ANALYSIS OF N-CARD LE HER

ARTHUR T. BENJAMIN AND A.J. GOLDMAN

Abstract

We present a complete solution to a card game with historical origins. Our analysis exploits convexity properties in the payoff matrix, allowing this discrete game to be resolved by continuous methods.

In this paper, we analyze a variant of the card-game Le Her, which has a long history in the mathematical literature (cf. Section 18.6 of [7]). The authentic two-player 52 -card version is reported and solved by Dresher [3, 4], with some anticipation by R.A. Fisher [6]. Todhunter [10] describes efforts at its solution by N. Bernoulli and Montmort; retrospectively, their lack of the "mixed strategy" concept can be recognized as crucial. The present version, formulated by Karlin ([9], p. 100) who poses the case $N=5$ as a problem, involves a single-suit deck of $N \geq 3$ cards with respective face-values $1,2, \ldots, N$. Let X, Y, Z denote the top three cards, all face down, after a randomizing shuffle of the deck. Cards X and Y are dealt to Players 1 and 2 respectively, leaving Z on top. Each player inspects his or her own card; thus Player 1 knows X but not Y or Z, while Player 2 knows Y but not X or Z. (Our notation will slur the distinction between a random variable and its realization, without real risk of confusion.)

Player 1 moves first. He can either keep X, or else elect a swap of cards with Player 2. In the latter case, both players inspect their new cards, and therefore know both X and Y (but not Z). Next, it is Player 2's turn to move. She can either keep her current card, or else elect to swap that card for Z. That concludes play: the player holding the higher card wins one unit from the opponent.

The pure strategies for Player 1 are associated one-to-one with the subsets S of $\{1,2, \ldots, N\}$; playing strategy S, Player 1 keeps X if $X \in S$, and otherwise swaps X for Y. Note that if Player 1 swaps, then Player 2 will know that she holds X while Player 1 is holding Y, and will therefore surely keep X if $X>Y$, and surely swap X for Z if $X<Y$, the swap "succeeding" iff $Z>Y$. Thus a pure strategy for Player 2 need specify that player's action only when Player 1 keeps his card. Those strategies are associated one-to-one with subsets T of $\{1,2, \ldots, N\}$; playing strategy T after a "keep" by Player 1, Player 2 keeps Y if $Y \in T$, and otherwise swaps Y for Z.

The joint distribution of (X, Y) is of course given by $P(X, Y)=p=\frac{1}{N(N-1)}$ if $X \neq Y, P(X, Y)=0$ if $X=Y$. Let $P(S, T \mid X, Y)$ denote the probability of a win by Player 1 when respective strategies S and T are employed, conditional on (X, Y); the corresponding unconditional probability is given by

$$
\begin{equation*}
P(S, T)=\sum_{X, Y} P(S, T \mid X, Y) P(X, Y)=p \sum_{X \neq Y} P(S, T \mid X, Y) \tag{1}
\end{equation*}
$$

The entries of the payoff matrix are given by $1 \cdot P(S, T)+(-1) \cdot[1-P(S, T)]$, but an equivalent strategic analysis results if this payoff function is replaced by $P(S, T)$, and we will do so.

The preceding description yields a $2^{N} \times 2^{N}$ matrix game. But this size can clearly be reduced; for instance, it would be foolish to swap away the highest possible card N, so that rational play requires $N \in S \cap T$. Intuitively, Players 1 and 2 can restrict themselves to "gapless" strategies. That is, Player 1 has a critical number $s \geq 2$ where he will keep exactly those cards greater than or equal to s, and Player 2 has a critical number $t \geq 2$ where if Player 1 keeps his card, she will keep just those cards that are greater than or equal to t. For brevity we omit the confirmation (in [1]) of this intuition, i.e., the formal proof that any strategy that keeps k cards is dominated by the strategy that keeps the k cards of highest value. We let $S_{s}=\{X: X \geq s\}$ and $T_{t}=\{Y: Y \geq t\}$. Thus our matrix game can be reduced to the $(N-1) \times(N-1)$ payoff matrix $A=[a(s, t)]$, where $a(s, t)=P\left(S_{s}, T_{t}\right)$ for $2 \leq s, t \leq N$. Our goal is to establish a radical further reduction, to an explicitlyidentified submatrix game of size at most only 2×2, whose solution is therefore given by standard formulas.

Next we provide a formula for $a(s, t)$. The formula depends on the sign of $s-t$. As preparation, we define for integral $s, t \in[2, N]$,
$(2) h(s, t)=(N-t)(N+1-t)+(N-1)(s+t-2)$,
$(3) f(s, t)=h(s, t)-(s-1)(s-2)(s+3 t-12) / 3(N-2)$,
(4) $g(s, t)=h(s, t)-(s-2)(s-3)(s+3 t-4) / 3(N-2)-(s-t)(s-t-1)$,
and observe that $f(s, t)=g(s, t)$ when $s=t$.
Lemma 1. For $s \leq t, 2 a(s, t) / p=f(s, t)$.
Proof. There are three cases to consider in evaluating (1) for $S=S_{s}$ and $T=T_{t}$. If $X<s \leq t$ then Player 1 swaps, and wins iff $X<Y$ and $Z<Y$. If $s \leq X<t$ then Player 1 keeps X; since Player 2 wins if he keeps (i.e., if $Y \geq t$), Player 1 wins iff $Y<t$ and $Z<X$, the latter corresponding to $X-1$ possibilities for Z if $X<Y$ but to only $X-2$ (the value Y is ruled out) if $Y<X$. Finally, if $X \geq t$ then Player 1 wins iff either $X>Y \geq t$ or $Y<t \leq X$ and $Z<X$ (the value Y is ruled out for $Z)$. These cases yield three groups of terms in the evaluation of (1):

$$
\begin{aligned}
\frac{1}{p} a(s, t) & =\sum_{X<s} \sum_{Y>X} \frac{Y-2}{N-2} \\
& +\sum_{s \leq X<t} \sum_{X<Y<t} \frac{X-1}{N-2}+\sum_{s \leq X<t} \sum_{Y<X} \frac{X-2}{N-2} . \\
& +\sum_{X \geq t} \sum_{t \leq Y<X} 1+\sum_{X \geq t} \sum_{Y<t} \frac{X-2}{N-2} .
\end{aligned}
$$

Heroic algebra, and the formula for the sum of the first $s-1$ perfect squares, yield the stated result.

Lemma 2. For $s \geq t, 2 a(s, t) / p=g(s, t)$.
Proof. Now there are two cases to consider. If $X<s$ then Player 1 swaps, and wins iff $X<Y$ and $Z<Y$. And if $X \geq s \geq t$ then Player 1 keeps X, winning iff
either $Y<t$ and $Z<X$, or $X>Y \geq t$. These cases yield two groups of terms in the evaluation of (1):

$$
\begin{aligned}
\frac{1}{p} a(s, t) & =\sum_{X<s} \sum_{Y>X} \frac{Y-2}{N-2} \\
& +\sum_{X \geq s} \sum_{Y<t} \frac{X-2}{N-2}+\sum_{X \geq s} \sum_{X>Y \geq t} 1
\end{aligned}
$$

from which algebraic manipulation leads to the stated result.
The payoff function $a(s, t)$ has some desirable properties. By straightforward algebra, one can show [1] that the columns of the payoff matrix A are discrete concave and the rows of A are discrete convex. That is,

Lemma 3. For each $2 \leq t \leq N, a(s+1, t)-a(s, t)$ is nonincreasing in $s \geq 2$.
Lemma 4. For each $2 \leq s \leq N, a(s, t+1)-a(s, t)$ is nondecreasing in $t \geq 2$.
Howard [8] proves that in a game that satisfies the concavity condition of Lemma 3 Player 1 has an optimal mixed strategy that mixes at most two consecutive pure strategies. Analogous results apply for Player 2 when the convexity condition of Lemma 4 occurs. (An alternative treatment, whose preview in [1] was apparently the stimulus for [8], occurs in [2].) Since the only difference between consecutive strategies S_{s} and S_{s+1} is how they treat card s, then the above results give us:
Theorem 1. In our variant of N-card Le Her, Player 1 has a critical card s such that he will always swap cards below s, always keep cards above s and will keep or swap card s according to a mixed strategy. Likewise, Player 2 has a critical card t such that when Player 1 keeps his card, she will always swap cards below t, always keep cards above t and will keep or swap card t according to a mixed strategy.

To determine which consecutive strategies are optimal, suppose that $a(s, t)$ can be interpolated by a function $A(s, t)$ defined on the real domain $[2, N] \times[2, N]$, where for fixed t, A is a concave function of s. By [5], such a game has an optimal pure strategy s^{*}. The authors prove in [2] that in the discrete version of such a game, Player 1 has an optimal strategy which mixes at most the pure strategies $\left\lfloor s^{*}\right\rfloor$ and $\left\lceil s^{*}\right\rceil$. Likewise, if A is a convex function of t, then the continuous game will have a pure optimal strategy t^{*}, and the original game will optimally mix on pure strategies $\left\lfloor t^{*}\right\rfloor$ and $\left\lceil t^{*}\right\rceil$.

The right-hand sides of equations (2-4) yield extensions (H, F, G) of the respective functions (h, f, g) from integer to continuous variables $(s, t) \in[2, N]$, with $F=G$ when $s=t$. By Lemmas 1 and 2, a "natural" extension $A(s, t)$ of $a(s, t)$ to a continuous-game payoff function is given by

$$
\frac{2}{p} A(s, t)= \begin{cases}F(s, t) & \text { for } s \leq t \tag{5}\\ G(s, t) & \text { for } s \geq t\end{cases}
$$

To solve the game as proposed in the previous paragraph, we need to verify that $A(s, t)$ - or equivalently, $\frac{2}{p} A(s, t)$ - is concave in s for fixed t. We first observe by straightforward differentiation that

$$
\partial^{2} G / \partial s^{2}=-2(N+s+t-5) /(N-2),
$$

which is non-positive (as desired) since $s, t \in[2, N]$, and that

$$
\partial^{2} F / \partial s^{2}=-2(s+t-5) /(N-2),
$$

which has the desired sign except in the upper left corner (defined by $s+t<5$) of the square $[2, N] \times[2, N]$. In view of (5), it is also necessary for concavity (in s) to check that $\partial F / \partial s \geq \partial G / \partial s$ when $s=t$. This condition reduces to the explicit form

$$
\begin{equation*}
t \geq \Theta={ }_{\operatorname{def}}(N+2) / 2 \tag{6}
\end{equation*}
$$

leaving the subinterval $[2, \Theta)$ to be dealt with. The next lemma shows that this initial subinterval of $[2, N]$ can be eliminated by a suitable domination argument on the matrix game. In what follows, we use the floor and ceiling symbols $\lfloor x\rfloor$ and $\lceil x\rceil$ to denote the greatest integer less than or equal to x and the least integer greater than or equal to x, respectively.

Lemma 5. For integral $s \in[2, N], a(s, t) \geq a(s,\lceil\Theta\rceil)$ holds for all integral $t \in$ $[2,\lceil\Theta\rceil]$.

Proof. For continuous (s, t) with $2 \leq t \leq s \leq N$, we have

$$
\begin{equation*}
2 p^{-1} \partial A / \partial t=\partial G / \partial t=-(N-s)(N-s+1) /(N-2) \leq 0 \tag{7}
\end{equation*}
$$

so that $A(s, t)$ is nonincreasing in t. And if $s \leq t$, then

$$
\begin{equation*}
2 p^{-1} \partial A / \partial t=\partial F / \partial t=-\{(N+2-2 t)+(s-1)(s-2) /(N-2)\} \tag{8}
\end{equation*}
$$

yielding the same conclusion if also $t \leq \Theta$. Thus $a(s, t)$ is nonincreasing in t for $t \leq \Theta$, yielding the desired result when N is even so that Θ is integral. And if N is odd, then $a(s, t)$ is nonincreasing in t for $t \leq\lfloor\Theta\rfloor=(N+1) / 2$; the remaining desired conclusion $a(s,\lfloor\Theta\rfloor) \geq a(s,\lceil\Theta\rceil)$ follows from (7) if $\lceil\Theta\rceil \leq s$, while if integral $s<\lceil\Theta\rceil$ (i.e., $s \leq\lfloor\Theta\rfloor$) then integration over $[\lfloor\Theta\rfloor,\lceil\Theta\rceil]=\left[\Theta-\frac{1}{2}, \Theta+\frac{1}{2}\right]$ of the expression in (8) implies the result via the conclusion

$$
2 p^{-1}[a(s,\lfloor\Theta\rfloor)-a(s,\lceil\Theta\rceil)]=-(s-1)(s-2) /(N-2) \leq 0
$$

It follows from Lemma 5 that Player 2's pure strategies in the matrix game can be restricted by $t \geq\lceil\Theta\rceil$, so that the same can be done in the continuous extension. We may assume that $N \geq 4$ (since if $N=3$ the matrix game is already 2×2), so that the last restriction implies $t \geq 3$, which in junction with $s \geq 2$ rules out the troublesome corner $s+t<5$. Thus the concavity-in- s property has been established. We note in passing the following intuitively plausible interpretation, in the matrix game, of the domination-enforced condition (6): If Player 1 has kept his card, then Player 2 should swap any card that is not above average.

We continue to assume $N \geq 4$, and now know that the continuous game with payoff function $A(s, t)$ restricted to the rectangle $[2, N] \times[\lceil\Theta\rceil, N]$ has some optimal pure strategy s^{*} for Player 1, and that in the matrix game Player 1 has an optimal strategy which mixes at most the consecutive rows $\left\lfloor s^{*}\right\rfloor$ and $\left\lceil s^{*}\right\rceil$. To identify these rows, we proceed to determine s^{*}. By the "maximin" definition of an optimal strategy for Player $1, s^{*}$ is characterized by maximizing, over $[2, N]$, the function

$$
\begin{equation*}
\mu(s)=\min \{A(s, t):\lceil\Theta\rceil \leq t \leq N\} \tag{9}
\end{equation*}
$$

i.e., $\mu(s)=A\left(s, t^{*}(s)\right)$ where $t^{*}(s)$ minimizes $A(s, t)$ over $[\lceil\Theta\rceil, N]$. By (7), we have $t^{*}(s) \geq s$ if $s<N$ and can take $t^{*}(s) \geq s$ if $s=N$, so that

$$
\begin{equation*}
\mu(s)=F\left(s, t^{*}(s)\right) \tag{10}
\end{equation*}
$$

where $t^{*}(s)$ minimizes $F(s, t)$ over $[\max (s,\lceil\Theta\rceil), N]$.

To determine $t^{*}(s)$, we use (8) to equate $\partial F / \partial t$ to 0 , obtaining the t-value

$$
\tau^{*}(s)=\Theta+(s-1)(s-2) / 2(N-2)
$$

It follows from (8) that $t^{*}(s)$ is given by $\tau^{*}(s)$ if the latter lies in the interval $[\max (s,\lceil\Theta\rceil), N]$. Analyzing the conditions for membership of $\tau^{*}(s)$ in this interval, we find that $\tau^{*}(s) \geq s$ is equivalent to $(N-s)^{2}+(s-2) \geq 0$, which is true. Next, $\tau^{*}(s) \leq N$ is equivalent to $(s-1)(s-2) \leq(N-2)^{2}$, which is true for $s \leq N-1$ but not for $s=N$. Finally, since $s \geq 2, \tau^{*}(s) \geq\lceil\Theta\rceil$ is true when N is even (so that Θ is integer), but for odd N it is equivalent to

$$
(s-1)(s-2) \geq N-2
$$

which fails for sufficiently small s.
However, one can show (see [1]) that the "troublesome cases" mentioned above need never occur in an optimal solution. That is, without loss of optimality, Player 1 can restrict himself to

$$
\begin{equation*}
s \leq N-1 \text { and }(s-1)(s-2) \geq N-2 \tag{11}
\end{equation*}
$$

These conclusions follow (respectively) from the next two additional domination results about the matrix game, whose proofs (in [1]) are again omitted for brevity:

Lemma 6. For integral $t \in[2, N], a(N, t) \leq a(N-1, t)$.
Lemma 7. For integral $t \in[\lceil\Theta\rceil, N]$ and integral s with $(s-1)(s-2)<N-2$, $a(s+1, t)>a(s, t)$.

We have now justified equating $t^{*}(s)$ to $\tau^{*}(s)$, i.e.,

$$
\begin{equation*}
t^{*}(s)=\Theta+(s-1)(s-2) / 2(N-2) \tag{12}
\end{equation*}
$$

Substitution of (12) into (10), and differentiation, yield for $-6(N-2)^{2} d \mu / d s$ the expression
(13) $\phi(s)=6 s^{3}+(6 N-39) s^{2}+\left(6 N^{2}-60 N+135\right) s-\left(6 N^{3}-21 N^{2}-28 N+110\right)$.

Its derivative is a quadratic function whose discriminant $-36\left(8 N^{2}-68 N+110\right)$, is negative (hence $\phi(s)$ is increasing) for $N \geq 7$, where it is easily verified that $\phi(N-1)>0>\phi(\Theta)$. Thus for $N \geq 7$ the unique real root of $d \mu / d s=0$, is interior to the interval $[\Theta, N-1]$, hence satisfies (11), so that s^{*} can be calculated as the real root of $\phi(s)=0$. As for the remaining small values of N, according to (11) Player 1's pure strategies can be confined to $s=3$ if $N=4$, to $s=4$ if $N=5$, and to the consecutive pair $s \in\{4,5\}$ if $N=6$. In these three cases the restriction $t \geq\lceil\Theta\rceil$ translates into $t \in\{3,4\}, t \in\{4,5\}$ and $t \in\{4,5,6\}$ respectively; in the last of these the third column of the 2×3 submatrix coincides with the second, permitting reduction to a 2×2 game. So for what follows, we can and will assume $N \geq 7$.

We have showed that the $(N-1) \times(N-1)$ matrix game can be reduced to a subgame involving the last $N-\lceil\Theta\rceil+1$ columns and at most a consecutive pair $\left(\left\lfloor s^{*}\right\rfloor,\left\lceil s^{*}\right\rceil\right)$ of rows, and a procedure for determining this pair has been given. As noted after Lemma 4, we are also assured that in principle this subgame can be reduced further to a sub-subgame of dimensions at most 2×2 involving consecutive columns $\left(\left\lfloor t^{* *}\right\rfloor,\left\lceil t^{* *}\right\rceil\right)$. For given N it seems brute-force practical to proceed by successive solution of 2×2 sub-subgames involving consecutive columns, retaining the solution with the smallest payoff value. However, it would be more elegant
to mirror the preceding analysis from Player 2's viewpoint, giving a "semi-closed" recipe for $t^{* *}$.

Such an attempt would naturally begin by verifying that for fixed $s, A(s, t)$ is convex in t. We find by straightforward differentiation that

$$
\begin{equation*}
\partial^{2} F / \partial t^{2}=2, \partial^{2} G / \partial t^{2}=0 \tag{14}
\end{equation*}
$$

which by (5) assures convexity over the separate t-intervals $(s, N]$ and $[2, s)$. But in view of (5), it is also necessary to check that $\partial F / \partial t \geq \partial G / \partial t$ when $t=s$. This condition reduces to the explicit form $s \leq \Theta$, whereas we showed above (second sentence after (13) that $s^{*}>\Theta$. So our mirror must be blurred by an additional line of argument.

Theorem 2. For $N \geq 7$, optimal mixed strategies for our variant of Le Her can be obtained by solving the 2×2 subgame involving only rows $\left\lfloor s^{*}\right\rfloor$ and $\left\lceil s^{*}\right\rceil$, where, s^{*} is the real zero of the cubic $\phi(s)$ defined by (13), and only columns $\left\lfloor t^{* *}\right\rfloor$ and $\left\lceil t^{* *}\right\rceil$, where $t^{* *}=\max \left(t^{*}\left(s^{*}\right),\left\lceil s^{*}\right\rceil\right)$ as defined by (12) and (6).

Proof. It has already been proved that attention can be restricted to the rows $\left\lfloor s^{*}\right\rfloor$ and $\left\lceil s^{*}\right\rceil$, and to columns $t \geq\lceil\Theta\rceil$. We first show that the latter restriction can be tightened to $t \geq \max \left(\lceil\Theta\rceil,\left\lfloor s^{*}\right\rfloor\right)$. (Since the material following (13) yields $s^{*}>\Theta$, this tightening might be a strict one.) For this purpose note that by (7), for integer $t \leq\left\lfloor s^{*}\right\rfloor \leq\left\lceil s^{*}\right\rceil$, we have

$$
a\left(\left\lfloor s^{*}\right\rfloor, t\right) \geq a\left(\left\lfloor s^{*}\right\rfloor,\left\lfloor s^{*}\right\rfloor\right), a\left(\left\lceil s^{*}\right\rceil, t\right) \geq a\left(\left\lceil s^{*}\right\rceil,\left\lfloor s^{*}\right\rfloor\right)
$$

so that in the 2-rowed matrix subgame column t is dominated by column $\left\lfloor s^{*}\right\rfloor$ and can therefore be deleted if $t<\left\lfloor s^{*}\right\rfloor$.

We next show that if s^{*} is non-integer and the surviving matrix subgame still contains column $\left\lfloor s^{*}\right\rfloor$, then that column is dominated by column $\left\lceil s^{*}\right\rceil$ and can therefore be deleted. For this we must demonstrate

$$
a\left(\left\lfloor s^{*}\right\rfloor,\left\lfloor s^{*}\right\rfloor\right) \geq a\left(\left\lfloor s^{*}\right\rfloor,\left\lceil s^{*}\right\rceil\right), a\left(\left\lceil s^{*}\right\rceil,\left\lfloor s^{*}\right\rfloor\right) \geq a\left(\left\lceil s^{*}\right\rceil,\left\lceil s^{*}\right\rceil\right)
$$

The second assertion with $t \leq s$ on both sides, is a consequence of (7). The first assertion, since $s \leq t$ on both sides, is by Lemma 1 an instance of the relation $f(s, s) \geq f(s, s+1)$. Using (2) and (3), we find this relation to take the explicit form

$$
(N+1-2 s)+(s-1)(s-2) /(N-2) \geq 0
$$

which is readily verified to hold for integral s, failing only in $(N-1, N)$.
Now the matrix subgame is restricted to rows $\left\lfloor s^{*}\right\rfloor$ and $\left\lceil s^{*}\right\rceil$, and to columns $t \geq \max \left(\lceil\Theta\rceil,\left\lceil s^{*}\right\rceil\right)=\left\lceil s^{*}\right\rceil$. Our continuous extension can therefore be restricted to the corresponding strip in the square $[2, N] \times[2, N]$, throughout which $s \leq t$, so that $A(s, t)=\frac{p}{2} F(s, t)$. The first part of (14) now establishes strict convexity of $A(s, t)$ in t for fixed s throughout the strip. Thus the restricted continuous game has a pure optimal strategy $t^{* *}$ for Player 2, and the remarks following Theorem 1 assure that the matrix game can be further limited to columns $\left\lfloor t^{* *}\right\rfloor$ and $\left\lceil t^{* *}\right\rceil$. Since s^{*} remains optimal for Player 1 in the restricted continuous game, $t^{* *}$ can be identified as a minimizer of $A\left(s^{*}, t\right)=\frac{p}{2} F\left(s^{*}, t\right)$ over $\left[\left[s^{*}\right\rceil, N\right]$. Thus $t^{* *}$ coincides with $t^{*}\left(s^{*}\right)=\tau^{*}\left(s^{*}\right)$ if the latter is $\geq\left\lceil s^{*}\right\rceil$; if not, the convexity (in t) of $A\left(s^{*}, t\right)$ identifies $t^{* *}$ as the nearest feasible point to the "relaxed minimizer" $t^{*}\left(s^{*}\right)$, i.e., $t^{* *}=\left\lceil s^{*}\right\rceil$.

Acknowledgments. We are indebted to David Bosley, Persi Diaconis, Jerzy Filar, Greg Levin, and Julia Long for helpful comments at various stages of this investigation.

References

[1] Benjamin, A.T., and A.J. Goldman, "Le Her", preprint, (1992).
[2] Benjamin, A.T., and A.J. Goldman, "Localization of Optimal Strategies in Certain Games", Naval Research Logistics, 41, 669-676, (1994).
[3] Dresher, M., "Games of Strategy", Math. Magazine, 25, 93-99 (1951).
[4] Dresher, M., Games of Strategy: Theory and Applications, Prentice-Hall, Englewood Cliffs, N.J., 1961.
[5] Fan, K., "Minimax Theorems", Proceedings of the National Academy of Science, 39, 42-47 (1953).
[6] Fisher, R.A., "Randomisation and an Old Enigma of Card Play", Math. Gazette, 18, 294297 (1934).
[7] Hald, A., A History of Probability and Statistics and Their Applications before 1750, John Wiley \& Sons, New York, 1990.
[8] Howard, J.V., "A Geometrical Method of Solving Certain Games", Naval Research Logistics 41, 133-136 (1994).
[9] Karlin, S., Mathematical Methods and Theory in Games, Programming and Economics, Vol. I, Addison-Wesley, Reading, Mass., 1959.
[10] Todhunter, I., A History of the Mathematical Theory of Probability, Chelsea, New York, 1949 (Reprint).

Department of Mathematics, Harvey Mudd College, 1250 N. Dartmouth Avenue, Claremont, CA 91711

E-mail address: benjamin@hmc.edu
Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, MD 21218-2682

E-mail address: goldman@brutus.mts.jhu.edu

