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Harmonic numbers are defined to be partial sums of the harmonic series. For n ≥ 1,
let

Hn = 1 + 1

2
+ 1

3
+ · · · + 1

n
.

The first five harmonic numbers are H1 = 1, H2 = 3/2, H3 = 11/6, H4 = 25/12,
H5 = 137/60. For convenience we define H0 = 0. Since the harmonic series diverges,
Hn can get arbitrarily large, although it does so quite slowly. For instance, H1,000,000 ≈
14.39.

Harmonic numbers even appear in real life. If you stack 2-inch long playing cards
to overhang the edge of a table as far as possible, the maximum distance that n cards
can hang off the edge of the table is Hn [5]. For example, 4 cards can be stacked to
extend past the table by just over 2 inches, since H4 = 25/12.

Harmonic numbers satisfy many interesting properties. For nonnegative integers n
and m, we list some identities below:

n−1∑
k=1

Hk = nHn − n. (1)

n−1∑
k=m

(
k

m

)
Hk =

(
n

m + 1

)(
Hn − 1

m + 1

)
. (2)

n−1∑
k=m

(
k

m

)
1

n − k
=

(
n

m

)
(Hn − Hm) . (3)

Although all of these identities can be proved by algebraic methods (see [5]), the
presence of binomial coefficients suggests that these identities can also be proved com-
binatorially. A combinatorial proof is a counting question, which when answered two
different ways, yields both sides of the identity. Combinatorial proofs often provide
intuitive and concrete explanations where algebraic proofs may not. For example

n−1∑
k=1

k · k! = n! − 1

is a standard exercise in mathematical induction. But to a combinatorialist this identity
counts permutations in two different ways. The right side counts the number of ways
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to arrange the numbers 1 through n, excluding the natural arrangement 1 2 3 . . . n.
The left side counts the same quantity by conditioning on the first number that is not in
its natural position: for 1 ≤ k ≤ n − 1, how many arrangements have n − k as the first
number to differ from its natural position? Such an arrangement begins as 1 2 3 . . . n −
k − 1 followed by one of k numbers from the set {n − k + 1, n − k + 2, . . . , n}. The
remaining k numbers (now including the number n − k) can be arranged k! ways.
Thus there are k · k! ways for n − k to be the first misplaced number. Summing over
all feasible values of k yields the left side of the identity.

Although Hn is never an integer for n > 1 [5], it can be expressed as a rational num-
ber whose numerator and denominator have combinatorial significance. Specifically,
for n ≥ 0 we can always write

Hn = pn

n! (4)

as a (typically nonreduced) fraction where pn is a nonnegative integer.
Now p0 = H0 = 0. For n ≥ 1, Hn = Hn−1 + 1/n leads to

pn

n! = pn−1

(n − 1)! + 1

n
= npn−1 + (n − 1)!

n! .

Hence for n ≥ 1,

pn = npn−1 + (n − 1)! (5)

The combinatorial interpretation of these numbers is the topic of the next section.

Stirling numbers

For integers n ≥ k ≥ 1, let
[n

k

]
denote the number of permutations of n elements with

exactly k cycles. Equivalently
[n

k

]
counts the number of ways for n distinct people to

sit around k identical circular tables, where no tables are allowed to be empty.
[n

k

]
is

called the (unsigned) Stirling number of the first kind. As an example,
[3

2

] = 3 since
one person must sit alone at a table and the other two have one way to sit at the other
table. We denote these permutations by (1)(23), (13)(2), and (12)(3).

We can compute the numbers
[n

k

]
recursively. From their definition, we see that for

n ≥ 1, [
n

1

]
= (n − 1)!,

since the arrangement (a1a2a3 . . . an) is the same as arrangements (a2a3 . . . ana1) and
(a3a4 . . . a1a2) and so on. Now for k ≥ 2, we will see that[

n + 1

k

]
=

[
n

k − 1

]
+ n

[
n

k

]
. (6)

On the left, we are directly counting the number of ways to seat n + 1 people around
k circular tables. On the right we count the same thing while conditioning on what
happens to person n + 1. If n + 1 is to be alone at a table, then the remaining n people
can be arranged around k − 1 tables in

[ n
k−1

]
ways. If n + 1 is not to be alone, then we

first arrange 1 through n around k tables (there are
[n

k

]
ways to do this); for each of

these configurations, we insert person n + 1 to the right of any of the n already-seated
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people. This gives us n
[n

k

]
different permutations where n + 1 is not alone. Summing

gives equation (6).
Notice that when k = 2, equation (6) becomes

[
n + 1

2

]
= n

[
n

2

]
+ (n − 1)!, (7)

which is the same as recurrence (5) with pn = [n+1
2

]
. Since p1 = 1 = [2

2

]
, it follows

that for all n ≥ 1, pn = [n+1
2

]
. Combining with the definition of pn in (4) gives

THEOREM 1. For n ≥ 1,

Hn = 1

n!
[

n + 1

2

]
.

Next we show how to count Theorem 1 directly—without relying on a recurrence.
First we set some notational conventions. Let Tn denote the set of arrangements of
the numbers 1 through n into two disjoint, nonempty cycles. Thus |Tn| = [n

2

]
. We

always write our cycles with the smallest element first, and list the cycles in increas-
ing order according to the first element. For example, T9 includes the permutation
(185274)(396), but not (195)(2487)(36) nor (123)(4567)(8)(9). By our convention,
the cycle containing 1 is always written first; consequently we call it the left cycle.
The remaining cycle is called the right cycle. All permutations in Tn are of the form
(a1a2 . . . a j )(a j+1 . . . an), where 1 ≤ j ≤ n − 1, a1 = 1, and a j+1 is the smallest ele-
ment of the right cycle.

For a purely combinatorial proof of Theorem 1 that does not rely on a recursion,
we ask, for 1 ≤ k ≤ n, how many permutations of Tn+1 have exactly k elements in the
right cycle? To create such a permutation, first choose k elements from {2, . . . , n + 1}
(
(n

k

)
ways), arrange these elements in the right cycle ((k − 1)! ways), then arrange the

remaining n − k elements in the left cycle following the number 1 ((n − k)! ways).
Hence there are

(n
k

)
(k − 1)! (n − k)! = n!/k permutations of Tn+1 with k elements in

the right cycle. Since Tn+1 has
[n+1

2

]
permutations, it follows that

[
n + 1

2

]
=

n∑
k=1

n!
k

= n!Hn,

as desired.
Another way to prove Theorem 1 is to show that for 2 ≤ r ≤ n + 1, there are n!

r−1
permutations in Tn+1 that have r as the minimum element of the right cycle.

Here, the permutations being counted have the form (1 . . .)(r . . .) where elements
1 through r − 1 all appear in the left cycle, and elements r + 1 through n + 1 can
go in either cycle. To count this, arrange elements 1 through r − 1 into the left cycle,
listing element 1 first; there are (r − 2)! ways to do this. Place element r into the right
cycle. Now we insert elements r + 1 through n + 1, one at a time, each immediately to
the right of an already placed element. In this way, elements 1 and r remain first (and
smallest) in their cycles. Specifically, the element r + 1 can go to the right of any of the
elements 1 through r . Next, r + 2 can go to the right of any of the elements 1 through
r + 1. Continuing in this way, the number of ways to insert elements r + 1 through
n + 1 is r(r + 1)(r + 2) · · · n = n! /(r − 1)! . This process creates a permutation in
Tn+1 with r as the smallest element in the right cycle. Thus, there are

(r − 2)! n!
(r − 1)! = n!

r − 1
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such permutations. Since Tn+1 has
[n+1

2

]
permutations, and every permutation in Tn+1

must have some smallest integer r in the right cycle, where 2 ≤ r ≤ n + 1, we get

[
n + 1

2

]
=

n+1∑
r=2

n!
r − 1

= n!
n∑

k=1

1

k
= n! Hn.

An alternate way to see that n! /(r − 1) counts permutations of the form (1 · · ·)(r · · ·)
is to list the numbers 1 through n + 1 in any order with the provision that 1 be listed
first. There are n! ways to do this. We then convert our list 1 a2 a3 · · · r · · · an+1 to
the permutation (1 a2 a3 · · ·)(r · · · an+1) by inserting parentheses. This permutation
satisfies our conditions if and only if the number r is listed to the right of elements
2, 3, . . . , r − 1. This has probability 1/(r − 1) since any of the elements 2, 3, . . . , r
have the same chance of being listed last among them. Hence the number of permuta-
tions that satisfy our conditions is n! /(r − 1).

Algebraic connection The Stirling numbers can also be defined as coefficients in
the expansion of the rising factorial function [3]:

x(x + 1)(x + 2) · · · (x + n − 1) =
n∑

m=1

[
n

m

]
xm . (8)

Using this definition, Theorem 1 can be derived algebraically by computing the x2

coefficient of x(x + 1)(x + 2) · · · (x + n).
To show that this algebraic definition of Stirling numbers is equivalent to the com-

binatorial definition, one typically proves that both satisfy the same initial conditions
and recurrence relation. However, a more direct correspondence exists [1], which we
illustrate with an example.

By the algebraic definition, the Stirling number
[10

3

]
is the coefficient of x3 in the

expansion x(x + 1)(x + 2) · · · (x + 9). The combinatorial definition says
[10

3

]
counts

the number of ways that elements 0, 1, 2, . . . , 9 can sit around 3 identical circular
tables. Why are these definitions the same? Each term of the x3 coefficient is a prod-
uct of seven numbers chosen from among 1 through 9. Surely this must be counting
something. What is a term like 1 · 2 · 3 · 5 · 6 · 8 · 9 counting?

As illustrated in FIGURE 1, this counts the number of ways elements 0 through 9
can seat themselves around 3 identical tables where the smallest elements of the tables
are the “missing” numbers 0, 4, and 7. To see this, we pre-seat numbers 0, 4, 7 then
seat the remaining numbers one at a time in increasing order. The number 1 has just
one option—sit next to 0. The number 2 then has two options—sit to the right of 0 or
sit to the right of 1. The number 3 now has three options—sit to the right of 0 or 1 or 2.
The number 4 is already seated. Now number 5 has five options—sit to the right of 0
or 1 or 2 or 3 or 4, and so on. A general combinatorial proof of equation (8) can also
be done by the preceding (or should that be “pre-seating”?) argument.

With this understanding of the interactions between harmonic and Stirling numbers,
we now provide combinatorial explanations of other harmonic identities.

Recounting harmonic identities

In this section, we convert identities (1), (2), and (3) into statements about Stirling
numbers and explain them combinatorially. We view each identity as a story of a
counting problem waiting to be told. Each side of the identity recounts the story in
a different, but accurate way. Both of our combinatorial proofs of Theorem 1 were
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Figure 1 How many ways can the numbers 1, 2, 3, 5, 6, 8, 9 seat themselves around
these tables?

obtained by partitioning the set Tn+1 according to the size of the right cycle or the
minimum element of the right cycle, respectively. In what follows, we shall transform
harmonic equations (1), (2) and (3) into three Stirling number identities, each with

[n
2

]
on the left-hand side. The right-hand sides will be combinatorially explained by par-
titioning Tn according to the location of element 2, the largest of the last t elements,
or the neighborhood of the elements 1 through m. Our first identity, after applying
Theorem 1, and re-indexing (n := n − 1) gives us

IDENTITY 1. For n ≥ 2
[

n

2

]
= (n − 1)! +

n−2∑
k=1

(n − 2)!
k!

[
k + 1

2

]
.

To prove this combinatorially, we note that the left side of the identity,
[n

2

]
, counts

the number of permutations in Tn . On the right, we know from our second combi-
natorial proof of Theorem 1, that (n − 1)! counts the number of permutations in Tn

where the number 2 appears in the right cycle. It remains to show that the summation
above counts the number of permutations in Tn where 2 is in the left cycle. Any such
permutation has the form

(1 a1 a2 · · · an−2−k 2 b1 b2 · · · b j−1)(b j · · · bk),

for some 1 ≤ k ≤ n − 2 and 1 ≤ j ≤ k. We assert that the number of these permuta-
tions with exactly k terms to the right of 2 is given by the kth term of the sum.
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To see this, select a1, a2, . . . , an−2−k from the set {3, . . . , n} in any of (n − 2)! /k!
ways. From the unchosen elements, there are

[k+1
2

]
ways to create two nonempty cycles

of the form (2 b1 . . . b j−1)(b j . . . bk) where 1 ≤ j ≤ k. Multiplying the two counts
gives the kth term of the sum as the number of permutations in Tn with exactly k terms
to the right of 2, as was to be shown.

We apply a different combinatorial strategy to prove the more general equation (2),
which, after applying Theorem 1 and re-indexing (n := n − 1, m := t − 1, and
k := k − 2), gives us

IDENTITY 2. For 1 ≤ t ≤ n − 1[
n

2

]
= (n − 1)!

t
+ t

n∑
k=t+1

[
k − 1

2

]
(n − 1 − t)!
(k − 1 − t)! .

The combinatorial proof of this identity requires a new interpretation of (n − 1)! /t .
For 1 ≤ t ≤ n − 1, we define the last t elements of (1a2 · · · a j )(a j+1 · · · an) to be the
elements an, an−1, . . . an+1−t , even if some of them are in the left cycle. For example,
the last 5 elements of (185274)(396) are 6, 9, 3, 4, and 7.

We claim that for 1 ≤ t ≤ n − 1, the number of permutations in Tn where the
largest of the last t elements is alone in the right cycle is (n − 1)! /t . Here, we
are counting permutations of the form (1a2 . . . an−1)(an), where an is the largest of
{an+1−t , an+2−t , . . . , an−1, an}. Among all (n − 1)! permutations of this form, the
largest of the last t elements is equally likely to be anywhere among the last t po-
sitions. Hence (n − 1)! /t of them have the largest of the last t elements in the last
position.

Next we claim that for 1 ≤ t ≤ n − 1, the number of permutations in Tn where
the largest of the last t elements is not alone in the right cycle is the summation in
Identity 2.

To see this, we count the number of such permutations where the largest of the last
t elements is equal to k. Since the number 1 is not listed among the last t elements, we
have t + 1 ≤ k ≤ n. To construct such a permutation, we begin by arranging numbers
1 through k − 1 into two cycles. Then insert the number k to the right of any of the
last t elements. There are

[k−1
2

]
t ways to do this. The right cycle contains at least one

element less than k, so k is not alone in the right cycle (and could even be in the
left cycle). So that k remains the largest among the last t elements, we insert elements
k + 1 through n, one at a time, to the right of any but the last t elements. There are (k −
t)(k + 1 − t) · · · (n − 1 − t) = (n − 1 − t)! /(k − 1 − t)! ways to do this. Multiplying
the two counts give the kth term of the sum as the number of permutations where the
largest of the last t elements equals k, and it is not alone in the right cycle; summing
over all possible values of k, we count all such permutations. Since for any permutation
in Tn , the largest of the last t elements is either alone in the last cycle, or it isn’t, and
this establishes Identity 2.

Notice that when t = 1, Identity 2 simplifies to Identity 1. When t = n − 1, Iden-
tity 2 essentially simplifies to equation (7).

For our final identity, we convert equation (3) to Stirling numbers using Theorem 1
and re-indexing (n := n − 1, m := m − 1, and k := t − 1). This gives us

IDENTITY 3. For 1 ≤ m ≤ n
[

n

2

]
=

[
m

2

]
(n − 1)!
(m − 1)! +

n−1∑
t=m

(
t − 1

m − 1

)
(m − 1)! (n − m)!

(n − t)
.

To prove this identity combinatorially, we condition on whether numbers 1 through
m all appear in the left cycle. First we claim that for 1 ≤ m ≤ n, the first term on
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the right in the identity counts the number of permutations in Tn that do not have ele-
ments 1, 2, . . . m all in the left cycle: For these permutations, the elements 1 through m
can be arranged into two cycles in

[m
2

]
ways. Insert the remaining elements m + 1

through n, one at a time, to the right of any existing element, finding that there are
m(m + 1) · · · (n − 1) = (n − 1)! /(m − 1)! ways to insert these elements. Multiplying
the two counts gives the first term of the right-hand side.

To complete the proof, we must show that the summation on the right counts the
number of permutations in Tn where elements 1 through m are all in the left cycle.
To see this, we claim that for m ≤ t ≤ n − 1, the summand counts the permutations
described above with exactly t elements in the left cycle and n − t elements in the
right cycle. To create such a permutation, we first place the number 1 at the front of
the left cycle. Now choose m − 1 of the remaining t − 1 spots in the left cycle to be
assigned the elements {2, . . . , m}. There are

( t−1
m−1

)
ways to select these m − 1 spots

and (m − 1)! ways to arrange elements 2, . . . , m − 1 in those spots. For example, to
guarantee that elements 1, 2, 3, 4 appear in the left cycle of FIGURE 2, we select three
of the five open spots in which to arrange 2, 3, 4. The insertion of 5, 6, 7, 8, 9 remains.
Now there are (n − m)! ways to arrange elements m + 1 through n in the remaining
spots, but only one out of n − t of them will put the smallest element of the right
cycle at the front of the right cycle. Hence, elements m + 1 through n can be arranged
in (n − m)!/(n − t) legal ways. Multiplying gives the number of ways to satisfy our
conditions for a given t , and the total is given by the desired summation.

Figure 2 In T9, a permutation with 1, 2, 3, 4 in a left cycle containing exactly six ele-
ments is created by first selecting three of the five open spots, and then arranging 2, 3, 4
in them. Subsequently, 5, 6, 7, 8, 9 will be arranged in the remaining spots.

We have already noted that harmonic numbers arise in real life. A further occurrence
arises in calculating the average number of cycles in a permutation of n elements.
Specifically,

THEOREM 2. On average, a permutation of n elements has Hn cycles.

There are n! permutations of n elements, of which
[n

k

]
have k cycles. Consequently,

Theorem 2 says
∑n

k=1 k
[n

k

]
n! = Hn,

or equivalently, by Theorem 1,
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IDENTITY 4. For n ≥ 1,

n∑
k=1

k

[
n

k

]
=

[
n + 1

2

]
.

The left side counts the number of permutations of {1, . . . , n} with an arbitrary
number of cycles, where one of the cycles is distinguished in some way. For example
(1284)(365)(79), (1284)(365)(79), and (1284)(365)(79) are three different arrange-
ments with k = 3. The right side counts the number of permutations of {0, 1, . . . , n}
with exactly two cycles. It remains to describe a one-to-one correspondence between
these two sets of objects. Can you deduce the correspondence between the following
three examples?

(1284)(365)(79) ⇐⇒ (079365)(1284)

(1284)(365)(79) ⇐⇒ (0791284)(365)

(1284)(365)(79) ⇐⇒ (03651284)(79)

In general, we transform the permutation with n elements

(Ck)(Ck−1) · · · (C j+1)(C j)(C j−1) · · · (C2)(C1)

into

(0 C1 C2 · · · C j−1 C j+1 · · · Ck−1 Ck)(C j).

The process is easily reversed. Given (0 a1 · · · an− j )(b1 · · · b j ) in Tn+1, the right cycle
becomes the distinguished cycle (b1 · · · b j ). The distinguished cycle is then inserted
among the cycles Ck−1, . . . C2, C1, which are generated one at a time as follows: C1

(the rightmost cycle) begins with a1 followed by a2 and so on until we encounter a
number ai that is less than a1. Assuming such an ai exists (that is, a1 �= 1), begin
cycle C2 with ai and repeat the procedure, starting a new cycle every time we encounter
a new smallest element. The resulting cycles (after inserting the distinguished one in
its proper place) will be a permutation of n elements written in our standard notation.
Hence we have a one-to-one correspondence between the sets counted on both sides
of Identity 4.

Notice that by distinguishing exactly m of the cycles above, the procedure above
can be easily modified to prove the more general

n∑
k=m

[
n

k

](
k

m

)
=

[
n + 1

m + 1

]
.

Likewise by distinguishing an arbitrary number of cycles, the same kind of procedure
results in

n∑
k=0

[
n

k

]
2k = (n + 1)! .

Beyond harmonic numbers

We have only scratched the surface of how combinatorics can offer new insights about
harmonic numbers. Other combinatorial approaches to harmonic identities are pre-
sented by Preston [6]. We leave the reader with a challenge: A hyperharmonic number
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H (k)
n is defined as follows: Let H (1)

n = Hn and for k > 1, define H (k)
n = ∑n

i=1 H (k−1)

i .
Now consider the following generalization of identity (1) from The Book of Numbers
by Conway and Guy [4]:

H (k)
n =

(
n + k − 1

k − 1

)
(Hn+k−1 − Hk−1).

Such an identity strongly suggests that there must be a combinatorial interpretation of
hyperharmonic numbers as well. And indeed there is one [2]. You can count on it!
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