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ARTHUR T. BENJAMIN AND SAM K. MILLER

O
ver the centuries, chess enthusiasts 
have enjoyed solving a problem known 
as the knight’s tour. In this problem, 
we are given a standard eight-by-eight 
chessboard and a knight that is placed 

on an arbitrary square. Our goal is to move the 
knight 63 times so that it visits every square ex-
actly once. (A knight can make L-shaped jumps—
two squares in one direction and one square in a 
perpendicular direction.)

Variants of this problem add to the challenge. 
For example, we could require that the last visited 
square is a knight’s move away from the starting 
point. An even harder version specifi es a starting 
square and an ending square of opposite color; we 
call this the challenging knight’s tour. Note that 
a knight always jumps to a square of the opposite 
color; hence, it is impossible for the last square to be 
the same color as the fi rst one. 

In this article, we give a constructive proof that all 
start- and end-square combinations of the challeng-
ing knight’s tour have a solution. Although computer 
programs have proved this result by fi nding tours for 
all possible start and end points, we present a short 
proof that provides insights to the problem’s struc-
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ture (Michael Dupuis and Stan Wagon, “Laceable 
Knights,” Ars Math. Contemp. 9 [2015]: 115–124).

Figure 1. The vertices of the knight’s tour graph can 
be partitioned into four sets and labeled d, D, s, and S, 
denoting left diamond, right diamond, left square, and 
right square, respectively.
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The Knight’s Tour Graph
For a mathematician, the knight’s 
tour is a problem in graph theory. 
The chessboard graph G has 64 verti-
ces, each representing a square on the 
board. There is an edge connecting 
vertices x and y if a knight can jump 
from square x to square y in a single 
move; we say that squares x and y are 
adjacent in G. Each vertex is black or 
white, depending on the color of its 
square. 

Thus, the challenging knight’s tour 
problem can be stated as follows: 
Given two vertices in G of opposite 
colors (called o and e for origin and 
endpoint), find a path in G from o to 
e that visits every vertex exactly once; 
this is called a Hamiltonian path. 

Each square in the chessboard is 
identified by its rank (numbered row) 
and file (lettered column). Thus, we 
may refer to a square and its corre-

Similarly, vertices with labels s or S belong to the left 
square or right square system, illustrated in figures 2c 
and 2d, respectively. 

 We say that the labels d and D are of the same 
type, as are s and S. 

Notice that the 16 vertices and 24 edges of the 
d-graph can be straightened into the four-by-four 
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Figure 2. (a) The left diamond, (b) right diamond, (c) left square, and 
(d) right square systems.

(a) (b)

(c) (d)

sponding vertex by its 
rank and file address; 
for instance, the lower 
left and upper right 
squares are a1 and h8, 
respectively.

The graph G has 
168 edges, but we 
can partition the 64 
vertices into four sets 
of size 16 that illumi-
nate its structure. We 
label each vertex with 
one of four symbols, 
d, D, s, or S, as shown 
in figure 1. Vertices 
with label d represent 
squares in the left dia-
mond system. Notice that in the subgraph shown in 
figure 2a (called the induced subgraph) each quad-
rant has four vertices joined by blue edges in the 
shape of a diamond that leans to the left (mnemon-
ic: left diamond = lowercase d). 

Vertices with label D belong to the right diamond 
system, with the induced subgraph shown in figure 2b. 

Figure 3, above. All four 
induced subgraphs are 
isomorphic to G4,4.

Figure 4, right. The Sd and 
sD edges form a (blue) 
shoelace pattern, and the 
sd and SD edges form a 
(red) shoelace pattern. D
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graph G4,4, shown in figure 3. For instance, 
the lower left vertex of G4,4 represents the 
square b2. In fact, all four of the induced 
subgraphs have the same underlying struc-
ture; we say they are each isomorphic to 
G4,4.

 What about the other edges of G? Notice 
that there are no edges that connect two different 
systems of the same type; that is, there are no dD 
or sS edges. In figure 4, we see that the 36 (blue) sD 
and Sd edges form a shoelace pattern, as do the 36 
(red) sd and SD edges. Combining all 168 edges of 
figures 2a–d, and 4 gives us the knight’s tour graph 
G (not pictured).

Strategy
Once we are aware of the four systems, it is easy to 
solve the basic knight’s tour problem, in which we 
are given the initial vertex o but have the freedom to 
end anywhere we want. 

Suppose o is in the d system, say in the lower left 
quadrant of the board. Jump to the three other verti-
ces in that quadrant with label d (being careful not to 
end on the corner vertex b2). Then jump to an adja-
cent quadrant, landing on a d vertex, and repeat the 
process. Thus, in 15 jumps, we can visit all 16 d verti-
ces. Next, jump to a vertex with a different label, say 
s, and cover the s-system. Then cover the D-system, 
and end with the S-system. Go ahead, try it! 

To solve the challenging knight’s tour where the 
first and last vertices are given, we use a pseudo- 
algorithm devised by Michael Daniels (“Learn to 
Master the Knight’s Tour,” mindmagician.org/
tourhelp.aspx). 

Our primary observation is that we can use the 
four middle vertices of each system—the vertices 
with ranks 3, 4, 5, and 6 and files c, d, e, and f—to 
jump from one system to either system of opposite 
type (see figure 4). In fact, each of these vertices is 
adjacent to two vertices of the opposite type. For 
example, the d-graph has middle vertices c3, d5, e4, 
and f6. And from c3, say, we can reach two vertices 
of type s (a2 and e2) and two of type S (b1 and b5). 

As with the basic knight’s tour problem, our gen-
eral strategy is to traverse the board one system at 
a time. However, in some cases, we will need to be 
clever in our ordering. 

We now come to our first important lemma, 
which will be the basis for our constructive proof. 
A chessboard graph is traversable if we can find a 

Hamiltonian path from any starting vertex to any 
ending vertex of the opposite color. We call such a 
path a traversal.

Lemma. All systems are traversable. 
Proof. Since each system is isomorphic to G4,4, it 

suffices to show tha   t G4,4 is traversable. Although 
there are 128 ways to choose starting and ending 
vertices with opposite colors, when we take symme-
try into account, we need display only the 10 cases 
in figure 5. 

Theorem. The knight’s tour graph G is traver- 
sable. 

Proof. Our construction considers three cases, de-
pending on the locations of the original vertex o and 
the ending vertex e. 

Since the start and end vertices have opposite 
colors, we may assume without loss of generality that 
o is a black vertex and e white. Call our starting 
system A1, the other system of the same type A2, 
and the remaining systems B1 and B2. For example, 
if A1 is the d-system, then A2 is the D-system. We 
will constructively prove the tour can be completed 
by considering three cases, depending on whether e 
is in A1, A2, or one of the B systems.

Case 1: Opposite system types
Suppose e is in one of the B systems, say B2. For 

example, o is in a diamond system and e is in a 
square system. Using our lemma, we can traverse A1 
starting at o and ending on a white middle vertex, 
denoted m1. We denote this by 

Next, go from m1 to B1, landing on a black vertex. 
Then traverse B1, ending on a white middle vertex 
m2. Move to A2, and traverse it, ending on a white 
middle vertex m3. Finally, jump to system B2, mak-
ing sure not to land on e. Since m3 is adjacent to at 
least two vertices in B2, this is always possible. We 
will enter B2 on a black vertex and, by our lemma, 
can traverse B2 ending on e, thus completing the 
tour. To summarize case 1, we have

Figure 5. G4,4 is traversable.
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Case 2: Systems of the same type
For this case, we proceed similarly to the first case, 

with the exception that e is in A2, not B2. For exam-
ple, o and e are in different diamond systems.

Lemma. Given any vertex e in G4,4, we can find 
three middle vertices—d, x, and y—where x and y 
are adjacent, and a 13-step path from d to e that 
reaches every vertex except x and y. This path is 
called a semitraversal of G4,4. 

Proof. By symmetry, we need consider only three 
cases, depending on where e is on G4,4. The end point 
e will be one of the four middle vertices, one of the 
eight edge vertices, or one of the four corner vertices. 
We may choose our starting point d and our exempt 
vertices x and y based on those three cases. The 
choices and paths are presented in figure 6. Note that 
d and e have opposite colors, as do x and y.

We can now prove case 2. Before beginning, note 
whether e is a middle, corner, or edge vertex in A2, 
and choose middle vertices d, x, and y as in the previ-
ous lemma. Let T denote the semitraversal of A2 that 
starts at d, ends at e, and avoids x and y. Since x and 
y have opposite colors, let x denote the black vertex. 

Starting at o, traverse A1 and B1 as before, ending 
on white middle vertices m1 and m2, respectively, 
where m2 is adjacent to x. Next, move to x, then y, 
and then to B2. We enter B2 on a black vertex. 

Traverse B2 as normal, ending on a white middle 
vertex m3, where m3 is adjacent to d. Finally, move 
from m3 to d, then proceed with semitraversal T from 
d to e, which covers all of A2, except the already-visit-
ed x and y. We summarize case 2 in the diagram

Case 3: Same system
Assume o and e are both in A1. First, assume e is 

not one of the white corner vertices (a8 or h1). Then 
there is at least one vertex outside of A1 that can 
reach e in one move. Let this vertex be f, which is in 
B2, say. 

Begin traversing A1 as if we were going to end at 
e, but stop at the penultimate vertex, n1. Suppose n1 

is not a corner vertex. Since e can reach B2, n1 can 
reach a white vertex in B1. We then traverse B1, then 

e

e e

x x xy yy

d d d

Figure 6. G4,4 is semitraversable.

A2, then B2, making sure to end on f. Then we finish 
our traversal by going from f to e. We summarize 
this traversal as follows:  

The procedure fails if n1 is a corner vertex, since it 
cannot reach B1. In this case, n1 is adjacent only to e 
and some other vertex n0. Suppose 

is the A1 traversal. Perform only the first 12 jumps, 
stopping on black vertex n. Let f0 be a neighbor of n0 
in B2. Then proceed as follows: 

Finally, consider the case where e is a corner ver-
tex. Proceed in similar fashion. Let f1 be a point in 
B2 adjacent to n1. Then our traversal is as follows: 

Thus, we have covered all three cases, and therefore, 
the challenging knight’s tour is always solvable! n 
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