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Proofs that Really Count:
The Magic of Fibonacci Numbers and More

Arthur T. Benjamin & Jennifer J. Quinn
Harvey Mudd College Occidental College

A Magic Trick

A mathemagician hands a sheet of paper as in Figure 9.1 to a volunteer and says, “Secretly write a
positive integer in Row 1 and another positive integer in Row 2. Next, add those numbers together
and put the sum in Row 3. Add Row 2 to Row 3 and place the answer in Row 4. Continue in this
fashion until numbers are in Rows 1 through 10. Now, using a calculator if you wish, add all the
numbers in Rows 1 through 10 together.” While the spectator is adding, the mathemagician glances
at the sheet of paper for just a second, then instantly reveals the total. “Now using a calculator,
divide the number in Row 10 by the number in Row 9, and announce the first three digits of your

S| DO =W DI

10
TOTAL

Figure 9.1. Enter positive integers in Rows 1 and 2. The number in each successive row is the sum of the
numbers in the previous two rows,
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T
Y
T+y
T+ 2y
2z + 3y
3z + dy
5x + 8y
8z + 13y
13z 4+ 21y

10 21z + 34y
TOTAL 55x + 88y

Ol =~1| ||| =

Figure 9.2. The sum of the 10 numbers is Row 7 times 11.

answer. What’s that you say? 1.61? Now turn over the paper and look what I have written.” The
back of the paper says “I predict the number 1.61”.

A direct explanation of this trick involves nothing more than high school algebra. For the first
part, observe in Figure 9.2 that if Row | contains z and Row 2 contains y then the total of Rows
1 through 10 will sum to 55z + 88y. As luck (or is it something more?) would have it, the number
in Row 7 is 5z + 8y. Consequently, the grand total is simply 11 times Row 7, and with practice,
even large numbers can be mentally multiplied by eleven.

As for the ratio, it’s all about adding fractions badly. For any two fractions § < & with
positive numerators and denominators, the quantity §T+§ is called the mediant (sometimes called
the freshman sum) and it’s easy to show that

a_ Py
b " b+d " d

Consequently, the ratio of (Row 10)/(Row 9) satisfies

21 21z 2lz+3dy 34y 34
LG8, oSt g ot 90 8
e 13 13z ~3z+2ly 21y 21

This magic trick is an application of some special properties of the Fibonacci numbers 1, 1,
2, 3, 5, 8, 13, 21, 34, 55, 89,..., where each number is the sum of the previous two. Their
many beautiful patterns are a constant source of amazement. For instance, the magic trick above
is assisted by the fact that the sum of the first » Fibonacci numbers is one less than the (n +2)nd

Fibonacci number. Here, we reveal interpretations of Fibonacci numbers and related sequences to
demystify their secrets—requiring nothing more than the ability to count.

Fibonacci Numbers

How many sequences of 1’s and 2’s sum to n? Let’s call the answer to this counting question f,.
For example, fy =5 since 4 can be created in the following 5 ways:

LETRIA T BR148 14841 245D 949
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1 2 3 4 5 6
1 11 111 1111 11111 | 111111
2 12 112 1112 11112
21 121 1121 11121
211 1211 11211
22 122 1122
2111 12111
212 1212
221 1221
21111
2112
2121
2211
222
fi=1]|fo=2|f3=3|fa=5[fs=8]|fe=13

Table 9.1. f. and the sequence of 1’s and 2’s summing to n forn = 1,2,...,6.

Table 9.1 illustrates the values of f,, for small n. The pattern is unmistakable; f,, begins like
the Fibonacci numbers. In fact, it will continue to grow like Fibonacci numbers, that is for n > 2,
fn satisfies

fn = fn—l —+ fn—‘Z-

To see this, we consider the first number in our sequence. If the first number is 1, the rest of the
sequence sums to n — 1, so there are f,,_; ways to complete the sequence. If the first number is
2, there are f, » ways to complete the sequence. Hence, f, = fr—1 + fn—2.

For our purposes, we prefer a more visual representation of f,. By considering the 1’s as
representing squares and the 2’s as representing dominoes, f, counts the number of ways to file a
board of length » with squares and dominoes. For simplicity, we call a length n board an n-board.
Thus f4 = 5 enumerates the tilings given in Figure 9.3.

Figure 9.3. All five square-domino tilings of the 4-board.

We let fo = 1 count the empty tiling of the 0-board. Thus for n > 0, we have a combinatorial
interpretation of the nth Fibonacci number:

fn counts the number of ways to tile a length n board with squares and dominoes.

This interpretation allows many Fibonacci identities to be proved by asking a counting question
and answering it in two different ways. Since both expressions are answers to the same question,
they must be equal. For example, the sum of consecutive Fibonacci numbers can be explained as
follows:

Identity 1 fo+ fi+fo+- -+ fn= frya —1

Question: How many tilings of an (n + 2)-board use at least one domino?

Answer 1: There are f, tilings of an (n+ 2)-board. Excluding the “all square” tiling gives
fa+2 — 1 tilings with at least one domino.
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1 2 3 4
1 2 3 4 n-2 n-1 n ntl nt2
2 3 4 n-2 n-1 n n+l nt2

L R -

1 2 3 4 n2 n-l1 n ntl pt2

Figure 9.4. To see that fo + fi + fa + -+ + fu = fa+2 — 1, tile an (n + 2)-board with squares and
dominoes and consider the location of the last domino.

Answer 2: Consider the location of the last domino. There are f;. tilings where the last
domino covers cells k£ + 1 and k + 2. This is because cells 1 through k can be tiled in fi
ways, cells k + 1 and k& + 2 must be covered by a domino, and cells k£ + 3 through n + 2
must be covered by squares. Hence the total number of tilings with at least one domino is
fo+ fi + fa+---+ fn. See Figure 9.4,

Since our logic is impeccable in both answers, they must be equal and the identity follows.

Many Fibonacci identities depend on the notion of breakability at a given cell. We say that a
tiling of an n-board is breakable at cell k, if the tiling can be broken into two tilings, one covering
cells 1 through & and the other covering cells k£ + 1 through n. On the other hand, we call a
tiling unbreakable at cell k if a domino occupies cells k and k + 1. For example, the tiling of
the 10-board in Figure 9.5 is breakable at cells 1,2, 3,5,7, 8, 10, and unbreakable at cells 4,6, 9.
Notice that the tiling of an n-board (henceforth abbreviated an n-tiling) is always breakable at cell
n. We apply these ideas to the next identity.

Identity 2 f,,4n = finfn + fin—1fn-1.

Question: How many tilings of an (m + n)-board exist?
Answer 1: There are fr,+r (m + n)-tilings.
Answer 2: Consider breakability at cell m.

An (m + n)-tiling that is breakable at cell m is created from an m-tiling followed by an
n-tiling. There are f,, f,, of these.

Figure 9.5. A 10-tiling that is breakable at cells 1, 2, 3, 5, 7, 8, 10 and unbreakable at cells 4, 6, 9.




BENJAMIN and QUINN: Proofs that Really Count

m+n tilings breakable at m:

87

1 2 m-1. m_ mtl mt2 m+n
m ]:'
m+n tilings unbreakable at m:
1 2 m-1. m mtl mi2 m+n
.)‘,:,_1 n-l

Figure 9.6. To prove ftn = finfn + fim—1fn—1 count (m -+ n)-tilings based on whether or not they are

breakable or unbreakable at m.

(n — 1)-tiling. There are f,,_, f,—1 of these.

altogether. See Figure 9.6.

An (m + n)-tiling that is unbreakable at cell 7 must contain a domino covering cells 7 and
m + 1. So the tiling is created from an (m — 1)-tiling followed by a domino followed by an

Since a tiling is either breakable or unbreakable at cell m, there are f,,, fr, + frn—1frn—1 tilings

Another combinatorial proof technique is to interpret both sides of an identity as sizes of two

different sets and then find a one-to-one correspondence between them. We apply this idea to the
next identity and we introduce the useful technique of ail swapping.

Consider the two 10-tilings offset as in Figure 9.7. The first one tiles cells 1 through 10; the
second one tiles cells 2 through 11. We say that there is a fault at cell i, 2 < i < 10, if both tilings
are breakable at cell <. We say there is a fault at cell 1 if the first tiling is breakable at cell 1. Put
another way, the pair of tilings has a fault at cell 7, 1 < ¢ < 10, if neither tiling has a domino
covering cells ¢ and ¢ + 1. The pair of tilings in Figure 9.7 has faults at cells 1, 2, 5, and 7. We
define the tail of a tiling to be the tiles that occur after its last fault. Observe that if we swap the
tails of Figure 9.7 we obtain the 11-tiling and the 9-tiling in Figure 9.8, and it has the same faults.

Looking at Identity 3, it may appear that the (—1)" term prevents us from proving it combina-

>

Figure 9.8. After tail-swapping, we have an 11-tiling and a 9-tiling with exactly the same faults.
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torially. Nonetheless, we will see that this term is merely the error term of an “almost™ one-to-one
correspondence.

Identity 3 f2 = foi1fa1 + (—1)"

Set 1: Tilings of two n-boards (a top board and a bottom board.) By definition, this set has
size f2.

Set 2: Tilings of an (n + 1)-board and an (n — 1)-board. This set has size f,11 fn—1.
Correspondence: First, suppose 7 is odd. Then the top and bottom board must each have at
least one square. Notice that a square in cell ¢ ensures that a fault must occur at cell i or cell
i— 1. Swapping the tails of the two n-tilings produces an (n + 1)-tiling and an (n — 1)-tiling
with the same tails. This produces a 1-to-1 correspondence between all pairs of n-tilings and
all tiling pairs of sizes n+ 1 and n — 1 that have faults. Is it possible for a tiling pair of sizes

n+1and n — 1 to be “fault free"? Yes, when all the dominoes are in “staggered formation”
as in Figure 9.9. Thus, when n is odd, f2 = fni1fu_1 — 1.

1 2 3 4 5 6 7 8 9 10

Figure 9.9. When n is odd, the only fault-free tiling pair.

Similarly, when n is even, tail swapping creates a 1-to-1 correspondence between faulty
tiling pairs. The only fault-free tiling pair is the all domino tiling of Figure 9.10. Hence,
f2 = fas1fn-1 + 1. Considering the odd and even cases together produces our identity.

Figure 9.10. When n is even, the only fault-free tiling pair.

We invite readers to try their hand at combinatorially proving the Fibonacci identities below.

Recall that (1‘) counts the number of ways to select k elements from an n element set. For

0<k<mn, (2):.&1(:1 Ik Whenn <0,k <0,0r k>n, wchavc()—ﬂ

fl+f3+"'+f2ﬂ—l’:f2u—1

fo+fotfat -+ fon = font1
f‘n+2 + fﬂ—'z — Bfn.-

. /n—k

k=0
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Z (n_ )(HE_J) f2n 1.
i=0

Jj=

fﬂ EE fn—l T fn—? 5 2fn—3 * 4f1'1—-1 +F an—") S ettt 2n_2f0 =2

Lucas Numbers

Close companions to the Fibonacci numbers, are the Lucas numbers 2, 1, 3, 4, 7, 11, 18, 29, 47,
76, 123,..., where each term is the sum of the previous two terms but the initial conditions are
different. As we shall see Lucas numbers operate like Fibonacci numbers running in circles.

Let us combinatorially define L,, to be the number of ways to tile a circular board of length n
with (slightly curved) squares and dominoes. For example Ly, = 7 as illustrated in Figure 9.11.
Clearly there are more ways to tile a circular n-board than a straight n-board since it is now
possible for a single domino to cover cells n and 1. We define an n-bracelet to be a tiling of
a circular n-board. A bracelet is out-of-phase when a single domino covers cells » and 1 and
in-phase otherwise. In Figure 9.11, we see that there are 5 in-phase 4-bracelets and 2 out-of-phase
4-bracelets. Figure 9.12 illustrates that Ly = 1, Ly = 3, and L3 = 4. Notice that there are two
ways to create a 2-bracelet with a single domino — either in-phase or out-of-phase.

A Y
@)e]e
OO

00

Figure 9.11. A circular 4-board and its 7 bracelets. The first 5 bracelets are in-phase and the last 2 are

e L
C00

Figure 9.12. There are one 1-bracelets, three 2-bracelets, and four 3-bracelets.
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From our initial data, the number of n-bracelets looks like the Lucas sequence. To prove that
they continue to grow like the Lucas sequence, we must argue that for n > 3,

L'.rr. = Ln—l i Ln—?-

To see this we simply consider the /ast tile of the bracelet. We define the first tile to be the tile
that covers cell 1, which could either be a square, a domino covering cells 1 and 2, or a domino
covering cells n and 1. The second tile is the next tile in the clockwise direction, and so on. The
last tile is the one that precedes the first tile. Since it is the first tile, not the last, that determines
the phase of the tiling, there are L,._; n-bracelets that end with a square and L,,_s n-bracelets
that end with a domino. By removing the last tile, we produce smaller bracelets.

To make the recurrence valid for n = 2, we define Ly = 2, and interpret this to mean that there
are two empty tilings of the circular 0-board, an in-phase O-bracelet and an out-of-phase 0-bracelet.
Thus for n > 0, we have a combinatorial interpretation of the nth Lucas number:

L, counts the number of ways to tile a circular board of length n with squares and dominoes.

As one might expect, there are many identities with Lucas numbers that resemble Fibonacci
identities. In addition, there are many beautiful identities where Lucas and Fibonacci numbers
interact.

Identity 4 L, = fn + fr_a.

Question: How many tilings of a circular n-board exist?
Answer 1: By definition, there are L,, n-bracelets.

Answer 2: Consider whether the tiling is in-phase or out-of-phase. Since an in-phase tiling
can be straightened into an n-tiling, there are f,, in-phase bracelets. Likewise, an out-of-phase
n-bracelet must have a single domino covering cells n and 1. Cells 2 through n — 1 can then
be covered as a straight (n — 2)-tiling in f,_o ways. Hence the total number of n-bracelets
is fn + fn—2. See Figure 9.13.

In phase Out of phase

{ ks 2

|
o Jua

Figure 9.13. Every circular n-bracelet can be reduced to an n-tiling or an (n — 2)-tiling, depending on its
phase.
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Case I: breakable at n

n[l FE— 2n_l

e

Case II: not breakable at »n
PR —— “oan 2n-1J

1
O—

Figure 9.14. A (2n — 1)-tiling can be converted to an n-bracelet and (n — 1)-tiling. In our correspondence,
the n-bracelet is in-phase if and only if the (2n — 1)-tiling is breakable at cell n.

Idenﬁty 5 f2-n.—1 = Lnfn—l-

Set 1: Tilings of a (2n — 1)-board. This set has size fa,—1.

Set 2: Bracelet-tiling pairs (B, T') where the bracelet has length n and the tiling has length
n — 1. This set has size L, f,—1.

Correspondence: Given a (2n — 1)-board T*, there are 2 cases to consider, as illustrated in
Figure 9.14.

Case I If T™ is breakable at cell n, then glue the right side of cell n to the left side of cell 1
to create an in-phase n-bracelet B, and cells n + 1 through 2n — 1 form an (n — 1)-tiling 7.

Case II: If T is unbreakable at cell n, then cells n and n + 1 are covered by a domino which
we denote by d. Cells 1 through n — 1 become an (n — 1)-tiling T and cells n through 2n —1
are used to create an out-of-phase n-bracelet with d as its first tile.

This correspondence is easily reversed since the phase of the n-bracelet indicates whether
Case I or Case II is invoked. So the correspondence is a bijection and Set 1 and Set 2 have
the same size.

The reader may wish to prove these Lucas identities combinatorially.

Lm+n - men + fm—an—l-
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5f7:. = Lﬂ. o Ln.-2‘
Li = Ln+an—l T ("'])” 5.
Lo+2Ly +4Ls +8Lg+ -+ 2"L, = 2t lfn-

Gibonacci Numbers

Gibonacci number is shorthand for generalized Fibonacci number. We say a sequence of nonneg-
ative integers Gg, G1,Gos, ... is a Gibonacci sequence if for all n > 2,

(;n = (;n -1 = & Gu—?,-

Such sequences are completely determined by Go and G;. For instance, the Lucas sequence
is the Gibonacci sequence beginning with Gy = 2 and Gy = 1. To see how to interpret these
numbers combinatorially, we take a second look at Lucas numbers. From the previous section we
know that L,, counts the number of ways to tile an n-bracelet with squares and dominoes. Notice
that we can “straighten out” an n-bracelet, by writing it as an n-tiling starting with the first tile
(the tile covering cell 1) with one caveat. The caveat is that if the first tile is a domino, we need
to indicate whether it is an in-phase or out-of-phase domino. For example, the seven 4-bracelets
of Figure 9.11 have been straightened out in phased tilings in Figure 9.15. In summary, L,, counts
the number of phased n-tilings where an initial domino has 2 possible phases and an initial square
has 1 possible phase. The next theorem should then come as no surprise.

[ | ([
OUT

B ] =

Figure 9.15. The seven 4-bracelets can be straightened out to become “phased” 4-tilings.

IN
B
IN
e
OuT

Theorem Let Go, G1,Go, ... be a Gibonacci sequence with nonnegative integer terms. For n > 1,
G, counts the number of n-tilings, where the initial tile is assigned a phase. There are G choices
for a domino phase, and G; choices for a square phase.

Proof. Let a,, denote the number of phased n-tilings with G and G phases for initial dominoes
and squares, respectively. Clearly, a; = G1. A phased 2-tiling consists of either a phased domino
(Go choices) or a phased square followed by an unphased square (G, choices). Hence as =
Go + G1 = Gs. To see that a,, grows like Gibonacci numbers we consider the last tile, which
immediately gives us a,, = a,-1 + Gn_s. O

In order for our theorem to be valid when n = 0, we combinatorially define the number of
phased O-tilings to be Gy, the number of domino phases. Using this combinatorial interpretation
of G, we observe that many identities become transparent. For instance, from the shape of the
first tile of a phased tiling (see Figure 9.16), it immediately follows that
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First tile a phased domino:
ol 7]
Gy J

First tile a phased square:

22 3 n
Gl :n-l

Figure 9.16. A phased n-tiling cither begins with a phased domino or a phased square.

Identity 6 Gp = GOfn—Z + Glfn—l
The next two identities are generalizations of Identities 1 and 2 respectively.
Identity 7 ZLO G = Gpy2 — Gy.

Question: How many phased (n + 2)-tilings contain at least one domino?

Answer 1: There are G, o phased (n+ 2)-tilings including the G tilings consisting of only
squares. So there are G, — (31 tilings with at least one domino.

Answer 2: Consider the location of the last domino. For 0 < k < n, there are Gy, tilings
where the last domino covers cells k + 1 and k£ + 2 as illustrated in Figure 9.17. Notice that
when the last domino covers cells 1 and 2, it must have one of G phases. So the argument
is still valid.

2 3 4 wd. il n ol w2

1 2 3 4 n2 n-1 n ntl nt2
-

M e G”'I
1 2 3 4 n2 n-1 n ntl nt2
2 T -

; -

' e G,

1 2 3 4 n2 n-l n ntl pt2
1 2 3 4 n2 n-1 n ntl nt2

Figure 9.17. Here we consider the location of the last domino.

93
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phased m+n tilings breakable at m:
"

1 2 m-1 m m+l m+2 m+n

m “n

phased m+n tilings unbreakable at m:

- -

1 m-l_ m mtl mt2 m+n

-1 J{ :

nel

[ ]

G

Figure 9.18. A phased (m + n)-tiling is either breakable or unbreakable at cell m.

Identity 8 Gm+n = Gmfn + Gm—lfn——l-

Question: How many phased m + n tilings exist?
Answer 1: By definition, there are G,,, such tilings.

Answer 2: Consider whether or not the phased (m + n)-tiling is breakable at cell m. See
Figure 9.18. The number of breakable tilings is G, f,, since such a tiling consists of a phased
m-tiling followed by a standard n-tiling. The number of unbreakable tilings is Gp—1frn-1
since such tilings contain a phased (m — 1)-tiling, followed by a domino covering cells m
and m + 1, followed by a standard (n — 1)-tiling. Altogether, there are G, fr + Gm—1fn—1
(m 4 n)-tilings.

The next identity uses tail-swapping on phased tilings to create an almost one-to-one correspon-
dence with a nontrivial error term.

Identity 9 For 0 < m < n, Gpym = GnLm + (=)™ 1Gp_m.

Set 1: The set of phased (n + m)-tilings. This set has size Gy4m.

Set 2: The set of ordered pairs (A4, B), where A is a phased n-tiling, and B is an m-bracelet.
This set has size G, L,,.

Correspondence: We create an almost one-to-one correspondence between these two sets.
Let P be a phased (n+m)-tiling. If P is breakable at cell n, then we create a phased n-tiling
A from the phased tiling of the first n cells of P. Using cells n + 1 through n + m create
B, an in-phase m-bracelet, as in Figure 9.19. If P is not breakable at cell n, then create the
tiling pair of Figure 9.20, where the top tiling is the phased (n — 1)-tiling from cells 1 through
n — 1 of P. The bottom tiling is an unphased (m + 1)-tiling, beginning with a domino, from
cells n through n + m of P. Now perform a tail swap, if possible, to create a pair of tilings
with sizes » and m, where the n-tiling is phased, and the m-tiling is unphased, but begins
with a domino. These become a phased tiling and out-of-phase bracelet in the natural way.

When is tail-swapping not possible? When m is even, then the (m + 1)-tiling must have
at least one square, resulting in at least one fault. Thus when m is even, we can always
tail-swap, but there are G,_,, unachievable tiling pairs where the bottom m-tiling consists
of all dominoes and the phased n-tiling has only dominoes in cells » — m + 1 through n.
See Figure 9.21. Thus when m is even, G, L., = Gpym + Gn—p, as desired. By a similar
argument, when m is odd, Gpom = G Ly + Gr—m.
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P B} :
) 2

[
1 2

Figure 9.19. A breakable phased (n + m)-tiling naturally becomes a phased n-tiling with an in-phase
m-bracelet.

» 0 | i—

n ntl n+m

1 last fault

w): —l length n-1
1

n-1 n

length m+1

¢ tailswap

last fault

| |lengthn

n-l n

length m

Figure 9.20. An unbreakable phased (n + m)-tiling becomes a phased n-tiling with an out-of-phase m-
bracelet.
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YR i

n-m+1 n
G

Figure 9.21. When m is even, these pairs are unachievable.

As a consequence of Identities 7 and 9, we sum the first 4n+ 2 terms of any Gibonacci sequence

as
4n+1

Z G;i = Gant3 — G1 = GontaLony1 + (=1)"G1 — G1 = Gany2Lant1
=0

leading to the following identity.

Identity 10

4n+1

)" Gi = Lan41Gansa.
i=0

Our opening magic trick, Go + G1 + - - - + G = 11 G, is an application of this identity when
n = 2. So it is no coincidence that the multiplier 11 is the fifth Lucas number.
Once more, we challenge the reader to prove combinatorially the following Gibonacci identities.

mn
E G‘.&A‘—-l == GZH T GU'
k=1

Gi+ Y Gok = Gany1.

k=0
P
Forn>p, Guyp= Z (T) Gn_i.
i=0
P 5
Gm+(£+1}?) = Z (;:) f:ff—_fcmﬂ-
i=0

2n

2 2

Y GiGi_1 =Gj, -G}
i=1
2n+1

Z Gi_1G; = G§n+1 - G2

i=2

n—1

Z Gi-1Git2 = G% - G,
i=]

Gn+lGn—l = G?}_ = (_I)IL(G? = GGG2)>
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Gt B Gt 4 TG A g+ 8 v 0 LG = U 4B

Let Gy, G1,G?, ... and Hy, Hy, Hs, ... be Gibonacci sequences. Then for n, h,k > 0,
GmHn = (;m—lHn +1 = {_l)m [GUH!I.—'fF!+2 = Gl Hn—m-}-l]-

Combinatorial proofs of all the previously listed identities (and more) can be found in the references
at the end of this paper or in our book [5].

Open Problems

The techniques presented here are simple but powerful. Counting tilings enables us to visualize
relationships between Fibonacci numbers and their generalizations. This approach facilitates a
clearer understanding of existing identities and can be extended in a number of ways. By introducing
colored tiles of various lengths, we can interpret sequences generated by linear recurrences with
constant coefficients [1]. By allowing some of the squares of our tiling to be stacked up to a certain
height, we can combinatorially interpret simple continued fractions [6]. By introducing an element
of randomness, even the irrationally looking Binet formulas

) 1 1+\/5 n+1l 1_\/5 n+1l
fu*_\/—'g 2 - 2

({148 |, [1=48Y
Lr! - ( 2 ) + ( 2 ) ‘| ,
can be rationalized [1, 2].

To indicate the power of our approach, the classic book Fibonacci & Lucas Numbers and
the Golden Section by Steven Vajda [10] contains 118 identities involving Fibonacci, Lucas, and
Gibonacci numbers. These identities are proved by a myriad of algebraic methods—induction, gen-
erating functions, hyperbolic functions, to name a few. Although none are proved combinatorially
in the book, we have used tiling to explain 91 of these identities—and counting!

We leave the reader with some of the more tantalizing identities which have thus far resisted
combinatorial explanations.

and

n 2n
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]
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We have every confidence that these too will be combinatorially explained someday. You can count
on it.
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