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A recent Classroom Capsule [1] described the game of Cootie and posed a
question about the game’s playing time. The authors used an infinite sum of four
summations with complicated summand terms to answer this question. Here, we
describe a simpler way to obtain an exact answer using only a finite number of
calculations.

In Cootie, players race to construct a “cootie bug” by rolling a die to collect
component parts. Players must first roll a 1 in order to acquire the body and then
roll a 2 for the head. Once a player has both the body and the head, the remaining
parts can be obtained in any order by rolling two 3’s for the eyes, one 4 for the
nose, two 5’s for the antennae, and six 6’s for the legs. The previous article asked
the question: what is the theoretical expected value of the number of rolls required
to make a cootie?

The rules of Cootie naturally break an analysis of the playing time 7 into three
parts:

T=B+H+T,, 5,
where B and H denote the number of rolls to obtain the body and head,
respectively, and 7, , , ¢ is the number of rolls to subsequently obtain two 3’s, one
4, two 5’s, and six 6’s. Since E[B]=E[H]=6, we have, by the linearity of
expectation,
E[T]=12+E[T2,1,2,6]- (1)

We calculate E[T,,,4] by a recursive calculation that exploits the law of

conditional expectation:

E[x]= X E[xly=y]P[Y=y]. (2)

For a, b,c,d >0, welet T, , . , denote the number of rolls to obtain a 3’s, b 4’s, ¢
5's, and d 6’s. To exploit (2), we condition on Y, the outcome of the first roll. Since
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PlY=y]=¢, we obtain

1 6
E[Ta,b,c,d]=g Z E[T2,1,2,6|Y=y]- (3)
y=1

Next, we note that

E[Tt'z,b,c,d'Y: 1] =1 +E[T¢'z,b,c,d],
since an initial roll of 1 uses a roll and has not changed our situation. However, we
note that

E[T;Lh,c,ly= 3] =1 +E[Tz'7—l,b,c,d]’
since an initial roll of 3 uses a roll and has changed our goal to rolling @ — 1 3’s, b
4s, ¢ 5's, and .d 0’s. The other cases follow similarly. Solving (3) for E[T, , . ,]
yields
6+E[T, 1 e al Y EIT, poy cal T ELT, o i al T ELT, 4 c ai]

i .

Now, if a, b, ¢, or d is 0, then T, , . , reduces to a “smaller” problem. For instance,
T, b co=T,  denotes the number of rolls needed to obtain a rolls of one type, b

of another type and ¢ of a third type. Exploiting (2) by again conditioning on the
outcome of the first roll, we can derive that

_ 6+E[T('1~l,b,c] +E[Tc't,b—1,c] +E[T:1,b,c—l]

E[le,b,c,d] =

E[Z:,b,c 3
6+E[T,_, ,]+E[T, ]
E[T;,b]= 2 ’

with the appropriate reductions to a “smaller” problem if a, b, or ¢ is 0. Finally, we
have the trivial base case

E[T,]=6a.

These calculations can either be carried out by hand (an arduous task requiring the
calculation of 126 intermediate values) or through a computer program. A quick
computer calculation yields
E[T, ] 41357501 36.9524167745
= = 30. + .
[ 2,1,2,6 11943936 9

From (1) it follows that E[7T]= 48.9524167745 + . We note that this value differs
with the number calculated in [1]. In the vast majority of Cootie games, the legs will
be the last body part completed. Thus it is not too surprising that E[T; , , 4] is only
slightly bigger than 36, the time required to get six 6’s. On the other hand, we were
very surprised to notice that the expected number of rolls to get all of the 3’s, 4’s,
5’s, and 6’s has a denominator equal to 3456 squared!
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