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RECOUNTING BINOMIAL FIBONACCI IDENTITIES 

Arthur T. Benjamin and Jeremy A. Rouse 

Ln (41, Carlitz demonstrates 

: -4 sophisticated matrix methods and Binet's formula. Nevertheless, the presence of bino- 
+ -  i_ coefficients suggests that an elementary combinatorial proof should be possible. In this 
-cl. we present such a proof, leading to other Fibonacci identities. 

'4~ Recall that for m 2 1, F,,, counts the ways to tile a length m - 1 board with squares 
- "_minoes (see (11, [2], [3]). Hence the right side of equation (1) counts the tilings of a 
t+ with length (n + l )L  - 1. 

%fore explaining the left side of equation (I) ,  we first demonstrate that any such tiling 
.- Y created in a unique way using n + 1 supertiles of length L. Given a tiled board of 
.- - - i (n  + l )L  - 1, with celb numbered 1 through (n + 1) L - 1, we break the tiling into n + 1 
- -ri les  S1, S2,. . . , Sn+1 by cutting the board after cells L, 2L, 3L,. . . , nL. See Figure 1. 

Yotice that a supertile might begin or end with a half-domino. For instance, if a domino -- cells L and L + 1, then S1 ends with a half-domino, and Sz begins with a half-domino. 
: - W i l e  that begins with a half-domino is called open on the left; otherwise it is closed on 

I * - - q e r  is in final form and no version of it will be submitted for publication elsewhere. 
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FIGURE 1. A board of length (n + l )L - 1 (with a half-domino 
attached) can be split into n + 1 supertiles of length L. 

the left. Likewise a supertile is either open or closed on the right. Naturally, Sl must be closed 
on the left. 

For convenience, we append a half-domino to the last supertile so that Sn+l has length 
L, like all the other supertiles, and is open on the right. Notice that S1,. . . , Sn+1 must obey 
the following "following" rule: 

For 1 < i < n, Si is open on the right ifT Si+l is open on the left. 

Given supertiles Sl ,  . . . , Sn+l, we can extract subsequences 01,. . . , Ot and Cl, . . . , Cn+l-t 
for some 0 < t < n, where 01,. . . , Ot are open on the left, and C1,. . . , Cn+ldt are closed on 
the left. By the "following" rule, there are exactly t + 1 supertiles that are open on the right, 
necessarily including Cn+l-t. Conversely, given 0 5 t 5 n and 01,. . . , Ot, Cl, . . . , Cn+l-t 
there is a unique way to reconstruct the sequence S1,. . . ,Sn+1 that preserves the relative 
order of the 0 ' s  and C's. Specifically, we must have S1 = Cl,  and for 1 < i 5 n, if Si is closed 
on the right then Si+l is the lowest numbered unused Cj; else Si+1 is the lowest numbered 
unused 0,. 

To summarize, F(n+l)L counts the ways to create, for all 0 5 t 5 n, length L supertiles 
O1,. . . , Ot, open on the left, and length L supertiles CI, . . . , Cn+l-t closed on the left, where 
Cn+l-t is open on the right and exactly t of the other supertiles are open on the right. It 
remains to show that the left side of equation (1) counts the ways that such a collection of 
supertiles can be constructed. 

Given 0 5 t 5 n, we begin by tiling C,+l-t. Since it must end with a half-domino and 
has L - 1 free cells, it can be tiled FL ways. Now for any non-negative integers XI, .  . . , x L - ~ ,  
we prove that the remaining supertiles can be created (nirL) (n;lzl) a a (n-::-I) ways, where 
XL = t and for 1 < i < L - 1, exactly xi, of these n supertlles have a domino beginning at  its 
ith cell. 

Since t of the supertiles (excluding Cn+l-t) must be open on the right, XL = t of these 
n supertiles have half-dominoes beginning a t  their Lth cells. Now there are (nzyt) = (n-zL) 

Z? ways to pick x l  supertiles among {Cl, . . . , Cn-*) to begin with a domino. (The remaining 
n - t - X I  CjJs (other than Cn+l-t) begin with a square and all of the Oj's begin with a 
half-domino.) Next there are (ni2lz1) ways to pick x2 supertiles to have a domino covering the 
second and third cell among those not chosen in the last step to  have a domino covering the 
first and second cell. The unchosen n - x l  - 2 2  supertiles have a square on the second cell. 
Continuing in this fashion, there are ("-:,!-') ways to pick which supertiles have a domino 

beginning at  the ith cell for 1 < i < L. Hence O1,. . . , Ot and Cl, .  . . ,Cn-t, Cn+1-t can be 
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created in exactly FL (nizL) (Ri'l) - . (n-zi-l) ways. Summing over all values of xi gives us 
the left side of equation (1). 

By counting our tilings in a slightly different way, we combinatorially obtain another 
identity presented in (41: 

Proof: F(la+l)L counts the ways to create supertiles S1,. . . , Sn+l subject to  the same condi- 
tions as before. This time, we classify supertiles in four ways, depending on whether they are 
closed on the left only, right only, both, or neither. If, for some 0 5 j 5 151, S1,. . . con- 
tains exactly j supertiles R1,. . . , Rj closed on the right only, then there must be exactly j + 1 
supertiles L1,. . . , Lj+1 closed on the left only. Subsequently, Sl, . . . ,Sn+1 has subsequence 

For example, see Figure 2. Since each of the supertiles above has length L with one half-domino 
and L - 1 free cells, this subsequence can be tiled (FL)2j+1 ways. 

closed LI open R I  L; 

FIGURE 2. When this length 19 board (plus half-domino) is split 
after every 4 cells, we create 5 supertiles that are closed, 

respectively, on both sides, left side, neither side, right side, and left side. 

Now suppose Sl, . . . , is to have exactly i supertiles that are open a t  both ends, 
where 0 5 i 5 n - 2 j .  We fint place these supertiles, like i identical balls to be placed in j + 1 
distinct buckets, between any Lk and Rk or after Lj+l. Since there are (a+!-1) ways to place 

o identical balls into b distinct buckets, there are ('fj) ways to do this. Once placed, since 
each has L - 2 free cells, they can be tiled (FL-~);  ways. 

Finally, the remaining n - 2 j  - i supertiles that are closed on both ends can be placed 
into j + 1 different buckets (before L1 or between any Rk and Lk+l) in (,"rg~~~) = (n-3-') 

3 

ways. Once placed, they can be tiled (FL+~)"- '~-~ w ays. 
Consequently, the number of legal ways to choose supertiles S1,. . . , with ex- 

actly j supertiles closed on the right only and i supertiles open on both ends is 
( i ; J )  (n-:-i) F ~ - ~ F ~ + ~ F ~ ~ - ~ .  (Notice that the second binomial coefficient causes this quan- 

ricy to be zero whenever n - j - i  < j, i.e., when 2 j  + i > n.) Summing over all i and j proves 
equation (2). 
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Notice that both equations (1) and (2) imply that for all n 2 1, FL divides FnL. However, 
a more direct combinatorial proof is possible, without invoking supertiles. Specifically, we have: 

Proof: The right side counts the ways to tile a board of length nL - 1. The left side of (3) 
counts this by conditioning on the first j,  1 5 j 5 n, for which the tiling has a square or 
domino ending at cell j L  - 1. Such a tiling consists of j - 1 tilings of length L - 2, each 
followed by a domino. This is followed by a tiling of the next L - 1 cells (cells ( j  - l )L + 1 
through jL - I), followed by a tiling of the remaining nL - jL  cells. This can be accomplished 
(FL-I)~-' FL F(n- j)L+l ways, and the identity follows. 

The authors gratefully acknowledge the assistance of Jennifer J. Quinn. This research was 
suppoted by The Reed Institute for Decision Science and the Beckman Research Foundation. 
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