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BENJAMIN and QUIMV: Pmofs that Really Count 

Lucas Numbers 
Close companions to the Fibonacci numbers, are the Lucas numbers 2, 1, 3, 4, 7, 11, 18, 29, 47, 
76, 123,. . . , where each term is the sum of the previous two terms but the initial conditions are 
different. As we shall see Lucas numbers operate like Fibonacci numbers running in circles. 

Let us combinatorially define Ln to be the number of ways to tile a circular board of length n 
with (slightly curved) squares and dominoes. For example L4 = 7 as illustrated in Figure 9.11. 
Clearly there are more ways to tile a circular n-board than a straight n-board since it is now 
possible for a single domino to cover cells n and 1. We define an n-bracelet to be a tiling of 
a circular n-board. A bracelet is out-o$phase when a single domino covers cells n and 1 and 
in-phase otherwise. In Figure 9.11, we see that there are 5 in-phase 4-bracelets and 2 out-of-phase 
4-bracelets. Figure 9.12 illustrates that L1 = 1, L2 = 3, and L3 = 4. Notice that there are two 
ways to create a 2-bracelet with a single domino - either in-phase or out-of-phase. 

Figure 9.1 1 .  A circular Cboard and its 7 bracelets. The fust 5 bracelets are in-phase and the last 2 are 
out-of-phase. 

Figure 9.12.  There are one 1-bracelets, three 2-bracelets, and four 3-bracek. 
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From our initial data, the number of n-bracelets looks like the Lucas sequence. To prove that 
they continue to grow like the Lucas sequence, we must argue that for n 2 3, 

To see this we simply consider the last tile of the bracelet. We define the first tile to be the tile 
that covers cell 1, which could either be a square, a domino covering cells 1 and 2, or a domino 
covering cells n and 1. The second tile is the next tile in the clockwise direction, and so on. The 
last tile is the one that precedes the first tile. Since it is the first tile, not the last, that determines 
the phase of the tiling, there are LnW1 n-bracelets that end with a square and Ln-2 n-bracelets 
that end with a domino. By removing the last tile, we produce smaller bracelets. 

To make the recurrence valid for n = 2, we define Lo = 2, and interpret this to mean that there 
are two empty tilings of the circular 0-board, an in-phase 0-bracelet and an out-of-phase 0-bracelet. 
Thus for n > 0, we have a combinatorial interpretation of the nth Lucas number: 

L, counts the number of ways to tile a circular board of length n with squares and dominoes. 

As one might expect, there are many identities with Lucas numbers that resemble Fibonacci 
identities. In addition, there are many beautiful identities where Lucas and Fibonacci numbers 
interact. 

Identity 4 Ln = fn  + fn-2. 

Question: How many tilings of a circular n-board exist? 

Answer 1: By definition, there are L, n-bracelets. 

Answer 2: Consider whether the tiling is in-phase or out-of-phase. Since an in-phase tiling 
can be straightened into an n-tiling, there are fn in-phase bracelets. Likewise, an out-of-phase 
n-bracelet must have a single domino covering cells n and 1. Cells 2 through n - 1 can then 
be covered as a straight (n - 2)-tiling in fn-2 ways. Hence the total number of n-bracelets 
is fn  + fn-2. See Figure 9.13. 

In phase Out of phase 

L A-2 

Figure 9.13. Every circular n-bracelet can be reduced to an n-tiling or an ( n  - 2)-tiling, depending on its 
phase. 
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Case I: breakable at n 

4 

Case II: not breakable at n 

Figure 9.14. A (2n - 1)-tiling can be converted to an n-bracelet and (n - 1)-tiling. In our correspondence, 
the n-bracelet is in-phase if and only if the (2n - 1)-tiling is breakable at cell n. 

Identity 5 = L, fnPl .  

Set 1: Tilings of a (2n - 1)-board. This set has size 

Set 2: Bracelet-tiling pairs (B, T) where the bracelet has length n and the tiling has length 
n - 1. This set has size L, fn-1. 

Correspondence: Given a (2n - 1)-board T*, there are 2 cases to consider, as illustrated in 
Figure 9.14. 

Case I: If T* is breakable at cell n,  then glue the right side of cell n to the left side of cell 1 
to create an in-phase n-bracelet B, and cells n + 1 through 2n - 1 form an (n - 1)-tiling T. 

Case 11: If T* is unbreakable at cell n, then cells n and n + 1 are covered by a domino which 
we denote by d. Cells 1 through n - 1 become an (n  - 1)-tiling T and cells n through 2n - 1 
are used to create an out-of-phase n-bracelet with d as its first tile. 

This correspondence is easily reversed since the phase of the n-bracelet indicates whether 
Case I or Case 11 is invoked. So the correspondence is a bijection and Set 1 and Set 2 have 
the same size. 

The reader may wish to prove these Lucas identities combinatorially. 
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Gibonacci Numbers 
Gibonacci number is shorthand for generalized Fibonacci number. We say a sequence of nonneg- 
ative integers Go, GI ,  G2, . . . is a Gibonacci sequence if for all n 2 2, 

Such sequences are completely determined by Go and GI. For instance, the Lucas sequence 
is the Gibonacci sequence beginning with Go = 2 and G1 = 1. To see how to interpret these 
numbers combinatorially, we take a second look at Lucas numbers. From the previous section we 
know that L, counts the number of ways to tile an n-bracelet with squares and dominoes. Notice 
that we can "straighten out" an n-bracelet, by writing it as an n-tiling starting with the first tile 
(the tile covering cell 1) with one caveat. The caveat is that if the first tile is a domino, we need 
to indicate whether it is an in-phase or out-of-phase domino. For example, the seven 4-bracelets 
of Figure 9.11 have been straightened out in phased tilings in Figure 9.15. In summary, Ln counts 
the number ofphased n-tilings where an initial domino has 2 possible phases and an initial square 
has 1 possible phase. The next theorem should then come as no surprise. 

OUT OUT 

Figure 9.1 5. The seven 4-bracelets can be straightened out to become "phased" Ctilings. 

Theorem Let Go, GI, G2, . . . be a Gibonacci sequence with nonnegative integer terms. For n 2 1, 
Gn counts the number of n-tilings, where the initial tile is assigned a phase. There are Go choices 
for a domino phase, and GI choices for a square phase. 

Proof: Let a, denote the number of phased n-tilings with Go and GI phases for initial dominoes 
and squares, respectively. Clearly, a1 = GI. A phased 2-tiling consists of either a phased domino 
(Go choices) or a phased square followed by an unphased square (GI choices). Hence a2 = 
Go + GI = Ga. To see that a, grows l~ke Gibonacci numbers we consider the last tile, which 
immediately gives us a, = an-l + an-2. 

In order for our theorem to be valid when n = 0, we combinatorially define the number of 
phased 0-tilings to be Go, the number of domino phases. Using this combinatorial interpretation 
of G,, we observe that many identities become transparent. For instance, from the shape of the 
first tile of a phased tiling (see Figure 9.16), it immediately follows that 
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First tile a phased domino: 

u Jn-2 

First tile a phased square: 
p 3 2  3 n 

/ 

G1 

Figure 9.16. A phased n-tiling either begins with a phased domino or a phased square. 

Identity 6 G, = Go fn-2 + Glfn-l 

The next two identities are generalizations of Identities 1 and 2 respectively. 

Identity 7 EL=, Gk = Gn+2 - GI. 

Question: How many phased (n + 2)-tilings contain at least one domino? 

Answer 1: There are Gn+2 phased (n + 2)-tilings including the GI tilings consisting of only 
squares. So there are Gn+z - GI tilings with at least one domino. 

Answer 2: Consider the location of the last domino. For 0 5 k 5 n, there are GI, tilings 
where the last domino covers cells k + 1 and k + 2 as illustrated in Figure 9.17. Notice that 
when the last domino covers cells 1 and 2, it must have one of Go phases. So the argument 
is still valid. 

n-2 n-l n n+l n+2 

Figure 9.1 7. Here we consider the location of the last domino. 
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s breakable at m: 

~hased m+n tilings unbreakable at m: 

Figure 9.1 8. A phased (m + n)-tiling is either breakable or unbreakable at cell m. 

Identity 8 Gm+, = G, fn + Gm-l fn-l. 

Question: How many phased m + n tilings exist? 

Answer 1: By definition, there are G,+, such tilings. 

Answer 2: Consider whether or not the phased (m + n)-tiling is breakable at cell m. See 
Figure 9.18. The number of breakable tilings is G, fn since such a tiling consists of a phased 
m-tiling followed by a standard n-tiling. The number of unbreakable tilings is G,-l fn-1 
since such tilings contain a phased (m - 1)-tiling, followed by a domino covering cells m 
and m + 1, followed by a standard (n  - 1)-tiling. Altogether, there are G, fn + G,-l fnA1 

(m + n)-tilings. 

The next identity uses tail-swapping on phased tilings to create an almost one-to-one correspon- 
dence with a nontrivial error term. 

Identity 9 For 0 < m < n, Gn+, = GnLm + (-l)m-lGn-m. 

Set 1: The set of phased (n  + m)-tilings. This set has size Gn+,. 

Set 2: The set of ordered pairs (A, B), where A is a phased n-tiling, and B is an m-bracelet. 
This set has size GnLm. 

Correspondence: We create an almost one-to-one correspondence between these two sets. 
Let P be a phased (n + m)-tiling. If P is breakable at cell n, then we create a phased n-tiling 
A from the phased tiling of the first n cells of P. Using cells n + 1 through n + m create 
B,  an in-phase m-bracelet, as in Figure 9.19. If P is not breakable at cell n, then create the 
tiling pair of Figure 9.20, where the top tiling is the phased (n - 1)-tiling from cells 1 through 
n - 1 of P. The bottom tiling is an unphased (m + 1)-tiling, beginning with a domino, from 
cells n through n + m of P. Now perform a tail swap, if possible, to create a pair of tilings 
with sizes n and m, where the n-tiling is phased, and the m-tiling is unphased, but begins 
with a domino. These become a phased tiling and out-of-phase bracelet in the natural way. 

When is tail-swapping not possible? When m is even, then the (m + 1)-tiling must have 
at least one square, resulting in at least one fault. Thus when m is even, we can always 
tail-swap, but there are Gn-, unachievable tiling pairs where the bottom m-tiling consists 
of all dominoes and the phased n-tiling has only dominoes in cells n - m + 1 through n. 
See Figure 9.21. Thus when m is even, GnLm = G,+, + Gn-, as desired. By a similar 
argument, when m is odd, G,+, = GnLm + Gn-,. 
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Figure 9.19. A breakable phased ( n  + m)-tiling naturally becomes a phased n-tiling with an in-phase 
m-bracelet. 

, last fault 

length n-1 

1 
length ni' 1 

$ tailswap 

length n 

Figure 9.20. An unbreakable phased ( n  + m)-tiling becomes a phased n-tiling with an out-of-phase m- 
bracelet. 
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Figure 9.21. When m is even, these pairs are unachievable. 

As a consequence of Identities 7 and 9, we sum the first 4n + 2 terms of any Gibonacci sequence 
as 

4n+l 
C Gi = G4n+3 - GI = G ~ n + 2 L ~ n + l +  (-I)~"GI - GI = G2n+2L2ntl 
i=O 

leading to the following identity. 

Identity 10 

Our opening magic trick, Go + GI + . - 0  + G9 = 11 . Gs, is an application of this identity when 
n = 2. So it is no coincidence that the multiplier 11 is the fifth Lucas number. 

Once more, we challenge the reader to prove combinatorially the following Gibonacci identities. 
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Let Go, G1, G a t . .  . and Ho, HI,  Hz,. . . be Gibonacci sequences. Then for n, h, k 1 0, 

Combinatorial proofs of all the previously listed identities (and more) can be found in the references 
at the end of this paper or in our book [ 5 ] .  

Open Problems 
The techniques presented here are simple but powerful. Counting tilings enables us to visualize 
relationships between Fibonacci numbers and their generalizations. This approach facilitates a 
clearer understanding of existing identities and can be extended in a number of ways. By introducing 
colored tiles of various lengths, we can interpret sequences generated by linear recurrences with 
constant coefficients [I]. By allowing some of the squares of our tiling to be stacked up to a certain 
height, we can combinatorially interpret simple continued fractions [6]. By introducing an element 
of randomness, even the irrationally looking Binet formulas 

and 

can be rationalized [I ,  21. 
To indicate the power of our approach, the classic book Fibonacci & Lucas Numbers and 

the Golden Section by Steven Vajda [lo] contains 118 identities involving Fibonacci, Lucas, and 

i Gibonacci numbers. These identities are proved by a myriad of algebraic methods-induction, gen- 
erating functions, hyperbolic functions, to name a few. Although none are proved combinatorially 
in the book, we have used tiling to explain 91 of these identities-and counting! 

I We leave the reader with some of the more tantalizing identities which have thus far resisted 
combinatorial explanations. 

We have every confidence that these too will be combinatorially explained someday. You can count 
on it. 
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