Combinatorial Interpretations of Spanning Tree Identities

Arthur T. Benjamin and Carl R. Yerger

November 14, 2004

Abstract

We present a combinatorial proof that the wheel graph W_n has $L_{2n} - 2$ spanning trees, where L_n is the *n*th Lucas number, and that the number of spanning trees of a related graph is a Fibonacci number. Our proofs avoid the use of induction, determinants, or the matrix tree theorem.

1 Introduction

Let G be a graph and let $\tau(G)$ be the number of spanning trees of G. In this paper we will present combinatorial proofs that determine $\tau(G)$ for the wheel graph and a related auxiliary graph. Two simple bijections will provide a direct explanation as to why the number of spanning trees for these graphs are Fibonacci and Lucas numbers.

Definition 1.1. For $n \ge 1$, The wheel graph W_n has n + 1 vertices, consisting of a cycle of n outer vertices, labeled w_1, \ldots, w_n , and a "hub" center vertex, labeled w_0 , that is adjacent to all the n outer vertices.

For example, W_8 is presented in Figure 1. The Lucas numbers are recursively defined by $L_1 = 1$, $L_2 = 3$, and $L_n = L_{n-1} + L_{n-2}$ for $n \geq 3$.

Theorem 1.2. For $n \ge 1$, $\tau(W_n) = L_{2n} - 2$.

This result was first proved by Sedlacek in [5] and later by Myers in [3]. As part of Myers' proof, he employs an auxiliary graph, denoted by A_n , that is similar to the wheel graph and presented in Figure 2. For $n \ge 2$, A_n has n + 1 vertices and 2n + 1 edges, consisting of a path of n outer vertices, labeled a_1, \ldots, a_n , and a hub vertex a_0 that is adjacent to all n outer vertices. In addition, a_0 has an extra edge connecting to a_1 and an extra edge connecting to a_n . We label the two edges from a_0 to a_1 as red and blue, and do the same for the edges from a_0 to a_n . Let f_n denote the nth Fibonacci number with initial conditions $f_1 = 1$, and $f_2 = 2$.

1

Figure 1: The wheel graph W_8 .

Theorem 1.3. For $n \ge 2$, $\tau(A_n) = f_{2n+1}$.

Figure 2: The auxiliary graph A_8 .

One way to determine $\tau(A_n)$, as shown by Koshy [2], is to apply the matrix tree theorem [6], first proved by Kirchhoff, by computing the determinant of the *n*-by-*n* tridiagonal matrix

$A_{m} =$	$\begin{bmatrix} 3\\ -1\\ 0 \end{bmatrix}$	$^{-1}_{3}_{-1}$	$\begin{array}{c} 0 \\ -1 \\ 3 \end{array}$	 		$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$
	0	0	0	:	-1	$\begin{bmatrix} -1\\3 \end{bmatrix}$

Expanding along the first row, and proceeding inductively, it follows that $\tau(A_n) = |A_n| = 3|A_{n-1}| - |A_{n-2}| = 3f_{2n-1} - f_{2n-3} = f_{2n+1}$.

The matrix tree theorem also indicates that $\tau(W_n)$ equals the determinant of the following matrix *n*-by-*n* circulant matrix

$$B_n = \begin{bmatrix} 3 & -1 & 0 & \dots & -1 \\ -1 & 3 & -1 & \dots & 0 \\ 0 & -1 & 3 & \dots & 0 \\ & & & \vdots & & -1 \\ -1 & 0 & 0 & \dots & -1 & 3 \end{bmatrix}.$$

Expanding $|B_n|$ along its first row, we obtain $|A_n|$ as one of its subdeterminants. Proceeding by induction and with a bit more computation (see [2]), $\tau(W_n) = L_{2n} - 2$ can then be obtained. In the next two sections, we give combinatorial proofs of Theorems 1.2 and 1.3 that are much more direct.

2 Combinatorial Proof of $\tau(W_n) = L_{2n} - 2$

The Lucas number L_n counts the ways to tile a bracelet of length n and width 1 using 1×1 squares and 1×2 dominoes [1]. Equivalently, L_n is the number of matchings in the cycle graph C_n . Observe that even cycle graphs C_{2n} have exactly two perfect matchings and thus $L_{2n} - 2$ imperfect matchings, such as the one in Figure 3.

Figure 3: An imperfect matching of C_8 .

Given an imperfect matching M (a subgraph of C_{2n} where every vertex c_i has degree 0 or 1), we construct a subgraph T_M of W_n as follows:

- 1. For $1 \le i \le n$, an edge exists from w_0 to w_i if and only if c_{2i-1} has degree 0 in M.
- 2. For $1 \le i \le n$, an edge exists from w_i to w_{i+1} (where w_{n+1} is identified with w_1) if and only if c_{2i} has degree 1 in M.

The bijection is illustrated in Figure 4.

To see that T_M is a spanning tree of W_n , suppose that M has x vertices of degree 1 and y vertices of degree 0; thus x + y = 2n. Observe that vertices of degree 1 come in adjacent pairs and that if

Figure 4: An example of the bijection for n = 4.

 v_j has degree 0, then the next vertex of degree 0, clockwise from v_j , must be v_k , where k and j have opposite parity. Thus, T_M will use exactly x/2 + y/2 = n edges of W_n . Since W_n has n + 1 vertices, we need only show that T_M has no cycles. Suppose, to the contrary, that T_M has a cycle C. Then C, denoted by $w_0w_iw_{i+1}\cdots w_kw_0$, must use two edges adjacent to w_0 (otherwise M would be a *perfect* matching). Thus, c_{2i-1} and c_{2k-1} have degree 0 in M and hence some vertex c_{2j} must also have degree 0 where c_{2j} is strictly between c_{2i-1} and c_{2k-1} on C. But when c_{2j} has degree 0, there is no edge in T_M from w_j to w_{j+1} , yielding a contradiction. Hence no cycle C exists on T_M and so T_M is a tree.

The process is reversible since a spanning tree T of W_n completely determines the degree sequence $d_1, d_2, d_3, \ldots d_{2k}$ where $d_i \in \{0, 1\}$ is the degree of the vertex c_k in a subgraph of C_{2n} . Since w_0 is not an isolated vertex of T, not all d_k are equal to 1. We show that C_{2n} has a unique matching that satisfies this degree sequence by showing that every string of 1s has even length; i.e., if $d_k = 0$, $d_{k+1} = d_{k+2} = \cdots = d_{k+j} = 1$, and $d_{k+j+1} = 0$, then j must be even. For if k = 2i - 1 is odd and j is odd then the tree T would contain a cycle $w_0 w_i w_{i+1} \cdots w_{i+(j+1)/2} w_0$. If k = 2i is even and j is odd, then T is not connected since the path $w_{i+1} w_{i+2} \cdots w_{i+(j+1)/2}$ is disconnected from the rest of T.

3 Combinatorial Proof of $\tau(A_n) = f_{2n+1}$

The Fibonacci number f_n counts the ways to tile a $1 \times n$ rectangle using 1×1 squares and 1×2 dominoes [1]. Alternatively, f_n counts the matchings of P_n , the path graph on n vertices, whose vertices are consecutively denoted p_1, \ldots, p_n . Let M be an arbitrary matching of P_{2n+1} . We construct a subgraph T_M of A_n as follows:

1. For $1 \leq i \leq n$, T_M has an edge from from a_0 to a_i if and only if

vertex p_{2i} has degree 0 in M. (For i = 1 or n, then this refers to the red edge.)

- 2. For $0 \le i \le n-1$, T_m has an edge from a_i to a_{i+1} if and only if p_{2i+1} has degree 1 in M. (For i = 0, this refers to the blue edge.)
- 3. T_M has a blue edge from a_0 to a_n if and only if p_{2n+1} has degree 1 in M.

Notice that these rules make it impossible for T_M to contain two edges from a_0 to a_1 or two edges from a_0 to a_n . The bijection is illustrated in Figure 5

Figure 5: An example of the bijection for n = 4.

Like before, we prove that T_M is a spanning tree of A_n . Suppose that M has a and b vertices of degree 0 and 1 respectively; thus a + b = 2n + 1. Reasoning as before, M has b/2 odd vertices of degree 1 and (a - 1)/2 even vertices of degree 0. Thus, T_M has (a - 1)/2 + b/2 = n edges. Suppose for the sake of contradiction, that T_M has a cycle C. Then C, denoted by $a_0a_ia_{i+1}\cdots a_ka_0$, must use two edges adjacent to a_0 . Thus p_{2i} and p_{2k} have degree 0 in Mand hence some vertex p_{2j+1} must also have degree 0 where p_{2j+1} is strictly between p_{2i} and p_{2k} on C. But since p_{2j+1} has degree 0, there is no edge in T_M from a_j to a_{j+1} , a contradiction. Hence no cycle C exists on T_M and so T_M is a tree.

The process is also reversible since a spanning tree T of A_n completely determines the degree $d_k \in \{0,1\}$ of each vertex p_k in a subgraph of P_{2n+1} . Again, not all d_k are equal to 1, since T would contain the cycle $a_0a_1 \cdots a_na_0$. To prove that P_{2n+1} has a unique matching that satisfies this degree sequence, suppose that for some $k, j, d_k = 0, d_{k+1} = d_{k+2} = \cdots = d_{k+j} = 1$, and $d_{k+j+1} = 0$. As before, if k = 2i is even and j is odd, then the tree T contains the cycle $a_0a_ia_{i+1} \cdots a_{i+(j+1)/2}a_0$. If k = 2i - 1 is odd and j is odd, then T is not connected since the path $a_ia_{i+1} \cdots a_{i+(j-1)/2}$ is discon-

5

nected from the rest of T. Thus j must be even, and the matching generating T is unique.

References

- A. T. Benjamin and J. J. Quinn. Proofs that Really Count: The Art of Combinatorial Proof, Mathematical Association of America (2003).
- [2] T. Koshy, Fibonacci and Lucas Numbers With Applications, Wiley and Sons (2001).
- [3] B. R. Myers, Number of Spanning Trees in a Wheel, IEEE Transactions on Circuit Theory, CT-18 (1971) 280-282.
- [4] K. R. Rebman, The Sequence: 1 5 16 45 121 320 ... in Combinatorics, The Fibonacci Quarterly, 13:1 (1975) 51-55.
- [5] J. Sedlacek, On the Skeletons of a Graph or Digraph, Proceedings of the Calgary International Conference of Combinatorial Structures and Their Applications, Gordon and Breach (1970) 387-391.
- [6] D. West, Introduction to Graph Theory, Second Edition, Prentice Hall (2002).

Department of Mathematics, Harvey Mudd College, Claremont, CA 91711, benjamin@hmc.edu, cyerger@hmc.edu