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Assume the payoffs of a matrix game are concave in the index of the maximizing player. 
That player is shown to have an optimal strategy which uses at most two consecutive 
pure strategies, identifiable through approximate solution of a related continuous game. 
Generalizations are given, and the results are applied to a motivating hidden-target model 
due to Shapley. O 1994 John Wiley & Sons, Inc. 

1. INTRODUCTION 

Initially, consider a (1 + m) x 2 matrix game A = [a(r, j ) ~  whose rows are indexed 
by the integers r E (0 ,  1, . . . , m), and suppose that for each j E (1 ,  2) the function 
a(r,  j) is concave in r; i.e., 

The kernel theory of extreme optimal strategies for matrix games tells us that Player 1 
(the row player) has an optimal strategy which uses at most two of his pure strategies. 
It is reasonable to hope, however, that the further assumption (1) of concavity might 
be useful in determining which two optimal strategies are involved. 

To be specific, suppose that for j E (1, 2) the functions a(r,  j) have natural extensions 
b(r ,  j) as continuous functions of a continuous variable r ,  concave over the interval [0 ,  
m]. F o r 0  s x  I 1 a n d 0  r u r 1, set 

Then Mb can be regarded as the payoff function of a continuous game G b  on the (unit) 
square. Since M,(x, u) is concave in x for each value of u,  game G b  has a pure optimal 
strategy xb for Player 1 .  We now perform the rescaling rb = mxb, and define the integer 
pb = [r,] .  It is plausible to expect that if r, is integer (i.e., r, = p,), then r, is also an 
optimal pure strategy for the original matrix game, while if rb is noninteger, then in the 
matrix game Player 1 has an optimal strategy which mixes only the pure strategies p, 
and p, + 1 .  

If this expectation is correct, then the continuous game G b  might be solved, at least 
to sufficient accuracy to determine p,; this would identify a 2 x 2 subgame of A ,  involving 
rows p,, and p, + 1 ,  whose solution would yield a solution of A. For smooth functions 
b ( . ,  j), the solution process for G b  is likely to be quasianalytical (i.e., calculus based); 
such a technique is thus especially valuable when the original data a(r ,  j) involve pa- 
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rameters whose role in the optimal strategies is to be elucidated, so that a purely nu- 
merical approach is undesirable. And even if no effort to solve Gb is made, the infor- 
mation that Player 1 has in A an optimal strategy which mixes at most two consecutive 
pure strategies would drastically reduce the number of 2 x 2 subgames of A to be 
considered. 

The procedure described in the last paragraph's first sentence was in fact followed 
(without proof) in an analysis, given by Shapley [10] and reported by Dresher [ I ] .  of 
an interesting hidden target model. The present work was motivated by desire to pin 
down explicitly the logic of this plausible analysis. In the next section we develop that 
logic precisely, for situations considerably more general than 2-column matrix games. 
In the final section, we apply the results to a reconsideration of the hidden-target model. 
A more demanding utilization, of both-player versions of our results to solve an N-card 
variant of the classical [6, p. 1011 card game Le Her. will be reported separately to 
preserve brevity here. We hope and expect that these results will prove applicable to a 
number of other matrix-game models. 

2. ANALYSIS 

Instead of passing at once to the most general situation to be considered, we begin 
with a (1 + m) x n matrix game A = [a(r, j)] with rows indexed by r E I,, = (0, 1, 
. . . , m}. Assume that for each column index j E (1, 2, . . . , n} the function a(r ,  j) 
obeys the condition (1) of concavity in r. Further, assume as before that for each j .  b(r, 
j) is a continuous concave function defined on the continuous interval [0, m], which 
interpolates a(r,  j) at the integer points of that interval. 

Let Y be the simplex of n-component mixed strategies y = (I.,. . . . , y,,) for Player 
2 in game A .  Then in analogy with (2), we can define a function Mb: [0, 11 x Y + R 
by 

and regard Mb as the payoff function of a two-person zero-sum game G h  = ([O, 11. Y. 
,VI,) .  Since M,(s, y )  is concave in x for fixed y and is convex (indeed, linear) in y for 
fixed s, we can invoke an appropriately general minimax theorem (e.g., Theorem l(ii) 
of Fan [2]) to assert that Gb possesses pure optimal strategies (xb. yh) for both players. 
As before, let rh  = mx,, and p,  = [rhj. Then we have the following easy first result. 

THEOREM 1: If rb  is integral then in the matrix game A ,  rb is a pure optimal 
strategy for Player 1 and yh is an optimal strategy for Player 2. 

PROOF: With the notation 

it suffices to show that 
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for all (r, j). With e, denoting the jth n-dimensional unit vector, these conditions are 
equivalent via (3) to 

for all (r, j) (here r is discrete), which is true since (xb, yb) is a saddle point of game 
Gb. 

To extend the analysis to cover the possibility of nonintegral rb we introduce, in addition 
to the given general concave interpolators b(r, j) of the data a(r, j), the piecewise-linear 
interpolators of these data. Specifically, for each j let A(r, j) be the function defined on 
[0, m] which interpolates linearly between the successive data points (i, a(i, j)) and 
(i + 1, a(i + 1, j)) for i E (0, 1, . . . , m - 1). These functions are continuous and 
concave. They define a continuous game GA, which like Gb has at least one saddle point: 
(x,, y,). Analogous to rb and pb, we define r, = mx, and p, and p, = [r,]. 

The essential device in the following analysis is a reduction from the general case Gb 
to the particular case GA. For clarity, we therefore emphasize that this reduction is proof 
theoretic rather than algorithmic; we would not expect the game GA to make an explicit 
appearance when applying this article's ideas to the solution of a matrix game A.  

THEOREM 2B: In the matrix game A, Player 1 has an optimal strategy which mixes 
only pure strategies [rb] and lrb]. 

THEOREM 2L: If r, is noninteger, then in the matrix game A Player 1 has an 
optimal strategy mixing pure strategies [r,] = p, and [rAl = p, + 1 with respective 
weights p, + 1 - r, and r, - p,. Player 2 has y, as optimal strategy in A, and GA and 
A have the same value. 

PROOF (of Theorem 2B): We show that Theorem 2B follows from a special case: 
The first assertion of Theorem 2L. For this purpose, first note that the postulated prop- 
erties of b and A imply that for each j, b(r, j) r A(r, j) holds for each subinterval [i, i 
+ 11 of [0, m] and hence on the entire interval [0, m], with equality at the points of I,,,. 
It follows that the functions B, L: [0, m] -, R defined by 

B(r) = min b(r, j), L(r) = min A(r, j) 
i i 

satisfy B r L, with equality at the points of I,. The sets of pure optimal strategies for 
Player 1, in the respective games Gb and GA, can be characterized as arg max(B) and 
arg max(L). Since B and L are continuous concave functions, their sets of maximizers 
are nonempty (though possibly degenerate) closed subintervals of [0, m]. In particular, 
we write 

and define the open interval 

i.e., the left endpoint of JA is c, - 1 or lcl] according as c, is integer or not, and similarly 
for the right endpoint (d, + 1 or Id,]). 
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The desired relation between the pure optimal strategies of Gb and those of G A  is 
given by 

arg max(B) C JA n [0, m]. (4) 

To prove it, we will show that 

by symmetry it will follow that arg max(B) C [0, [d,] + I ) ,  which together with (5) 
implies (4). 

The proof of (5) involves three cases. If c, e I,, then [c,] e arg max(L), so that 

from B(cA) > B([c,]) and the concavity of B it follows that B(r) < B(c,) for all r E [O, 
[c,j], verifying ( 5 )  in this case. If c, E I, - (0) then because c, - 1 $ arg max(L), we 
have 

which by the concavity of B implies B(r) < B(c,) for all r E [0, c, - 11, again verifying 
(5). And if c, = 0, (5) is trivially true. 

With (4) now verified, we turn to the conclusion of the Theorem (2B). If rb is integral, 
this follows from Theorem 1, so assume rb noninteger with pb = [rb]. By (4), rb E 
([c,] - 1, IdA] + 1). Since rb > [CAI - 1 implies c, 5 [rbl, and rb < [d,] + 1 implies 
lrbl r d,, it follows that the intervals [[rb], [rbl] and [c,, d,] must intersect, i.e., that 
interval [pb, pb + 11 contains at least one r, E arg max(L). The result now follows from 
Theorem 2L (or, if r, is integer, from Theorem 1 applied to G,). H 

The last theorem justifies the procedure described in the introduction, extended from 
two-row matrix games to general matrix games with the postulated concavity property. 
From either it or Theorem 2L (whose proof is left for last), we have the following. 

COROLLARY: In matrix game A, under the concavity assumption (I),  Player 1 
has an optimal strategy which is a mixture of at most two consecutive pure strategies. 

A consequence of the corollary is that, even without solving any continuous game, 
an optimal strategy for Player 1 in A can be determined after solving m 2 x n games, 
each involving a pair of consecutive rows of the original matrix. Solving a 2 x n game 
involves maximizing the minimum of n linear functions over an interval, and it is ap- 
propriate to note that such a minimum can be determined in O(n log n) time, as is shown 
in the Appendix of Megiddo [7]. 

The previous results can be generalized beyond the class of matrix games. As before, 
let I ,  = (0, 1 ,  . . . , m), and now let Y be any compact convex finite-dimensional 
polyhedron. Consider a game G, = (I,, Y, a)  where a: I, x Y -t R has a(r, y) concave 
in r for each y E Y, and continuous and convex in y for each r E I,. Also consider any 
continuous function b: [0, m] x Y -, R such that for each r E I,, b(r, y) is convex in 
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y, while for each y E Y, b(r, y) is concave in r E [0, m] and interpolates a(r, y) for all 
r E I,. [Note that one choice for b is the piecewise-linear interpolator A(r, y).] Then 
with (3) generalized to Mb(x, y) = b(mx7 y), and y replacing j and ej at appropriate 
points, the preceding arguments still go through, and so the conclusions of Theorems 1 
and 2 and the Corollary still remain valid for the Player 1 mixed extension of the game 
Go. Further lines of generalization are sketched in the appendix. 

Finally, we provide a proof. 

PROOF (of Theorem 2L): With the notation 

it suffices to show that 

for all (r, j). Using the identity 

specialized to b = A, and the piecewise linearity in r of each A(r, j), we have 

and so (3) yields, for all y E Y, 

This implies that v = MA(xA, y,). It also shows that (6) is equivalent to 

for all (r, j), which is true since (xA, yA) is a saddle-point of game GA. 

An alternative treatment of Theorem 2L has been given by J.A. Filar (informal 
communication, 1984) and Howard [ 5 ] .  

3. EXAMPLE: THE HIDDEN TARGET 

We now revert to the motivating hidden-target model mentioned in the introduction. 
It involves two aircraft, A l  and A2, flying in a formation such that attacking A,  requires 
the attacker to cross the field of fire of the protector A2. Player 2 has chosen which one 
of these two aircraft is to carry the bomb, i.e., the hidden target; he therefore has two 
pure strategies. 

Player 1,  not knowing whether A,  or A2 is the bomb carrier, directs a sequence of 
attacks on the formation by m fighters, one attack per fighter. Each fighter attacks either 
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A, or A,; if it attacks A2, its probability of success is P E (0, I) ,  but if it attacks A ,  
while the protector A2 still survives, then this probability is only y E (0, P). (Once A2 
is destroyed, an attack on A l  has probability P of success.) Both players know the values 
of m, p, and y. 

A pure strategy for Player 1 is thus an m-letter word in the alphabet (1, 2); the ith 
letter of the word is k if the strategy directs the ith fighter to attack Ak should both 
targets still survive (otherwise it attacks the single survivor, if any). The payoff to Player 
1 in this zero-sum game is his probability of destroying the bomb carrier. 

Player 1 has 2m pure strategies. It is not difficult to check, however, that as asserted 
in Dresher [I ,  p. 701, any such strategy calling for precisely r attacks on A, is dominated 
by the strategy which directs the first r attacks to A, and the remaining m - r to A, .  
Thus the payoff matrix can be taken to have 1 + m rows, the rth row for r E I, 
corresponding to choosing r as the number of preplanned attacks on A, which precede 
a switch to A,  as the preplanned target for the balance of the engagement. 

Simple combinatorial-probability arguments and geometric-progression summations 
show that the entries of row r of the payoff matrix are given, in terms of R = (1 - y)l 
(1 - P) ' 1, by 

The formulas in (7) and (8) also make sense for continuous r E [0, m], providing 
natural continuous extensions b(r, j) of a(r, j) to this interval for j E (1, 2). Calculations 
of second derivatives show these functions to be strictly concave. The cited analyses of 
this model now argue as in the introduction, concluding that the exact solution is to be 
found by solving the 2 x 2 subgame on rows pb and pb + 1, where pb = ITb], rb = rnx,, 
and xb is the pure optimal strategy (unique, thanks to strict concavity) for Player 1 in 
the derived game Gb on the square. Theorem 2B in the last section provides full justi- 
fication for that argument. 

To reinforce and illustrate this article's general point that the solution process for Gb 
would not typically be purely numerical, we exhumeladapt from [lo] some specifics, for 
this particular model, that are omitted in the more accessible [I]. It will be convenient 
to work with the rectangle [0, m] x [0, 11 instead of the unit square, so that (2) is 
replaced by 

We first seek a saddle point (r,, ub) of Gb for which ub E (0, 1). The endpoints (0, 
m) of [0, m] can be eliminated, as possible choices for r,, as follows. The pair (r, u) = 
(m, 0) is ruled out as a saddle point because b(m, 2) > b(m, I) ,  the pair (m, 1) because 
b(r, 1) is decreasing at r = m. The pair (r, u) = (0, 1) is ruled out as a saddle point 
because b(0, 1) > b(0, 2), the pair (0, 0) because b(r, 2) is increasing in r. 

This last reason also rules out the existence of saddle points (r, u) with 0 < r < m 
and u = 0. So on the horizontal boundaries of the rectangle, the only remaining pos- 
sibilities are points (r, 1) with 0 < r < m. Such a saddle point would have to satisfy 
db(r, 1)lar = 0, or equivalently r must have the value 

r* = m - [log{Pl(l - P)) - log log Rlllog R. (10) 
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Conversely (a nicety of logic omitted from [lo] and [I]), if 0 < r* < m and also b(r*, 
1) 5 b(r*, 2), then by the concavity in r and linearity in u of (9), (r*, 1) is indeed 
a saddle point of Gb, and we can set rb = r*. Otherwise, the unique rb must belong 
to a saddle point (rb, ub) with 0 < ub < 1, and must therefore satisfy the condition 
b(r, 1) = b(r, 2). This condition yields the transcendental equation 

where the final ( - 1) matches Eq. (1 1) of [lo], but is missing from the corresponding 
equation in [I]. The difference of the two sides of (11) is continuous and monotone over 
[0, m], with different signs at the endpoints. Thus (11) has a unique root r*, which under 
the stated circumstances must give the desired rb. When the protector A2 is relatively 
ineffective so that R - 1 = p(p  - y)l(l  - P) << 1, then as noted in [lo], keeping 
only the first two terms of the binomial expansion (1 + (R - l)),-' on the right in 
( l l ) ,  suggests the approximate solution 

r = myl(p + y). 

APPENDIX: POSSIBLE FURTHER GENERALIZATIONS 

Further generalizations of Theorem 2's Corollary might be sought in three directions. 
One is to weaken the concavity hypothesis (I), presumably weakening the at most two 
in the corollary's conclusion. For a continuous analog, see Glicksberg [3]. A second is 
to permit Player 1 a pure-strategy space more general than I,; then the consecutive in 
the corollary's statement would be replaced by some more general relation. The third 
is to permit Player 2 a pure-strategy space Y still more general than in the second 
paragraph after the Corollary. 

Here we will pursue only the third of these directions, and even that rather briefly. 
Namely, suppose first that Y is a compact convex subset of some Hausdorff linear 
topological space. Then the previously cited minimax theorem of Fan [2] is general 
enough that the assertions after the corollary still follow. For possibilities of weakening 
the compactness assumption on Y, see Ha [4]. Alternatively, to drop the convexity 
assumption, let us now assume of the original game G, = (I,, Y, a) only that Y is a 
compact metric space, that a(r, y) is concave in r for each y E Y, and that a(r, y) is 
continuous in y for each r E I,. Assume that function b: [0, m] x Y + R is for each 
r E [0, m] continuous in y,  and for each y E Y is continuous and concave in r and 
interpolates a(r, y) at all r E I,. As before, define Mb(x, y) = b ( m ,  y) and the game 
Gb = ([O, 11, Y, b). Consider any a-f ield9of subsets of Y, including the individual 
points of Y (pure strategies for Player 2), such that 

exists for every r E [0, m] and every member p of the set Y* of probability distributions 
over (Y, g); thus G,* = ([0, m], Y*, b*) is a Player 2 mixed extension of Gb. Suppose 
further that Y* admits a topology under which it is compact Hausdorff, and such that 
b* is continuous in the second variable (it is automatically continuous in the first variable). 
Then the previously cited minimax theorem will apply to G,*, and with sums replaced 
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by integrals over Y and yb replaced by an optimal pb E Y*, the previous arguments 
carry over to yield the conclusions of Theorems 1 and 2 and of the corollary for the two- 
player mixed extension of G,. Since that extension depends o n 3  (i.e., on what con- 
stitutes a "mixed strategy" for Player 2), it would be desirable i f 9 d i d  not depend on 
which concave extension b of the original payoff function a was chosen. All this can be 
accomplished in a natural way by choosing9to consist of the Bore1 subsets of Y, and 
by employing the weak topology on the resulting set Y* of mixed strategies; see Section 
11.6, especially Theorem 6.4, of Parthasarathy [8]. In closing this technical digression, 
we remark only (a) that the cited minimax theorem may permit relaxation of the con- 
tinuity assumptions to upper semicontinuity in r and lower semicontinuity in y,  and (b) 
that still further generalization might be obtainable using even more general minimax . 
theorems such as those in Chapter 5 of Parthasarathy and Raghavan [9]. 
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