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We address the problem of moving a collection of objects from one subset of Z™ to another at minimum cost. We show
that under fairly natural rules for movement assumptions, if the origin and destination are far enough apart, then a near
optimal solution with special structure exists: Our trajectory from the origin to the destination accrues almost all of its
cost repeating at most m different patterns of movement. Directions for related research are identified.

Consider the problem of maneuvering a collection

of objects from one configuration to another at
minimum cost, subject to various rules for movement.
This optimal movement of pieces scenario is suggestive
of applications in industrial robotics, military logistics,
transportation science and (within a state-space set-
ting) economic development planning. In these con-
texts, it is easy to see how, in some configurations, the
[pieces might “get in each other’s way,” thus blocking
rapid progress toward the destination, while in other
configurations, the pieces’ relative positions might be
mutually supportive in a way permitting exceptionally
rapid further progress (leapfrogging). Although the
environment through which the movement occurs is
unlikely to be strictly homogeneous, some sort of local
homogeneity may well be a good approximation, and
the homogeneous case seems a suitably idealized start-
ing point for research into such problems. We will
deal with the simplest discrete homogeneous environ-
ment, namely the integer-point lattice Z™ in R”. This
setting, it turns out, is already rich enough in structure
to yield interesting questions, results and suggestive
concepts.

In this section, we consider a series of attractive
special cases arising from jumping problems and slid-
ing problems. In every instance, the optimal trajecto-
ries have exhibited a special repetitive structure. The
desire to explain and generalize this common feature
provoked the investigations in the sections that follow.

The first example we consider is a game that resem-
bles Chinese checkers. This solitaire puzzle is played
with a finite set of indistinguishable pieces, using Z>

as our game board. At each move, exactly one piece
is displaced. Suppose that a piece is situated at the
point x € Z?, and let ¢, denote the ith unit vector of
Z*. If x + e; is unoccupied, the piece can shift there;
similarly for x — e;. If x + ¢; is occupied, but x + 2¢;
is not, then the piece can hop over the occupant of
X + ¢; to arrive at x + 2¢;, where it may either remain
or hop over another adjacent piece, etc, (Similarly for
a hop over x — e; to x — 2e;.) A move consists either
of a shift or a jump (a sequence of one or more hops
by a single piece). Our objective is to transfer, in the
minimum number of moves, the pieces from some

configuration near the origin (0, 0) to a specified

destination (d, d) where d > 0 is large.

While the above problem with more than four pieces
is not fully resolved (see below), several related prob-
lems have known solutions which led to our more
general results. For example, in Belur and Goldman
(1985), the above problem with three pieces was
solved. Here, the prescribed origin configuration was
the “lower triangle” situated at the points (0, 1), (0, 0)
and (1, 0). Our destination configuration is the “upper
triangle” situated at the points (d — 1, d), (d, d), and
(d, d — 1) for some prescribed positive d.

" The solution is portrayed in Figure 1, in which the
notation X -%» Y denotes using ¢ moves to reach
configuration Y from configuration X. One point in
the configuration is labeled with its position in Z?* and
the positions of the remaining pieces, thereby, are
automatically determined. The second and fifth con-
figurations are merely translates of each other (in the
direction (1, 1)), and the same sequence of three moves
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Figure 1. Solution to the 3-piece, 2-dimensional
' jumping problem.

is used to reach the subsequent configurations. The
sequence requires 3d — 1 moves and this was shown
to be minimum.

. The proof of the above: mlmmahty result (not pre-
sented here) involved projecting down to a simple
‘1-dimensional problem, similar to one analyzed by
Castells and Goldman (1983). In the latter problem,
we begin with p = 3 pieces on Z' situated at points 0,
1,2, ..., p — 1; using the aforementioned rules for
jumping (restricted to one dimension), the objective
is 1o move these pieces to the points d, d + 1, d + 2,

,d+ p—1in as few moves as possible. The
solution is presented in Figure 2. (Here we are assum-

ing d = 2p — 1 and that d + p is'odd. The solution

when d + p is even is similar.)
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Figure 2. Solution to a 1-dimensional j jumpmg prob—
lem whcn d=2p—1.
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. Again, the second and fifth configurations pictured
in the figure are merely translates of each other (by
two), and the same sequence of three moves is used
to reach the subsequent positions. The long jump in
each three-move sequence illustrates the leapfrogging
concept mentioned earlier.

Similarly, consider a 1-dimensional sliding problem
with p indistinguishable pieces on Z'. Here, a piece
situated at point x can move to point y in one move,
provided that y is unoccupied, and all points between
x and y are occupied. (Note thatif y=x+ lory =
x — 1, then the move from x to y is simply a shift.)
The pieces are originally situated at points {g, < a, <

. < a,} and we wish to maneuver them to occupy
the points {5, < t';'2 <...< b,} in as few moves as
possible.

In Benjamin (1987), it was shown that when b, =
a,, the unique solution to this problem is always to
move forward the piece that is farthest back and not
on a destination point. The optimal sequence of
moves requires b, — a; — (p — 1) moves, as in Figure
3. Here leapfrogging is manifested within the Iong
slide, a one-move sequence.: :
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Figure 3. Solution to a l-dxmensmnal shdmg
- problem.

Returning to the orignal 2-dimensional jumping
problem, it is worth noting that with 2 pieces, the
obvious trajectory from origin {(0, 0), (1, 0)} to desti-
nation {(d, d — 1), (d, d)}, presented in Figure 4, is
indeed optimal. Notice that almost all of the time is
spent in configurations *+ and :.

The solution to the analogous four piece problem
(analyzed by Auslander, Benjamin and Wilkerson
1988) maneuvers the pieces into a very efficient con-
figuration, then repeatedly uses two moves to translate
that conﬁguratlon in the direction (1, 1) (see Figure
5) until we are close to (d, d); then it maneuvers the
pieces to the destination. When d is large, the maneu-
vering time spent at the begmmng and end is relatively

neghglble
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Figure 4. Solution to a 2-piece, 2-dimensional jump-
ing problem.

For the general p-piece 2-dimensional jumping
problem (with p > 4), the following two solutions are
conjectured to be optimal. The first solution is to use
the aforementioned optimal 1-dimensional configu-
ration to crawl along the y = 0 axis, then after turning
the corner, to crawl along the x = 4 axis in a similar
way. The other solution is to maneuver into a diagonal
configuration, and repeatedly use a three-move pro-
cedure (see Figure 6) to translate it in the direction
(1, 1) until we are near (d, d). (In Figure 6, the two
alternatives for the third configuration correspond to
the different possible parities of p.)

All the preceding solutions share a common feature.
When the distance between the origin and destination
(represented by the scalar d) is sufficiently large, most
of the cost (i.e., the number of moves) is spent repeat-
edly translating one or two configurations (such as -+
and ¥ in the two-piece jumping problem solution).
This resembles the phenomenon that if one had to
efficiently drive a great distance (say from Baltimore
to Los Angeles), one would spend most of the time
on (perhaps only one or two) high speed interstate
highways or turnpikes. (Strictly speaking, a turnpike
is a high speed highway where some toll is charged, as
opposed to a freeway. We shall not make use of this

distinction.) Instances of this turnpike theme have.

been identified in the operations research literature,
making both theoretical and algorithmic contributions
toward solving knapsack problems (see Gilmore and
Gomory 1966 and Shapiro and Wagner 1967) and
Markov decision problems (see Shapiro 1968). The
theme has been somewhat more prominent in math-
ematical economics (see Cass 1966 and McKenzie
1986). In a similar spirit, we wish to identify and prove
turnpike theorems for general maneuvering problems.

1. ONE-DIMENSIONAL TURNPIKE THEORY

The general problem of finding a minimum cost
sequence of moves from one subset of Z™ to another
can be viewed as a minimum cost path problem on
- an infinite directed graph, where each node represents

a possible placement of the pieces on Z™, and there
exists an arc with weight ¢ directed from node X to
node Y if it is possible to reach Y from X in a single
move with cost ¢. (In our earlier examples, each arc
has a unit cost.) Of course, unless we make some
additional assumptions about our rules for movement
(and hence, the associated graph), we cannot hope to
make any useful statements about the general prob-
lem. Toward that end, we first illustrate how the
infinite configuration graph may be reducible to a
finite graph.

1.1. Connectivity and the Finiteness
of Configuration Space

Consider the 1-dimensional jumping problem with
designated origin & = |0y, ..., 0,}< (notation: ¢, <
... < g,) and destination & = {3, ..., 8,}<, with
8, = o,. For simplicity of the following proof, let us
further assume that our pieces are only allowed to
move in the forward direction. For this problem, we
define a configuration {Xx,, ..., X,}< to be connected
ifx;—xi,<2fori=2,...,p Wedefine a trajectory
to be a sequence Xp, X,, ..., X, of configurations,
where configuration X; can be reached from configu-
ration X;_; in one move. We say that a trajectory is
connected if all of its configurations are connected.
We shall always use the symbols & and & to represent
the Origin and Destination configurations, respec-
tively.

Claim 1. In the above problem, if & is connected and
@ is connected, then there is a minimum length tra-
Jjectory from & to @ which is connected.

Proof. We can obviously find a (generally, discon-
nected) brute force trajectory with length 3,2, (6; — o;
by repeatedly shifting the front piece from o, to §,
then shifting the next piece on o,-, to 6,-,, and so on
Since a feasible trajectory exists, a minimum lengtl
trajectory must exist. Let S be the set of all minimun
length trajectories from & to 2. To avoid trivial cases

we shall assume that p > 1 and the length of eac!

minimum trajectory to be n = 2. We assert that

contains a connected trajectory.

o @ ¢
o0 00— 00
. . : (X“‘irx*i)
(%, %) Oy (K'l_:)()

Figure 5. Solution to the 4-piece, 2-dimension
jumping problem (intermediate phase).
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Figure 6. Conjectured solution to the p-piece, 2-dimensional jumping problem (intermediate phase).

Suppose, to the contrary, that no such connected
trajectory exists. Thus, every minimum length trajec-
tory contains a dlsconnected conﬁgurauon For each
trajectory TE€ S, T'=(F =Xo, X1, ..., X, Xu =
) (where X, is the kth conﬁguratlon, reachable in
= MiNjay,..,, ,,. {!X, is
disconnected}. Since & and & are connected, 1 < ir
< n — 1, and the configuration X; _, = {a), a;, ...,
a,}< must have been connected, and became discon-
nected after moving forward the piece located at, say,
position g;. Define j= j, and give T the label (ir, jr).
Choose T* to be any trajectory with label (ir+, jr+) =
(i, j) where ir« = maxres {ir} and jr- = minres {jr:
ir = i}. In other words, T* delays disconnecting until
the last possible moment, and does so with the rear-
most piece possible, without loss of optimality. Let

T = (7 = X§, XY, ..., X£,, X¥ = 2). Thus,
X*, = la, ..., a,)<is connected, but after moving
the piece on aj forward, we reach X* = {c,, ..., ¢},

which is disconnected. Notice that since the piece on
a; either shifted forward to 1 + ag; or jumped over a
piece on 1 + a@;, we must havec, = a, fork=1,...,
Jj=land ¢ =1+ ag;. Itis clear that j 5 1 and that the
only disconnecting gap created by this move must
exist between the pieces on ¢;—; = a;-, and ¢; (i.e., ¢; —
¢y > 2). Thus, since @ is connected and backward
movement is prohibited, we must eventually move
forward one of the pieces located on g, for some k €
{1,2,...,j— 1}. Suppose that the next time we move
one of these pieces is on the ¢th move where ¢ > i. Let
X—y = {bi,..., b,}. Now here is the key idea.) Since
b] a|,...,bj.-.|=lﬂj_; and b}_bj_ggqi_aj_‘ >\2,
the piece situated at b, may not move beyond 1 + b;—,
because no piece occupies 2 + b—,. Therefore, all
pieces situated beyond 1 + b;_, are not relevant toward
executing this move. Consequently, this same move
{that is, physically moving the piece on a; = b;) could
have been executed just before the move i actually
made in T*, rather than at move f. Since moves i +
) SO 1 do not concern the pieces on b, through
b,_., we would still reach the same configuration X,
after the tth move. Hence, we have a new minimum
trajectory that postpones the offending ith move
another turn. If this new ith move preserves connec-

tivity, then we have contradicted the definition of
r«. If this move disconnects the configuration,
then we have contradicted the definition of j;~ since
k < j. Either way, we are provided with the desired
contradiction.

What does such a claim do for us? It assures us that,
for this particular problem, we can restrict our atten-
tion to connected configurations without (asymptotic)
loss of optimality. We can, therefore, fit each config-
uration into a box of length 2p — 1. If we. consider
two placements of our pieces to be equivalent, should
they look the same when left justified in our box (that
is, they are translates of each other),-then we have
reduced the number of possible different configura-
tions down to 27! (if the first piece is fixed at z,, then
Zw=1l+zior2+z,i=1,...,p— 1), aquantity
which not only is finite, but does not depend on the
distance between & and 9. The usefulness of such a
bound will soon become apparent.

Before presenting our 1-dimensional assumptions,
we clarify the concepts of configuration and placement
and develop a useful notation. At each moment in
time (i.e., before each move) our pieces are arranged
in some configuration X, whose back piece is situated
at the position a € Z'. We will refer to (X, a) as a
placement: of configuration X at the point g. For
example, Figure 7 illustrates the situation where p =
3, X =+ + and a = 4. Thus, in all that follows,
placement corresponds to many of ‘'our earlier usages
of caonfiguration, and configuration to the preceding
distinct configuration, that is, to equivalent classes of
placements. In this more discriminating terminology,
configuration matches the intuitive notion of forma-
tion, while a placement is a placed configuration: The
notation (X, @) —> (Y, b) denotes moving from (X, a)
to (Y, b) with cost ¢ (e.g., in ¢ moves). If no ¢ is

x: e ..

a =4
Figure 7. Configuration X and placement (X, a).

SO
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identified, it is assumed that ¢ = 1. (The choice of
representing the position by the back piece is a fairly
arbitrary one. The front piece, second piece, or loca-
tion of its center of gravity also would be acceptable,
and in certain proofs, may be easier to work with. For
instance, if one piece has special properties, its Tocation
may be a natural position parameter.) We are ready
to state our I1-dimensional movement assumptions,
which we abstract from the properties of the particular
case just discussed.

1.2. Rules-for-Movement Assumptions Over Z'

We are interested in moving a collection of objects
- (called pieces) from one subset of Z' to another at
minimum cost, subject to restrictions on the allowable
moves. We assume our rules for movement obey the
following assumptions, to be dlscussed after their
statemems

leteness Wlthout loss of optimality, we can pre-
scribe a finite set € of allowable configurations for our
pieces. From each configuration, there are a finite
- number of legal moves available.

Time Homogeneity. For all (X, a) €% X Z', the legal
moves available from (X, a) do not depend on our
particular moment in time.

Cost Homogeneity. For all (X, a) €% X Z, the legal
moves available from (X, a) do not depend on the
total cost accrued previously,in reaching (X, a). '

Space Homogeneity. For all (X, @) €& X Z', the legal
moves available from (X, a), as well as their costs, do
not depend on a. In terms of our notation, this says
that for any a, b, ¢, s € Z', and X, Y € &, (X, a) <>
(¥, b)lslegallfandonlylf(X a+ 5)—+(y b+ 8) s
legal.

Brute Force Ability. There exist r = 0 and nonnega-
" tive integral brute force constants {c;: 8 = r} such that
foral X, YEZ ac€Z'andd=zr,(X, a)-> (Y,a+
8) is'legal.

Posmve Cyecles.. If (X, a) > (X, a + 9) is legal, then
c=0. If5#0, then ¢ > 0.

Remarks

« For some rules for movement, the finiteness prop-
erty is explicit—for instance, if the rules themselves
actually list a finite number of legal configurations
or require some sort of connectivity or compactness
of formation. 1t is desirable, as in Claim 1, to derive
useful sufficient conditions for our rules implicitly

to yield finiteness, without loss of optimality, -

Also, we may wish to weaken the without-loss-oft
optimality assumption to without loss of asymptotic
optimality, that is, the difference between the mini-

mum trajectory cost when restricted to our finite

configuration set and the minimum (unrestricted)
cost is bounded above by a constant, which does not
depend on the distance between the origin and the
destination.

« Even when time homogeneity is not strictly present,

we can sometimes modify € so that time homoge-

neity is obeyed. For instance, suppose that our rules -

involve periodic refueling or maintenance restric-
tions like “you cannot go more than 4 = 1 time

units without maneuvering into some configura- -

tionsintheset S;C & i=1...

n.” Then one simply

multiplies the number of configurations by [T %~ (#,)

by associating, with each X € &, the new configura-
tions XOvsz-d 0 < 5, <y, i= 1, ..., n. The legal

moves are precisely those of the following form: -
Supposing that X —%> Y when time is not a consid- -

eration (e.g., at time 0), that J = {j: Y € §;}, and

that 5; < t; — 1 for all j & J, then in our restricted

problem

X(s‘ ,,,,, Sn) _E_) Y(Jf oo L5 )

'r—
s; =

0. ifjet
s+ 1 ifj&Jd

With & redefined to be {X¢r%: X €&, 0 < g5, <
t;} our rules now obey the time homogeneity

assumption. In a similar way, one could accommo- .
date restrictions of the form: you cannot make more

than ¢; consecutive moves of type i, i =1, ..., n.

+ Similarly, certain cost nonhomogeneities can be -
accommodated in the same way as time nonhomo-

geneities.

« It would be desirable to weaken the space-
homogeneity assumption to allow for boundaries
on (or obstacles in) an otherwise homogeneous: -

environment. -

« By space homogeneity, to verify Brute Force Ability

it suffices to show that (X, 0) - (¥, 8) is legal.

+ We could allow the arc costs to be nonintegral, and
- all subsequent theorems would follow, provided that
we reinterpret the notation (X, ) -5 (Y, a + 8) in ~
the brute force assumption to mean that we could
maneuver from placement (X, a) to placement

(Y, a + &) with cost not exceeding c;.

+ The nonnegativity of r (as in radius of maneuver) in :
the brute force assumption means that the existence



of any legal backward moves is not guaranteed, so
that our destination had better be in the forward
direction. A stronger assumption implying “there
exists ¢ such that (X, a) > (Y, q) is legal,” would
exclude situations like the one previously analyzed
where backward movement was not allowed. (There
would be no way to reach (Y, 1) from (X, 1) with

= +++ and X = -+ ¢+, while one could reach
(Y, 2) from (X, 1).) We can often assume, without
loss of optimality, that for any X € &, a € YA
(X, a) - (X, a) is legal.

« The positive -cycle assumption is needed to ensure
that we cannot make arbitrarily long progress with-
out accumulating positive cost. The name, positive
cycles, will be clear when we introduce the #-Graph.

1.3. The _@’-Graph (1-Dimensional)

If our rules for movement obey the aforementioned
assumptions, we can conveniently represent our prob-
lem in terms of the following Configuration Graph
(abbreviated #-Graph). Our #-Graph consists of a
vertex-set (or node-set) & consisting of the (finite
number of) allowable configurations, and a weighted
arc (or directed edge) set E, where an arc exists from
node X to node Y with cost ¢ and progress & if and
only if (X, a) => (Y, a + &) is a legal move for some
a € Z' (and hence, for all a € Z', by space homoge-
neity). In terms of our graph, the arc in Figure 8
represents the ability to move from placement (X, a)
to (Y, @ + &) at cost ¢ in a single move, for any
a € Z'. As before, if no ¢ is present, then a cost of
1 is assumed. If no & is present, then a progress of
zero is assumed. Without loss of generality, we shall
usually assume that a zero-progress, unit cost arc exists
from every node to itself (to accommodate the brute
force assumption).

Consider the 1-dimensional forward moving jump-
ing problem analyzed at the beginning of this section,
specialized to the situation where we have only p = 3
pieces. By the connectivity result, we need only con-
sider four different configurations, namely

A vk
B aee
C o o
D. s s
The corresponding #-Graph appears in Figure 9.

=)

Figure 8. An arc in our #-Graph.
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Figure 9. '%-Graph for the 3-piece, 1-dimensional
jumping problem. :

From the #-Graph, we see that the brute force assump-
tion is indeed valid with r = 2 and ¢; = 28 + 2, as

44,25 ()
—)(A,S)—)...—)

4,3) 54,9
(A, 3) 2 (¥, 9).

X, 0) %>

Notice that (X, 0) = (4, 2) and (4, 6)—>(Y 8) are
possible for all X and ¥ (using the loops around X or
Y, if necessary). ' i

Define a walk on a graph to be an alternating
sequence of vertices and arcs (v, €1, Uz, . - ., €n—1, Un)
where ¢, is an arc connecting v; to v;.;. When the
context is clear, we will omit mentioning the arcs. A
walk is closed if v, = v,. A closed walk is called a cycle
(or circuit or dicycle or simple cycle) if v, ..., Un-1
are all distinct. For a #-Graph, we define the (total)
progress of a walk to be the sum of the (progress)
weights of the arcs of the walk, where each weight is
counted as many times as the associated arc is used
in the walk. Similarly, we can define the (total) cost
of a walk. (When all arcs have unit cost, this is
simply n — 1, the number of arcs in the walk counnng
repetitions.)

The original problem is to reach (Z; d) from @, 0)
with minimum cost, subject to our rules for move-
ment. This is equivalent to finding 2 minimum cost
walk from node # to node & with total progress
exactly d.

Notice that a closed walk (and, in pamcular, a cycle)
beginning and ending at node X, with total progress &
and total cost c, represents the translation of pieces at
(X, a) to (X, a + &) with cost ¢ for some arbitrary
a € 7. Define the speed (or average speed or effi-
ciency) of a cycle to be its total progress divided by its
total cost. In our one-dimensional setting, a turnpike
configuration X is one that lies on a maximum speed
cycle of the #-Graph. Recall the deﬁnmon of rin the
brute force assumption.
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Theorem 1. (1-Dimensional Turnpike Theorem).
Consider the task of moving a collection of pieces over
Z' from (&, 0) to (2, d) at minimum Cost. If the rules
for movement obey the previously stated assumptions,
and d = 2r, then there exists a turnpike trajectory o
the following form: Maneuver the pieces Sfrom (&, 0)
into some turnpike configuration, T. Repeatedly trans-
late this configuration until you are close to (2, d).
Then maneuver the pieces to (2, d). Furthermore, the
difference between the cost of this trajectory and the
cost of an optimal trajectory from & to 2 is bounded
above by a constant that does not depend on d.

Proof. In terms of our #-Graph, the theorem (loosely)
says that we can find a near minimum cost walk from
@ to @ with total progress d, which spends most of
its cost repeatedly traversing some one cycle of the
#-Graph. '

Let C by a cycle of our #-Graph with maximum
average speed 5 = p/q (p > 0 is the total progress of
C; g > 0 s the total cost of C. Note that the finiteness,
brute force and positive cycle assumptions imply the
existence of such a cycle). Let T be an arbitrary node
of C, and consider the following trajectory

@ 0) (T, r) -5 (T, r+p) -5 (T, r + 2p)
_ff+..._-q-)(T,_r+xp)_°:»(_@,d)'

where x = (d — 2r)/pland 8 = d — (r + xp). The
cost of this trajectory is ¢, + xg + & < ¢+ & +
(d — 2r)/s. This is our turnpike trajectory, which
translates the configuration T (i.e., traverses cycle C)
x times. Notice that r < & < r + p — 1, which does not
depend on d. : .
Let (&, 0) <> (2, d) be a minimum cost trajectory
and consider the trajectory (4, 0) = (2, d) =5
(@, d + r). This represents a closed walk (from & to
@) along our #-Graph with total progress d + rand
total cost ¢* + ¢,. s S S
We can decompose the arcs of any closed walk into
cycles. That is, if the cycles of our #-Graph are

Ci, ..., C,, we can find nonnegative integers Xi,
.., X, such that if we traverse cycle C; x; times, i =
1, ..., n, then every arc will be traversed exactly as

many times as in the closed walk. (This can be proven
by induction on the number of arcs (repetitions
counted) of the walk as follows. If the closed walk is
itself a cycle, we are done. Otherwise, it contains a
node v that is visited twice (if the only such node is
the first node, then it is re-visited before the end).
- Hence, our walk contains an internal closed walk
which, inductively is decomposable into cycles. After
removing this subwalk from our walk, the remaining
walk remains closed, and this too, by -induction, can

be decomposed into cycles. Thus, we have decom-
posed our original walk into cycles.)

Thus, if our closed walk (after decomposition) tra-
verses cycle C; exactly x; times, and C; has total
progress p; and total cost g; > 0 (cf. the positive cycle
assumption), then our total progress is

n
d +r= Z DiX;.
. i=1
Qur total cost is

m

c*+e= 2 4%

=1
and so our average speed is

d+r _YhipiXi
C* + Cr 2?-=l qfx.‘

=35

where the inequality follows from p; < sq;. Therefore
¢* = (d + r)/s — ¢, Since the cost of our turnpike
trajectory is at most ¢, + ¢; + (d — 2r)/s it follows that

d+r d—2r
—osc*<
A)

+¢+C. (1)

Thus, the difference between thé cost of our turnpike
trajectory and an optimal trajectory is at most

d—2r

G+ + — c*
d-2r d+r
slc + ¢+ - - Cr
K s
3r
=2c 4 ¢ —
s

with a bound (since § < r + p — 1) that does no
depend on d. : :

The preceding result is analogous to theorems give:
by Chrétienne (1984), with nonconstructive proofs i
the manner of Gilmore and Gomory, which impl
that a “maximum valued” walk from & to @ wit
progress d necessarily spends most of its time travelin
turnpike cycles as d gets large. Those theorems wei
not extended to higher dimensions.

Note that we have shown the difference in cost «
the optimal trajectory and our turnpike trajecto!
to be bounded by a constant which becomes rel
tively negligible as d gets large. That is, we have t
Equation 1

*

i B
.lfl_lg djs s

Thus, ¢* = d/s for large d.



1.4. Examples

Returning to the #-Graph for the three piece, 1-
dimensional jumping problem (see Figure 9), we
notice that it contains seven simple cycles, excluding
.the four zero-progress loops (see Table I). Cycles ABC’
and BCD’ denote cycles ABC and BCD where the
ZEIo-progress arc from B to C is used instead of the
unit-progress arc.

The cycles ABC and BCD are turnpike cycles with
maximum speed %. Thus, if we let ABC play the role
of our turnpike cycle with p =2 and g = 3 and let B
be our entering turnpike configuration within BCD,
then our turnpike trajectory, from origin (A 0) to
destination (D, 99), is :

4, 0) 2> (B, 2) > (B, 4) = (B, 6)
=5 ... 3 (B, 94) 3> (B, 96) 5> (D, 99)

with a cost of 6 + 3(47) + 8 = 1.55. To illustrate the
merely asymptotic nature of the optimality provided
by such a trajectory, we observe the lesser length,
150 = 1 + 49(3) + 1 + 1, attained (via cycle BCD) by

(4, 0) 5 (B, 0) > (B, 2) = (B, 4)
2>... 2> (B, 98) <> (C, 99) = (D, 99).
The trajectory is optimal because if we could maneu-

ver from (4, 0) to (D, 99) at a cost ¢ < 149, then the
closed walk (4, 0) -5> (D, 99) —> (B, 100) > (4, 101)

would have a progress/cost ratio of 101/{c + 2) =
101/151 > 2/, which is impossible by Table L

As another example, consider the previous problem
with a distinguished piece. The same rules apply, but
now only the distinguished piece is allowed to perform
a double jump, Here we have 4 X 3 = 12 nodes X1,
X2, X3 depicting whether the distinguished piece is
in front, middle, or back, respectively, in the config-
uration X € {4, B, C, D}. In the corresponding
#-Graph (see Figure 10), the dotted lines denote arcs
with progress 0, solid lines denote arcs with progress
1, and all arcs have a cost of 1. We can prove that the

Table I
Speeds of Cycles of the Three-Piece
Jumping Problem .
Cycle Speed
AB %]
ABC 2
ABC’ Y5
AC : B
ACDB %
BCD %
'BCD’ 1A
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Figure 10. #-Graph for a 3-piece, l-dlmensmnal
jumping problem with a dlsungulshed
piece (loops omitted). .

maximum cycle speed is %7 as follows. First, we prove
that all cycles that do not use the arc from B3 to C1
(corresponding to performing the double jump) have
speed at most %2. We see this by removing the arc
from B3 to C1 and projecting to the #-Graph in
Figure 11. Here we have a solid (dotted) line from
node X to node Y if there exists a solid (dotted) line
from X; to ¥; for some i, j. Notice that the only simple
cycle utilizing two consecutive solid lines is cycle
ACDB, with speed %. All other cycles must follow a
solid ‘arc with a dotted arc and therefore have speed
at most 2 in this graph, and consequently, in the
original graph as well. Thus, any cycle with speed
greater than % must use the solid arc from B3 to C1
in the original graph. By branching from C1, we see
that the minimum length path from C1 to B3 is of
length 6, which by the preceding argument cannot
have more dotted lines than solid. Hence, the speed
of the cycle is at most (1 + x/2)/(1 + x), x = 6, hence,
at most %. This is attained by the cycle C1 — 41 —
C2—-A2—-B2—-A3-B3. _

As a less obvious example, consider the knapsack-
type problem

minimize 3, fix
J=1

subject to Y, x; = d
j=1

X; nonnegative integer

where we assume /s, = | to ensure feasibility, and
that f;, h; > 0 for all j. Suppose further that for all j
(h;/f; = h,/f,). Then we can construct the single node
#-Graph with n (loop) arcs, where arc j has progress
h;and cost f;. The problem then is to find 2 minimum
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Figure 11. A projected problem.

cost walk from (X, 0) to (X, d). (Note that h =1
easily gives us our brute force condition.) Our turnpike
trajectory then spends most of its cost along the min-
imum cycle from X to X along the nth arc. ‘This

corr@aéljondsio the feasible solution i
Xy = Ldfhy), x, = d — h\dfh,J;
x=0, j#Ln

which is nearly optimal for 4 sufficiently large. (This
is essentially the result of Gilmore and Gomory.)

To make the correspondence explicit, observe that
the above integer program can be represented by a
simple one piece, one-dimensional problem in which
our piece must move from 0 to d at minimum cost,
and the jth of the n legal moves available from any
configuration propels the piece forward Ay units at a
costoff.

As a last example, consider the NP-complete parti-
tion problem (Garey and Johnson 1978): Given a
finite multiset 4 = {g,, ... » ay} of positive integers,
does there exist a subset 4’ C A such that 3 e, a=
Yaca-a» a? (We assume that Y7, g, is even.) The
problem can be transformed into a one-dimensional
&-Graph problem, namely, “Does there exist a walk
from node 0 to node N in the #-Graph in Figure 12
with total progress Y X, a,/2 and total cost < N?”
This transformation is used in Benjamin (1989) to
show that the decision problem associated with Z-
Graphs is NP-complete. :

L -1

Figur.é 12, A ?—Graph for the partition problém.

2. HIGHER-DIMENSIONAL TURNPIKE THEORY

The preceding theory extends rather nicely to higher .
dimensions. When maneuvering our pieces of Z" we .
make the following adjustments. (X, a) - (Y, a)
denotes moving from configuration X placed at ;
a € Z" to configuration Y placed at & € Z™ with cost
¢ € Z'. More specifically, we shall assume that

a=(a,...,a,)and let (X, a) denote that placement
of X such that a; is the minimum ith coordinate
among all pieces in X. (For an example, see Figure
13.) As in the 1-dimensional case, other measures of °
location such as maximum coordinates, the location
of some distinguishable piece, or the center of gravity |
will also work, and may be more natural for cer- |
tain problems. (The last quantity belongs to the set |
(1/p)Z™ where p is the number of pieces.) 4

e oo (2'2)1 43 &2
X=1°, o Sy=1
l 3D '

X=2

o= {2;4)
Figure 13. Configuration X and placement (X, ).

2.1. Rules-for-Movement Assumptions Over Z™

We are interested in’ moving a collection of objects
from one subset of Z™ to another at minimum cost,
subject to certain restrictions on the elementary move-
ments. We assume our rules for movement obey the
following assumptions.

Finiteness. Without loss of optimality, we can pre-
scribe a finite set & of allowable configurations for our
pieces. From each configuration, there are a finite
number of legal moves available, :

Time, Cost and Space Homogeneity. For all (X, a) €
% X Z™ the costs and legal moves available from
(X, a) depend only on X. That is, forall X, Y € g
CEZ,and a, 4, § € Z™, we have that (X, a) (7, a)
is legal if and only if (X, a + 8) -5 (Y, a + &) is legal.

Brute Force Ability. There exist nonnegative integral
brute force constants {c;} such that forall X, Y € g
and a, § € Z™, (X, a) -> (Y, a + ) is legal. In
particular, (X, a) —% (¥, a) is legal. :

Positive Cycles. If (X, a) —> (X, &) is legal, then
c20.Ifaa then c>0.



The remarks following the I-dimensional assump-
tions remain valid. We are assuming that our desired
destination from (&, 0) is (2, db) where Z €%, disa
large positive integer and b = 0. If b # 0, then we can
“re-coordinatize” without 10ss of ‘generality. Notice
that here we are using a stronger brute force assump-
tion than in the one-dimensional version. We shall
say more about this after the. proof of the next
theorem. ;

2.2, The ?—Graph (m-DimensionaI Version)

The @-Graph for the m-dimensional problem is sim-
ilar to the 1-dimensional #-Graph. Here, an arc is
present from node X to node Y, with cost ¢ € Z' and
progress & € Z™, if and only if in a single move, we
can move from configuration (X, a) to (¥, a + 4) at
cost ¢ for any a € Z'. As before, if no c is present,
then a cost of 1 is assumed. We shall usually assume
that a zero-progress, unit cost arc exists from every
node to itself, to accommodate the brute force
assumption.

Also, as before, a closed walk from node X to X
represents a translation of configuration X, with total
progress and total cost defined, respectively, as the
sum of the walk-arcs’ cost weights and the (vector)
sum of their progress weights. Determining a mini-
mum cost trajectory from (&, 0).to (2, db), d > 0,
b = 0 is equivalent to finding a minimum cost walk
in our #-Graph from node # to node & with total
progress db. If & = 2, the walk is closed.

Theorem 2 (m-Dimensional Turnpike Theorem). Con-
sider the problem of moving a collection of pieces over
Z™ from (&, 0) to (2, db) at minimum cost. If the rules
Jor movement obey the previously stated assumptions,
then there exists a turnpike trajectory of the following
Jorm. Letting & = T, proceed as follows. For i = 0,
.., m— 1, brute force maneuver from configuration
T to an appropriate configuration T;..,, then repeatedly
translate Tiv, X;41 times, X.., an appropriate nonne-
gative integer. Then, brute force maneuver from T,, to
9. Furthermore, the difference between the cost of this
trajectory and that of an optimal trajectory is bounded
above by a constant that does not depend on d or b.

Proof. In terms of our #-Graph, the theorem states
that we can find a near minimum cost walk from &
to @ with total progress d b which spends most of its
cost repeatedly traversing m partlcular cycles of the
#-Graph.

Suppose that the cycles of our #-Graph are # cycles
C\,...,C" wherefori=1,...,n, cycle C' has total
progress a; € Z™ and total cost ¢! > 0 (not to be
confused with our brute force constants ;).
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Let A denote the m X n matrix with ith column a;,
i=1,...,n. We now use the brute force assumption
to prove that A has full row rank, as follows. Consider
any X € %, and any vector v € Z™. By the brute force
assumption there is a closed walk from (X, 0) to
(X, v). As shown while proving Theorem 1, this closed
walk can be decomposed into cycles. Therefore, v can
be expressed as a (nonnegative integral) linear com-
bination of a,, ..., a,, i = 1, , n. Hence, any
integral vector v can be expressed as a nonnegative
integral combination of some of the a;’s. Thus, 4 has
full row rank. _

Let M = max,; | a;;| andlete” =(1,..., 1) EZ".
For any linearly independent set of m column vectors
fa;, ..., a,}, we can express db as a linear combi-
nation of these vectors in precisely one way (namely
as db = X7, a,x; where x; = (B~'db); € Q where a;
is the jth column of B). If x = (x;, ..., Xu) is
nonnegative, we say that the basis B = {a;, ..., a; )
is feasible, and has a total cost
¥ cix;= Y (B 'db); = cEB'db.
i=1 i=1

Since (8, 0) =3 (&, db) is legal and decomposable
into cycles, 4 must contain at least one feasible basis.
The number of feasible bases is finite; assume for ease
of notation that {a,, . . a,,,} is a feasible basis with a
rmmmum total cost dci B 'bwhere B=[a;,...,a,]
and ¢ = (c!, ..., ¢™). Let x; = (dB~'b); € Q.. Let
T; be an arbitrary configuration node on cycle
Ci i=1,...,m Then our turnpike trajectory can be .
constructed as
(,0) > (T, 0) —

c I.x,

(T), Lx,1a,)
= (Tz, |.le31] E;J (Tz, I.x,Jal + szjaz)

i—1
e (Tn b LJC;JaJ)
J=1

t.Jl_x,-J (T‘“ 2 ijja!)
j=1

m=—1

_"'U) R 2) (Tms 2 l.x;-la})
J=1

gl (Tm, 2 Lx; jﬂj) iy (2, db)

J=1
where

§=db— ) Lxla

=1

=db"db+§ajf;=2(ajf})

j=1 j=1
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and f; = x; mod 1, 0 < f; < 1. Consequently,
—mMe < 6§ < mMe, and since {6 € Z":|| 8] <
mM e} is a finite set, ¢; is bounded above by a constant
¢ that does not depend on 4 or b. The total cost of
this trajectory is

TPCOST = mcy + 3, ¢'Lx;] + ¢

i=1

< me+ Y, cllxl +é. (2

i=1 E
Notice that by construction, x = (X, ..., X,)” is a
(basic feasible) optimal solution to the linear program

i

u* = min Y, ¢'x;
X =1

subject to Ax =db, x=0.

Furthermore, if ¢* denotes the minimum cost to
reach (Z, db) from (&, 0), then c* cannot exceed the
cost of the turnpike trajectory. Hence, by equation
(2), we must have

c* < TPCOST < mcy + ¢ + u*. 3)

On the other hand, consider some trajectory (&, 0)
<% (2, d b) with minimum cost ¢*. Since the trajectory
(@, 0) => (2, db) = (4, dDb) is a closed walk on our
#%-Graph, it can be decomposed into cycles. Thus,
db = Y., a;); for some nonnegative integers y;,
j=1,...,n. It follows that

n
¢* + ¢ = min ), ¢'x
i=1
subjectto Ax=4db

x = 0 integer

= min ), ¢’'x; = u*
i=1
subjectto Ax=db
x=0.
T_hat is
c*= —Co + u*. (4)

Combining relations (3) and (4), we have

—¢o + u* < ¢* < TPCOST < mc, + ¢ + u*.

Consequently }
TPCOST — ¢* < (m + 1)cy + ¢ (5)-5-
{

which does not depend on d or b.

By analogy to the 1-dimensional turnpike theorem, |-
we can proceed to prove a similar theorem using a '
weaker brute force assumption. First, we point out .
that the apparent weakening, “There exist 7 = 0 and *
nonnegative brute force constants {¢;: i = r} such that
forall X, YEZ anda € Z™ (X, a) 23 (Y, a + §) is'
legal whenever || 8 | = r,” is actually equivalent to the -
current assumption, since forany X, YE %, a, 6 EZ" -
with |6l <r (X, a) > (Y,a+ (1 + rf||&||)6)-—>'::
(Y,a+ &) islegal, where t = || 6 || + r. tl

However, if we assume that b > 0, then we can |
prove the previous theorem under a genuinely weaker |
brute force assumption, namely: There exist r = 0,, :
and nonnegative brute force constants {¢;: 8 = r}, such '
thatforall X, YEZ a€ Z"and d =21, (X, 2a) >
(Y, a + &) is legal. This is analogous to the one--
dimensional brute force assumption, and is motivated
by the desire to include rules for movement where we |
are restricted to move only in forward directions.

Ao i

Theorem 3. When b > 0, Theorem 2 is true under the
weaker brute force assumption above, when d is suffi-
ciently large. :

Proof. As before, let the cycles of our #-Graph be C', :

, C" where for i = 1, ..., n, cycle C' has total :
progress a; € Z™ and total cost ¢’ > 0, and let A denote
the m X n matrix with ith column a;, i=1, ..., n
Since {v € Z™:v = r} has dimension m, and (by the
weak brute force assumphon) lies in the column span
of A, A has full row rank.

Let M = max, ;| a;;|,andlete” =(1,..., ) EZ".
Let b = db — mMe — (m + Dr. Asmthepra—
vious proof, for any linearly independent set of m |
column vectors {a;, ..., a;,], we can express b as
a linear combination of these vectors in precisely one
way. -

Since b > 0, we must have b > r for sufficientl
large d. Thus (&, 0) 2> (&, b) is legal and decomposable §
into cycles, so that 4 must contain at least one feasible §
basis for the system Ax = b. The number of feasible
bases is finite; assume for ease of notation that$
{a,, ..., 4, is a feasible basis with minimum total
cost ¢ZB~'b, where B = [a, ..., a,] and cf =§
(', ..., ¢™. Let x, = (B™'b); € Q.. Let T; be§
an arbitrary configuration node on cycle C', i =]
1, ..., m. Then our turnpike trajectory can be




constructed as _
& 0) 5 (T1, ) ' (T, 1 + Lx, Ja,)

5 (T3, 2r + Lx,Ja,)

L2 (T, 2 + Lxy o, + Lxydag)

i-1
S (Tf, ir+ Y, lijaj')
J=1

Ch (T,—, ir+ ) lx,—Jaj)

J=1

Rt |
2 o S0 (Tm, mr+ 3 Lx_,-Ja,—)

=1
i (Tm, mr + Y Lx; Jaj)
J=1
- (2, db)
where

6=db— (mr + X Lx_,-]a,-)

Ji=1
=db - mr — (b:- b a,-ﬁ)
i=1

(where ;= xmod 1,0 < f;< 1)

=db—mr+ ) aff—db+ (m+ 1)r + mMe
J=1

=r+ Y (af) + mMe.
J=1
Consequently, r < § < r + 2mMe, and since
{6 € Z":r <6 < r + 2mMe} is a finite set, ¢; Is
bounded above by a constant ¢ that does not depend
on d or b. The total cost of this trajectory is

TPCOST = me, + 3, ¢ilxl + ¢

=]

: = ,

< me + Y, c'lxl+ ¢ (6)
i=] .

Notice that by construction, x = ol %) isa
(b_asic feasible) optimal solution to the linear program
u*_= miin E Cfxf

=1
subjectto Ax=b, x=0.

Furthermore, if ¢* denotes the minimum cost to
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reach (2, db) from (&, 0), then c* cannot exceed the
cost of the turnpike trajectory. Hence, by Equation 6,
we must have :

c* < TPCOST = mc, + ¢ + u*. )

On the other hand, consider some trajectory
(& 0) <> (2, db) with minimum cost ¢*. Since the
trajectory (&, 0) - (2, db) 2> (&, db + r) is a closed
walk on our #-Graph, it can be decomposed into
cycles. Thus, setting b = db + r, we have b = 37,
a;); for some nonnegative integers y;, j=1,...,n It
follows that

¢*+ ¢ =min Y, ¢/x
J=1

subjectto Ax="b
x = 0 integer

= min ), ¢/x; = z*

f=1

subjectto Ax="b
x=0
that is
c* = —c + z*, (8)

Combining relations (7) and (8), we have
—¢ + z* < ¢* < TPCOST = mc, + ¢ + u*.
Consequently
TPCOST — ¢* < (m + 1)c, it St 2% )]

But »* and z* denote optimal objective function
values to linear programs with parameters (4, b, c)
and (4, b, c), respectively. By theorem (2.4) of
Mangasarian and Shiau (1987), there exist optimal
solutions X and X to the above linear programs
satisfying

I = %le<kilb—TB.

where k, is a constant depending only on A. Thus

u* o Z*
=c¢’%—¢’%
=cT(X—-%)

sllelslx—%]-

<kdcllb-B]. . .

=killcl=lldb—mMe—(m+ l)r-—.(db-+r)ll.w

=kallclloll mMe + (m+2)x | (10)
which does not depend on 4 or b.
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w

Consequently, by relations (%) and (10), we see that
the difference between the cost of our turnpike trajec-
tory and the minimum cost trajectory is bounded by
a constant which does not depend on d or b.

Remark. The theorem of Mangasarian and Shiau is
stronger than we need. The theorem says that there
exist two solutions to the linear programs that are
close together, when it suffices to show that their
objective function values are close together. It would
be interesting to see if this extra information could be
exploited to yield stronger results.

‘3. IMPLEMENTATION IDEAS

The 1-dimensional turnpike trajectory problem is
equivalent to finding a cycle in the given #-Graph
whose average speed (total progress/total cost) is max-
imized. Of course, that could be determined by enu-
merating all the cycles of the graph, but this would
be inefficient. When every arc has unit cost, then the
problem can be solved efficiently (time complexity:
Ol V|| | E||) with vertex-set ¥ and arc-set £) by an
algorithm given in Karp (1978). When the arcs do
not have unit costs, the problem can be solved
in O((I VII1 E|)?) time by an algorithm given in
Megiddo (1979). '

To approach the m-dimensional problem (with non-
unit costs) directly through linear programming would
require an enumeration of all cycles in the #-Graph.
This may be very difficult. For instance, if our
#-Graph contains a complete directed graph on n
vertices, there are more than (n — 1)! cycles (the
number of traveling salesman tours). Furthermore,
its number of vertices may be enormous (recall that
the I-dimensional jumping problem with p pieces has
27! connected configurations). Does this mean that
there is no hope of finding a reasonable solution to
our problem? Not at all. Operations researchers face
this sort of problem, for example, when formulating
integer programs for crew scheduling of airlines. To
consider all possible assignments of subsets of crew
members to all possible flights would be overwhelm-
ing. Thus, one approach is to restrict attention to a
manageable number of reasonable looking assign-
ments. (In some versions, the current optimurm can be
tested for true optimality, in such a way that a negative
outcome also generates a new member of the man-
ageable set; cf. the use of column generation, below.)
In a similar way, our rules for movement may suggest
certain natural translations of configurations, and we
might then restrict our attention to those translations

(i.e., cycles in the #-Graph). This idea can be extended
to the case where we are unable to prove that the
finiteness assumption is satisfied with our rules for
movement. Here, we can guess at a finite number of
natural-looking efficienit configurations, and deter-
mine efficient translations of these, as before.

When the #-Graph is known and of manageable
size, we might attack the linear program

n
min Y, ¢’/x;
J=1

subjectto Ax=b, x=0 (1)

by reformulating it as a minimum cost circulation
problem and solving

1E)
min Y, v’y;
j=1

subjectto Py=Db, By=0, y=0 - (12)

where y, is the amount of flow on the ith arc, from
the arc-set E, v; and p; are that arc’s respective cost
and progress, and B is the node-arc incidence matrix
of the #-Graph.

The correspondence between these two linear pro-
grams can be made explicit by noting that every
circulation can be decomposed into cycles (with the
same overall cost) and, likewise, every decomposition
into cycles is a circulation. Note that a basic optimal
solution to (12) uses at most m + || V|| arcs and thus
can be decomposed into m + || V|| or fewer cycles in
O((m + || V))?) time. If this decomposition uses more
than m cycles (and if we cannot reduce this number
by inspection), we can then find a basic optimal
solution of (11) directly, using only those columns
(representing cycles) obtained in our decomposition.
The minimum cost circulation problem should be
most efficiently treatable by special “network with
sideé constraints” algorithms (e.g., Chen and Saigal
1977).

Alternatively, we can employ a column generation
scheme to solve (11) directly, as follows. If necessary,
begin with an initial artificial basis consisting of m
cycles, each making one unit of progress in a unit
direction at enormous cost. Using the columns of our
A matrix generated so far, solve the linear program to
optimality. Let x € R" and A € R™ be the primal and
dual solutions to (11), restricted to the generated col-
umns (x; = 0 if the ith column has not been gener-
ated). From duality theory, x is an optimal solution
to (11)ifand only if ¢/ — ATa;=0,j=1...n. This
can be determined directly on our #-Graph by



assigning the kth arc a weight of “y, — ATpy, k=
1... 1 Ell, and looking for a cycle of negative weight.
If no such cycle exists, x solves (11), otherwise a
negative cycle is generated, and its associated progress
column and (unadjusted) cost is added to our set of

generated columns. The new LP is solved, and the .

procedure is repeated. The negative cycle problem can
be solved efficiently (O(]l VI E1)) by a modified
shortest path algorithm (see Lawler 1976). Note that
when m < 3, as will be the case with most maneuvering
problems, m X m matrix inversions can be computed
trivially, and a simplex method can be programmed
easily without much worry about numerical issues.

We used the above procedure to solve the three-
piece, two-dimensional jumping problem, restricted
to the connected configurations, for all directions b.
The #-Graph has 46 nodes and 288 arcs. Starting
from an artificial basis, the column generation scheme
solved the problem very efficiently, generating only
one superfluous column. Further algorithmic devel-
opment and experimentation are in progress.

4. RESEARCH DIRECTIONS

We briefly mention some questions intended for
continuation of this research.

« When is the finiteness assumption valid? Are there
natural sufficient conditions that imply finiteness?

« How can we automate the construction of the #-

Graph from natural descriptions of its nodes (i.e.,

configurations) and arcs (i.., legal moves)? Can this

construction be usefully interwoven with the solu-
tion algorithms sketched in the preceding section?

What happens when our configurations must stay

within certain borders? Here, the space homogeneity

assumption is violated, but only at the borders. It
will be shown, in a subsequent paper based on

Benjamin (1989), how a border-ignoring turnpike

trajectory can be systematically modified to accom-

modate this situation.

The main theorems indicate that the turnpike solu-

tion is almost as good as an optimal solution. When

can we prove the stronger claim that there exists an
optimal solution with the turnpike property?

* Clearly, it would be interesting to see how and how
much these results can be generalized to R™ and
other environments, both continuous and discrete
(e.g., lattices other than Z™). Initial results of this
type appear in Benjamin (1989).

We close by suggesting that the particular mathe-
matical construct identified in this paper, that of
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“high-speed cycles in a #-Graph,” should prove gen-
erally valuable in the treatment of the optimal maneu-
vering problems described at the outset (at least for
slowly varying environments of movement). The pre-
ceding results provide encouraging initial evidence,
which we hope will be confirmed by the additional
investigations outlined above. '
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