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Abstract

A stable marriage problem of size 2n is constructed which contains @[2"\;"?1) stable match-
ings. This construction provides a new lower bound on the maximum number of stable
matchings for problems of even size and is comparable to a known lower bound when the size is
a power of 2. The method of construction makes use of special properties of the latin marriage
problem, which we develop.

1. Introduction

The stable marriage problem consists of n men and n women who are to be
matched up into married couples. Each man ranks the women from most desirable
to least desirable, and cach woman does the same for the men. A matching is said to
be unstable if there exists a man and woman who prefer each other to the partners
they have been assigned. If no such people exist, the matching is said to be stable.
In [2], Gale and Shapley proved that a stable matching always exists, but it
need not be unique. The problem of determing the maximum number of possible
stable matchings among all stable marriage problems of size n was posed by
Knuth [5] and remains an open question. As reported in [3], Knuth established
that this maximum number exceeds 2"? for n > 1. When n is a power of 2,
Gusfield and Irving established that this maximum number is at least 2"~ !, which
can be improved to (2.28)*/(1 +./3) based on a construction by Irving and
Leather [4]. In this article we construct, for all even values of n, a stable marriage
problem such that the number of stable matchings lies between these two lower
bounds.
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Fig. 1. An unstable matching for DS;.

2. Latin marriages

We call the stable marriage problems constructed here latin marriages since they
can be described by a latin square, an n x n matrix where every row and column is
a permutation of the numbers 0,1,....n — 1. For a given latin square A with (i,])
entry a;;, 0 <i,j<n—1, we shall interpret a;; to be man i’s rank of woman j, and
n - 1 — a;; to be woman j’s rank of man i, where O is the best rank and n — 1 is the
worst rank. A matching on A can be described by a sequence Xo, X, .-, X,- 1, where
X; denotes the number selected in column j. To avoid polygamy, no two selected
numbers may lie in the same row. If X; = a;;, we say a;; is the selected cell of column
j (as well as the selected cell of row i). Alternatively, a matching can also be described
by a sequence X°, ..., X" "', the numbers selected for each row. For example, the
matching presented in Fig. 1 (described by column sequence 2,1,4,3,2,2 and row
sequence 4,2,3,2, 1,2) is unstable since man 0 prefers woman 1 over his assigned
partner (woman 2), and woman 1 prefers man 0 over her current partner (man 4).

Lemma 1. A matching on a latin square A with column selections X g, ..., X, and row
selections X°,...,X""' is unstable if and only if X'>a;>X; for some I,
je{0, ....,n—1}

Proof. By our interpretation of 4, X' > a;; > X;means that man i prefers woman j to
his assigned partner, and woman j prefers man i to her assigned partner. [

Lemma 2. A matching on A is unstable if and only if X' < a;; < X; for some i,
je{0, ...,n—1}.

Proof. By the previous lemma, it suffices to show that X* < a;; < X; if and only if
there exist k,1€ {0, ...,n — 1} satisfying X* > a,, > X,. Suppose that X* < a;; < X},
where a;; is equal to the number x. Now create a bipartite multigraph G with nodes
Fos ... sTu—1 and Co, ...,Cq— as follows. Label each node r, and ¢, with X* and X,
respectively. For each selected cell ay,, draw a red edge between r, and ¢,. For each
a, = x, draw a blue edge between r, and ¢,. In the resulting graph, each node has
exactly one red edge and one blue edge leaving it, with the red edges connecting nodes
with the same label. The connected components of this graph are alternating red-blue
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cycles. By assumption, there exists a blue edge, and not a red edge, from r; to ¢;.
Traverse the cycle beginning with this blue edge until we first encounter a node ¢; with
label X, < x. This node was entered by a blue edge from a node ry with label
X*> x > X,. Thus X* > a,; > X,. The converse can be proven in exactly the same
way. [

Combining our two lemmas we have the following stability condition:

Theorem 1. A matching on A is stable if and only if there do not exist
i,je{0, ...,n — 1} such that X* > a;; > X; or Xi<ay;<X;

Consequently, whereas instances of the general stable marriage problem can have
as few as one stable matching, size n latin marriage problems must possess at least
n stable matchings, namely the constant matchings where every man receives his mth
choice for some m. :

In fact, the matrix S, defined to have (i,j) entry s;; = (i +j)modn achieves this
minimum.

Lemma 3. S, has only n stable matchings, the constant ones.

Proof. Suppose to the contrary that X, ... _X,., is a non-constant stable matching
on S, Let m=min{Xo, o, Xu—1} <n—1. Then there exists j such that
Xj=s;= mand X;,; # m(where X, is defined to be Xo). Now §;, j+q =m + 1isin
the same row as selected cell s;; and therefore cannot be selected in column j + 1.
Thus, X;¢;>m+ 1. But this produces a stability ~ violation since
Xi=m<m+1=s5j+1<Xjr1- O

3. DS, and valid sequences

We now introduce DS,, a 2n x 2n latin square possessing many stable matchings.
DS, is built up from S, as follows. For 0<i,j<n—1,wedefine a;; = Gisn, j+n = 2s;;.
The other quadrants are defined by the wvertical reflection relation
aij + @i 20—y -j=2n— L. Fig. 1 contains an example of DS3. Algebraically, the (i, ])
entry of DS, is equal to

. 2(i + j)mod 2n f0<i,j<n—1or n<i,j<2n -1,
7 12(j — i) + 1mod 2n  otherwise.

It is easy to see that DS, is indeed a latin square, where opposite quadrants
are identical and have elements of the same parity. Furthermore, for j#0
or n, a;; = (a;, j-, + 2)mod 2n. Also a;o = (ai0—1 + 2)mod 2n and
a;, = (@;_2n 1 + 2)mod 2n.
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The remaining crucial property of DS, that we exploit follows immediately from our
algebraic description, and is called the rectangle property:

Lemma 4. If(i,j)and (k, 1) are in opposite quadrants of DS, and a;; = ay, then a; = ay;.

It may seem unusual to base a stable marriage problem construction of size 2n on
a latin marriage problem of size n with the minimum number of stable matchings.
Nevertheless, Converse [ 1] empirically demonstrates that this construction outper-
forms other seemingly more natural constructions.

To characterize and count the stable matchings of DS,, we define a sequence of
numbers X, .., X to be a valid sequenceifforj =0, ... .k —1,0< X, < X;+ L

Lemma 5. If X, ...,X.,_1 is a stable matching for DS,, then the sequences
Xo. X1, o Xn . Xoand X,. Xoi1s oo s X2u 1, X, are valid sequences.

Proof. Forj#n—1,2n — LLif X;=a;; = X then Xjpn#Fajoy=X;+ 2, provided
that X;<2n—3. (If X;>2n—2, then X;,, < X;+ 1 is automatic)) Further, if
X;.1 > X; + 2 then X' = a;; < a; j,; < X4, violates the stability condition. Hence,
Xjs1 <X;+ L In the same way, it can be shown that X, < X, 1 +1 and
X, €< X5+ 1L O

The next theorem states that if we can select cells from the first n columns in a valid
way, then there is exactly one way to select cells from the remaining n columns to
produce a stable matching.

Theorem 2. For every valid sequence Xo, X1, -y Xpy—1. X, where 0 < X; <2n -1
for all j, there exists exactly one stable matching Xo, ... . X 34— in DS,

Proof (By induction on ):;T;Gl X ;). First we prove the theorem for our base case where
X;=0forj=0,..,n—-1Thus Xq=0= X for somei<n— 1. Hencea;=1for
some [=n Hence, X,#1. If X,>1 then we have an instability
Xi=0<1=a;< X,. Therefore X, must be 0. Each subsequent X; =0,j<n — I
forces a different X, = 0, [ = n. Hence the only stable matching whose first n terms are
0 is the constant matching.

Next we observe that for any valid sequence, not all zero, there exists at least one
clement in the sequence (any maximum one, for instance) that we can diminish by one
and still have a valid sequence. In this way, we can construct a “continuous” path of
valid sequences from any given valid sequence to the zero sequence. Inductively,
suppose there exists a unique stable matching M associated with the valid sequence
Xo. X4, ... X, 1, Xo. Suppose further that changing X; from m to m + 1 yields
a new valid sequence. We shall prove that there exists a unique stable matching M’
associated with the new valid sequence.
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Since this is a legal change, it must be true that X; , =m, for jz1.(Ifj=0,
X, = m.) Now suppose that a;; = m, and a; = m + 1. Now in our stable matching
M. we must have X* <m since X* #m + 1 and if X*= m + 1 we would have an
instability X;=m<m+1=a;< X* In fact we must have X*=m For
X*#m—1=a,;-,since X;_, = m. Further, if X¥ < m — 1, then we would have an
instability X* < a,; 1 < Xj-1. Thus, X* = m = a,, for some column [ > n. Since
a;;=m=ag, we have by our rectangle property that a; = a;=m + 1. Thus by
selecting X; =m + 1 = X*and X; = m + 1 = X' we have a matching M" on DS, that
is consistent with the new valid sequence.

We claim that this new matching must also be stable. For suppose, to the contrary,
that an instability was caused by a,,. Then x must equal i or k or y must equal j or
I (otherwise this instability would exist in the previous matching). Since a,, has m + 1
selected in its row or column, ay, # m + 1. Also, ax, # m. since by our construction @,y
would have m + 1 selected in its row and column and thus not cause an instability.
But since a,, is not equal to mor m + 1, any instability involving a,, caused by its row
or column selection being equal to m + 1 would have existed in the previous matching
when that sclection was m, contradicting the stability of the previous matching. Hence
the new matching is also stable. )

As for uniqueness, if two stable matchings are consistent with our new sequence,
then arguing as before, legally changing X; from m + 1 to m necessarily implies that
X, = m + 1 in both matchings, and by the induction hypothesis, when X ; and X, are
reassigned m, both matchings are the same. Hence the two matchings must have been
the same to begin with. [

Corollary 1. The number of stable matchings in DS, is equal to the number of valid
sequence X, ..., X, where X,=Xoand 0 < X; < 2n - 1 jor all j.

4, Counting valid sequences

Lemma 6. For any integer 0 < k <2n— 1, the number of valid sequences Xg, ..., Xu
where X, = Xo=k and 0< X;<2n—1 for all j is equal to the number of valid
sequences Yo, ..., Y, where Y, = Yo = m—1—kand0<Y;<2n-—1forallj.

Proof. Defining Y; =2n—1 - X@a-1-j for all j gives us a valid sequence for the
desired one to one correspondence. []

Note that in order for a sequence to be valid we must have X; < Xo + j for all j.
Hence if X, <n — 1 the condition 0 < X; <2n — 1 is automatically satisfied since
our sequences have length n.

Thus if we define I(2n) to be the number of stable matchings of DS,, and for
0<k<n—1, hin,k) to be the number of valid sequences Xo, ... Xn where
X, = Xo =k, we have
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Corollary 2.

n—1
12n) =2 Y h(n, k).
k=0

For any valid sequence Xo, ...,X, with X, = X, =k if we define | —uy;
=X;—X; 1, j=1,...,n, we obtain the following ecquivalent counting
problem.

Lemma 7. h(n, k) also counts the number of non-negative integer solutions to
Z?::L u; = n, with the restriction that for j=1, ... ,n, ¥!_ u; <k +j.

We can interpret uy, ..., u, as unique instructions to a random walk from (0, 0) to
(2n—1, 1) (ie, a sequence (0, Yy),(L,Y,),...,2n—1, Y,, ;) with Y,=0,
Yy,o1=1,and |Y; — Y; ;| =1 for all j) which takes n steps up and n — 1 steps
down, where for j=1, ...,n — 1, u; denotes the number of consecutive up steps
preceding the jth down step. u, is the number of up steps following the last down step.
The inequality constraint, rewritten as Y _ (Ui — (j — 1) < k + 1, eliminates precisely
those random walks with Y; = k + 2 for some j.

We can enumerate the walks which satisfy Y; = k + 2 for some j by reflecting
along the line Y =k + 2 after the first point of intersection (that is, if ¥, <k + 2
for i<j, and Y;=k+ 2, then we replace Y, with 2(k +2)— Y, for |>j).
This reduces the problem to enumerating random walks from (0,0) to
(2n — 1, 2k + 3) with n + 1 + k steps up and n — 2 — k steps down. In summary, we
have

Lemma 8.

2n—1 2n -1
h(n’k):_(.:—l)_(n fz_k).

We note that when k=0, h(nk) simplifies to (1/(n+ 1))(3"), the nth
Catalan number. In fact it was the presence of these numbers appearing in con-
structions of DS, that encouraged us to believe that a closed form for I(2n)
existed. In fact, we originally used generating functions and determined h(n, k)
to be the x" «coefficient of (1 —x*"*(C(x))**'*)/(1 —x(C(x))?) where
C(x) = (1 — /1 —4x)/2x is the Catalan number generating function. Finally, we
prove

Theorem 3. I1(2n) = (n + 1)(¥") — 23"~ L,
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Proof.
n=t 2n —1 =l 2m—1
I[Zn}=2k;0h(n,k)=2n(n_])-—Zkéo(n_z_k)
2n 2= Ligapia ] 2n — 1 2n—1
) -[C)-(C)+0)]
={n+1}(2;)'—22”"- O

Using Stirling’s approximation, we obtain

1(2n) ~ 2*" I;E/H_{l_*' Vn) _ l-l
Jr 2§

Equivalently, when n is even,

ol 3
n(t +2/m 1

I(n) ~ 2"[,\”_ M o J
) Jm 2

and is bounded below by
1 - 2 1 1 1
ko U i [ iy
? L@V "(‘ ¥ )( 4n(1 + 36n)) 2]‘

5. Extensions

We note that [3] also suggests a procedure for creating stable marriage problems
when n is composite. Specifically, if n = nyn; then from a marriage problem of size n,
with x, stable matchings and a marriage problem of size n, with x, stable matchings,
they create two marriage problems of size n, one with at least n, x}’ and the other with
at least n, X3' stable matchings. For example, starting with the best marriage problems
of size 2 and 3 (which happen to be latin marriage problems S, and S3), then by
appropriately “duplicating” S; and “triplicating” S,, this procedure gencrates two
latin marriage problems of size 6 with exactly 18 and 24 stable matchings, respectively.
Our construction is different, since DS3 produces 48 stable matchings.

In [1], Converse proposes a4 more sophisticated latin square construction when
the size of the problem is a multiple of 4, but not a multiple of 8. The matrix D25, has
4n rows and columns, divided into four quadrants. As before, if we denote the (i, )
entry of DS, and DS, by a; and aff’, respectively, we have for 0<i, j<2n,
a? = a\%,, ;120 = 2a;;, and when i or j exceeds 2n — 1, a? =@n—1)—aids-1-j
An analogous process is used to create marriage problems divisible by higher powers
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of two. Numerically (for matrices of even size n < 26) the more complicated construc-
tion possesses more stable matchings than simpler constructions of the same size (¢.g.,
if n is a multiple of 8, D*S, 5 has more stable matchings than D?S,,. which has more
stable matchings than DS,;). In fact, when n is a power of two, this procedure
produces the same stable marriage problem as the one in [4] reported in [3] to
possess at least (2.28Y"/(1 + \/3] stable matchings. We refrain from conjecturing that
our constructions produce the maximum number of stable matchings since our size 26
construction DS, has fewer stable matchings than D3S,, our size 24 construction
which can be extended to a size 26 construction with the same number of stable
matchings.
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