range of T is
range(T ) = { �w ∈ Rm : �w = T (�v) for some �v ∈ Rn}.

�



Looking closer at an example

Example
T : R3 → R2 and T








x
y
z







 =
�
x
y

�

=









0
0
z



 : z ∈ R




 = span








0
0
1









For any
x, y ∈ R, T








x
y
0







 =
�
x
y

�
so range(T ) = R2=⇒

subspaces!

ker(T ) =
�
�v ∈ R3 : T (�v) = �0

�

Remarks on linear transformations
T

• 0 range(T)ker(T)

For any linear transformation T,
• T(0) = 0,

• ker(T) is a subspace of     , 

• range(T) is a subspace of      .

We define
nullity(T) = dim(ker(T))

rank(T) = dim(range(T))

• 0

Theorem (Rank Thm for linear transformations). For a linear
transformation T : Rn → Rm, rank(T ) + nullity(T ) = dim(Rn) = n.

Rn Rm

Rn

Rm

�
�

� �



Matrix multiplication as a linear transformation

Primary example of a 
linear transformation =⇒

matrix 
multiplication

Then T is a linear transformation.

Matrix multiplication defines a linear transformation.

This new perspective gives a dynamic view of a matrix (it transforms 
vectors into other vectors) and is a key to building math models to 
physical systems that evolve over time (so-called dynamical systems).

Astounding!

Given an m × n matrix A,
define T (�x) = A�x for �x ∈ Rn.

Matrix multiplication as a mapping (or function)

Verify that T is
a linear transformation.

We have
✓

✓and

What is range of T ?

range(T ) = col(A)

Similarly, ker(T ) = null(A)

Given an m × n matrix A,
define T (�x) = A�x for �x ∈ Rn.

T (�u + �v) = A(�u + �v) = A�u + A�v = T (�u) + T (�v)

T (c�v) = A(c�v) = c(A�v) = cT (�v)

=
set of all vectors �b ∈ Rm
such that T (�x) = �b for

some �x ∈ Rn
=

set of all vectors �b ∈ Rm
such that A�x = �b for
some �x ∈ Rn



A linear transformation as matrix multiplication

More 
astounding!

Question   Given T, how do we find A?

Transformation T is 
completely determined by its 

action on basis vectors.

Consider standard basis vectors for Rn:

�e1 =





1
0
...
0
0




, . . . , �en =





0
0
...
0
1





Compute T (�e1), T (�e2), . . . , T (�en).

T (�x) = A�x.

Theorem. Every linear transformation T : Rn → Rm can be
represented by an m × n matrix A so that ∀ �x ∈ Rn,

Standard matrix of a linear transformation

Then is called the 
standard matrix for T.

Question   Given T, how do we find A?

Transformation T is 
completely determined by its 

action on basis vectors.

Consider standard basis vectors for Rn:

�e1 =





1
0
...
0
0




, . . . , �en =





0
0
...
0
1





Compute T (�e1), T (�e2), . . . , T (�en).

A =




| | |

T (�e1) T (�e2) · · · T (�en)
| | |







Standard matrix for an example

Example
T : R3 → R2 and T
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y
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y

�
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�
=
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�
=

�
1
0

�

A =

�
1 0 0
0 1 0

�
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?What is

⇒ A
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