Eigenvalues and eigenvectors

Math 40, Introduction to Linear Algebra Friday, February 17, 2012

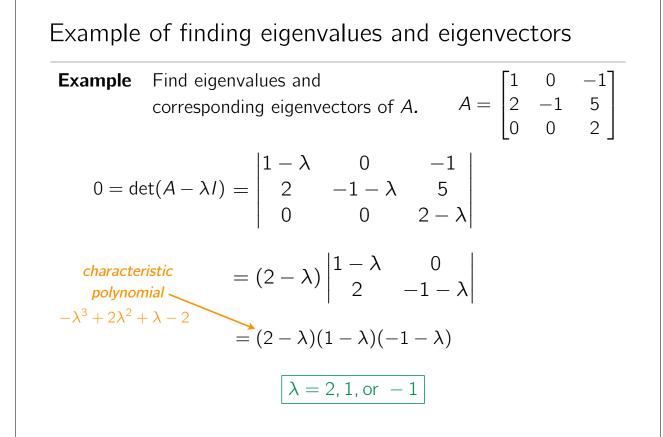
Introduction to eigenvalues

Let A be an $n \ge n$ matrix.

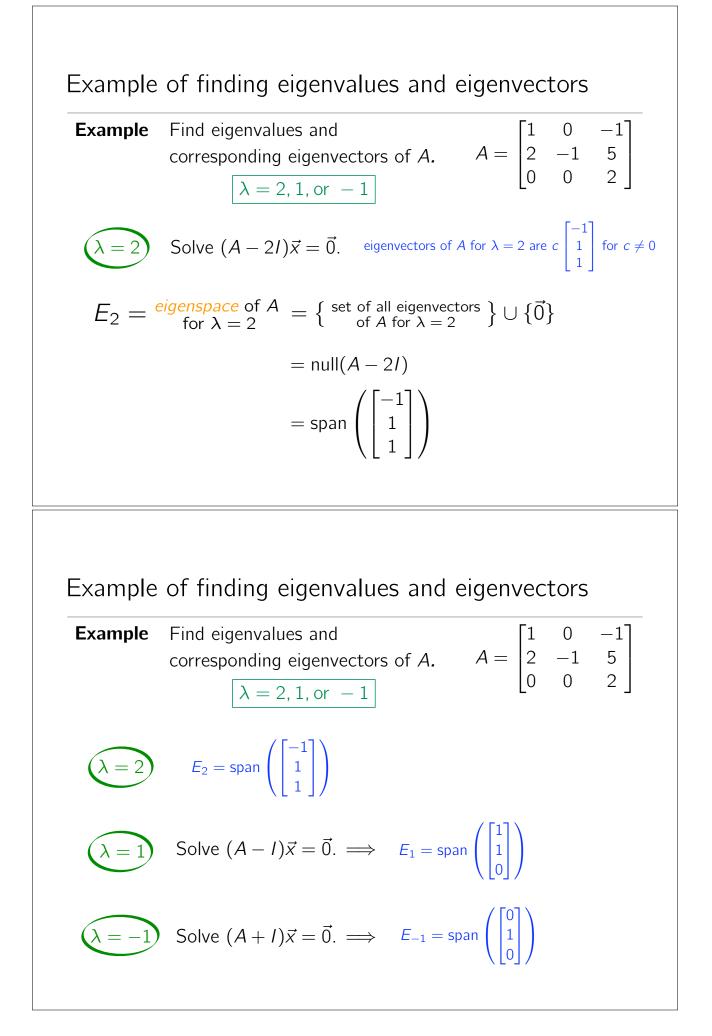
If $A\vec{x} = \lambda \vec{x}$ for some scalar λ and some nonzero vector \vec{x} ,

then we say λ is an *eigenvalue* of Aand \vec{x} is an *eigenvector* associated with λ .

> Viewed as a linear transformation from \mathbb{R}^n to \mathbb{R}^n A sends vector \vec{x} to a scalar multiple of itself $(\lambda \vec{x})$.



Example of finding eigenvalues and eigenvectors Example Find eigenvalues and corresponding eigenvectors of A. $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -1 & 5 \\ 0 & 0 & 2 \end{bmatrix}$ $(\lambda = 2) \quad \text{Solve } (A - 2I)\vec{x} = \vec{0}.$ $[A - 2I \mid 0] = \begin{bmatrix} -1 & 0 & -1 \mid 0 \\ 2 & -3 & 5 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{bmatrix} \xrightarrow{\text{EROs}} \begin{bmatrix} 1 & 0 & 1 \mid 0 \\ 0 & 1 & -1 \mid 0 \\ 0 & 0 & 0 \mid 0 \end{bmatrix}$ $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -x_3 \\ x_3 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \qquad \text{eigenvectors of } A \text{ for } \lambda = 2 \text{ are}$ $c \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \text{ for } c \neq 0$



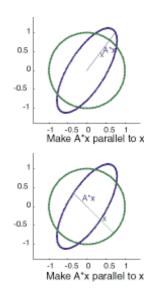
Eigenvalues, eigenvalues... where are you?

Example Find eigenvalues of A. $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ $0 = \det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 \\ -1 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2 + 1$ $= \lambda^2 - 2\lambda + 2$ $\implies \lambda = \frac{2 \pm \sqrt{4 - 8}}{2} = 1 \pm i$ Eigenvalues are complex!

Graphic demonstration of eigenvalues and eigenvectors: eigshow

eigshow demonstrates how the image $A\vec{x}$ changes as we rotate a unit vector \vec{x} in \mathbb{R}^2 around a circle

in particular, we are interested in knowing when $A\vec{x}$ is parallel to \vec{x}



Algebraic and geometric multiplicities

$$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ -1 & 0 & 2 \end{bmatrix} \qquad \begin{array}{c} 0 = \det(A - \lambda I) = -(\lambda - 3)^3 \\ \implies \lambda = 3 \end{array}$$

Since $\lambda = 3$ appears 3 times as a root of characteristic polynomial, the *algebraic multiplicity* of $\lambda = 3$ is 3.

To find eigenspace E₃, we solve $(A - 3I)\vec{x} = \vec{0}$.

	1 2 -1	0 0 0	$\begin{bmatrix} 1\\2\\-1\end{bmatrix}$	EROs →	[1 0 0	0 0 0	1 0 0	$E_3 = \left\{ \begin{bmatrix} -x_3 \\ x_2 \\ x_3 \end{bmatrix} : x_2, x_3 \in \mathbb{R} \right\} = \operatorname{span}$	$\left(\begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} -\\0\\1\\0 \end{bmatrix} \right)$	-1 0 1
L	• •	Ŭ	۲-		L	Ŭ	٦		ις, Γ	- 1 /

Since eigenspace E₃ has dimension 2, the *geometric multiplicity* of $\lambda = 3$ is 2. dim(null($A - \lambda I$))

Algebraic and geometric multiplicities

Fact:

algebraic multiplicity of an eigenvalue

 \geq

geometric multiplicity of an eigenvalue

Incredible facts about eigenvalues

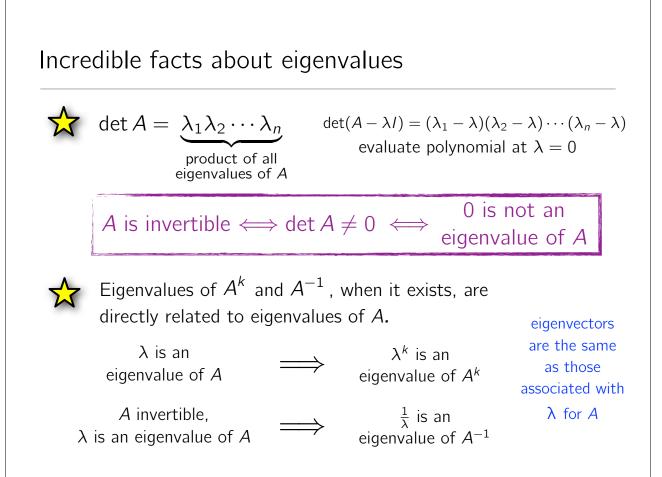
An $n \ge n$ matrix has *n* eigenvalues, including the multiplicities of repeated eigenvalues.

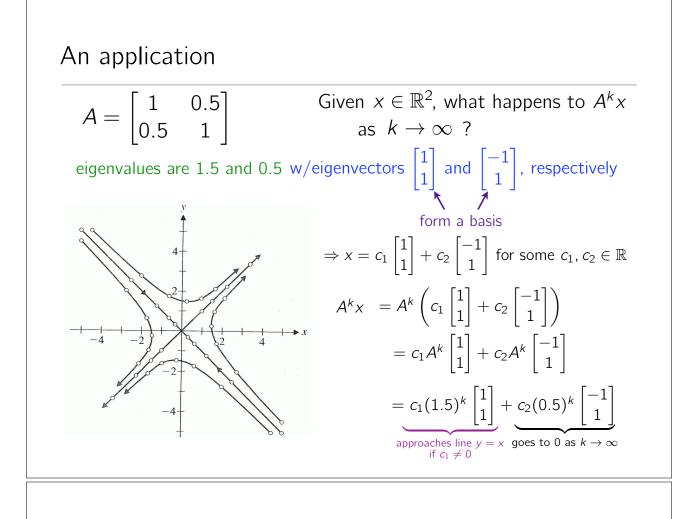
Fundamental Thm of Algebra

Eigenvalues of a triangular matrix are the diagonal entries. $\begin{bmatrix} a_{11} - \lambda & a_{12} & a_{13} & \cdots & a_{1n} \\ & a_{22} - \lambda & & \cdots \end{bmatrix}$

$$A - \lambda I = \begin{bmatrix} 0 & \ddots & \\ & & & \\ & & & \\ & & & a_{nn} - \lambda \end{bmatrix}$$
$$0 = \det(A - \lambda I) = (a_{11} - \lambda)(a_{22} - \lambda) \cdots (a_{nn} - \lambda)$$

$$\implies \lambda = a_{11}, a_{22}, \ldots, a_{nn}$$





Incredible facts about eigenvalues

Distinct eigenvalues of *A* have linearly independent eigenvectors.

Distinct eigenvalues of a symmetric matrix A have eigenvectors that are orthogonal to each other.