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In the book Proofs that Really Count [1], the authors prove over 100 Fi-

bonacci identities by combinatorial arguments, but they leave some identities

unproved and invite the readers to find combinatorial proofs of these. The

first uncounted identity concerns the sum of the cubes of Fibonacci numbers.

Identity 1. For n ≥ 0,

n∑

k=0

f3
k =

f3n+4 + (−1)n6fn−1 + 5

10
,

where fn = Fn+1.
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In this paper, we present a simple combinatorial proof of this identity,

and then use the same tools to prove an even simpler closed form.

It is well-known that fn counts the ways to tile a one-dimensional board

of length n using squares of length one and dominoes of length two. We refer

to such tilings as n-tilings, and we let Fn denote the set of all n-tilings. An

n-tiling, which covers cells 1 through n, is said to be breakable at cell k if cells

k and k +1 are not covered by a domino. For example, the 9-tiling in Figure

1 is breakable at cells 2, 3, 5, 7, 8, 9, and can be described using the notation

dsddss or dsd2s2, where s denotes a square and d denotes a domino.

d d d ss s

1 2 3 4 5 6 7 8 9

Figure 1: A 9-tiling that is breakable at cells 2, 3, 5, 7, 8, 9.

The following identity will be useful to us and it serves as an easy warm-up

exercise.

Identity 2. For n ≥ 0,

2
n∑

k=0

f3k+2 = f3n+4 − 1.

Proof. There is just one (3n + 4)-tiling that is not breakable at any of the

cells of the form 3j + 2, namely s(ds)n+1 consisting of a square followed by
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dominoes and squares in alternating fashion. Therefore f3n+4 − 1 counts all

of the (3n+4)-tilings that are breakable at at least one cell of the form 3j+2.

The left side of the identity counts the same problem by considering the last

breakable cell of the form 3j + 2. If this occurs at cell 3k + 2, then cells 1

through 3k +2 can be tiled in f3k+2 ways, and cells 3k +3 and 3k +4 can be

tiled two ways (either with two squares or with a single domino). Thereafter,

to avoid breakable cells of the form 3j + 2, there is just one way to continue,

namely (ds)n−k , consisting of dominoes and squares in alternating fashion.

See Figure 2. Altogether, as k ranges from 0 to n we have 2
∑n

k=0 f3k+2 tilings.

Since the same set has been counted two different ways, their sizes must be

equal.

s s d s d s ... d s

3k+2 3n+4

d s d s ... d s

3k+2 3n+4

d

Figure 2: Using a (3k+2)-tiling to create a (3n+4)-tiling whose last breakable
cell of the form 3j + 2 is 3k + 2.

Let T = ∪n
k=0F3k+2 denote the set of tilings of length 3k + 2 for some k

satisfying 0 ≤ k ≤ n. Thus T has size
∑n

k=0 f3k+2.

Let U denote the set of (3n + 4)-tilings excluding the tiling s(ds)n+1,

so U has size f3n+4 − 1. The proof of Identity 2 establishes a one-to-two

correspondence between T and U . Next we define S to be the set of triples
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of tilings (A,B,C) where A,B,C all belong to Fk for some 0 ≤ k ≤ n.

Clearly S has size
∑n

k=0 f3
k . To prove Identity 1, which we rewrite as

10
n∑

k=0

f3
k = f3n+4 + (−1)n6fn−1 + 5,

we establish an almost one-to-ten correspondence between S and U , where

the error term of (−1)n6fn−1 +6 will be explained later. This will be accom-

plished by an almost one-to-five correspondence between S and T , followed

by the previously described one-to-two correspondence between T and U .

To understand the mapping from S to T , we present two other identities,

whose combinatorial proofs will be of use to us. First is the familiar Cassini

Identity whose combinatorial proof, presented in [1], is given here to establish

the notation.

Identity 3. For k ≥ 1,

f2
k − fk+1fk−1 = (−1)k.

Proof. We establish an almost one-to-one correspondence between Fk × Fk

and Fk+1 × Fk−1, by a technique known as tailswapping. Given an ordered

pair of k-tilings (X,Y ) where X has cells 1 through k and Y covers cells 2

through k + 1, we construct the tiling pair (X+, Y −) by swapping the tiles

of X and Y after the last cell for which X and Y are both breakable. See

Figure 3. The resulting tiling pair (X+, Y −) belongs to Fk+1 × Fk−1 since
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the tiles of X+ cover cells 1 through k + 1, while the tiles of Y − cover cells

2 through k. Naturally, this procedure can be easily reversed by applying

the same rule. The only tiling pairs (X,Y ) or (X+, Y −) that can not be

tailswapped are those tilings consisting of all dominoes. When k is even, this

can only occur when (X,Y ) = (dk/2, dk/2); whence, f2
k −fk+1fk−1 = 1. When

k is odd, the only unswappable tiling pair is (X+, Y −) = (d(k+1)/2, d(k−1)/2);

whence, f2
k − fk+1fk−1 = −1.

1 2 3 4 5 6 7 8 9 10

d

dd

d

s

ds

sds

d

d

dd

d

sds

sds

d d d d d d

d d d d

X :

Y :

X+ :

Y- :

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 3: A pair of 9-tilings can always be tailswapped to obtain a 10-tiling
and an 8-tiling. In the first example, both tiling pairs are breakable at cells
1 and 5. The procedure is easily reversed, except when the 10-tiling and
8-tiling both consist entirely of dominoes.

Finally, we define for a nonempty k-tiling X, the conjugate of X to be

the same as X but with the last tile switched from a square to a domino

or from a domino to a square. For example, the conjugate of the 9-tiling

dsddss is the 10-tiling dsddsd. We denote the conjugate by X which has

length k equal to k + 1 or k − 1 depending on whether X ended with a

square or domino, respectively. It is clear that X = X and that k and k are
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always of opposite parity. The following identity appears in [1] as Identity

21. Using conjugation leads to an even simpler combinatorial proof than the

one presented there.

Identity 4. For n ≥ 1,

n∑

k=1

(−1)kfk = (−1)nfn−1.

Proof. Consider the set of non-empty tilings of length at most n. Pairing up

each tiling with its conjugate establishes an almost one-to-one correspondence

between the tilings of even length and the tilings of odd length. There are

exactly fn−1 tilings in this set that do not have a conjugate in the set, namely

those n-tilings that end with a square (since their conjugates would have

length n + 1). Consequently, in this set, the number of even-length tilings

minus the number of odd-length tilings is (−1)nfn−1, as desired.

We are now in a position to prove Identity 1.

Proof. First we consider the case where n is odd, where we show that

10
n∑

k=0

f3
k − 6 + 6fn−1 = f3n+4 − 1.

Here we will describe a mapping that sends every non-empty triple (A,B,C)

in S to exactly five tilings in T , that in turn become ten tilings in U . The

empty triple (∅, ∅, ∅) is sent to just two elements of T (namely the 2-tilings s2
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and d) that in turn become four tilings of U , instead of ten. (This accounts

for the −6 term.) Also, we will show that the mapping from S to T fails to

hit exactly 3fn−1 elements of T , which generate 6fn−1 additional elements of

U . Except for triples (A,B,C) where two or more of A,B,C consist entirely

of dominoes, the triple (A,B,C) ∈ F3
k will be mapped to five tilings of length

3k + 2 as follows, where a superscript of + or − refer respectively to gaining

or losing a cell through tailswapping.See also Figure 4.

1. AsBsC. (Translation: Insert a square between A and B and a square

between B and C.)

2. ABdC.

3. A−dB+C, unless (A,B,C) = (dk/2, dk/2, C) for some even k.

4. A+BdC−, unless (A,B,C) = (dk/2, B, dk/2) for some even k.

5. AdB−C+, unless (A,B,C) = (A, dk/2, dk/2) for some even k.

Before explaining how to handle the triples where two or more of A,B,C

consist entirely of dominoes, we first observe that this mapping is easily

reversed by observing the contents of cells k + 1 and 2k + 2. The contents

of any cell is restricted to three possibilities, namely a square, a left-end of a

domino, or a right-end of a domino, which we will respectively refer to as S,

L, and R. Since there are only three possibilities and we are considering two

cells, then there are a total of nine possible outcomes. By inspecting Figure

7



A

B

C

A C

A B Cd

s sB

A- d B+ C

A+ B C-d

A d B- C+

k+1 2k+2

Figure 4: A mapping from a triple of k-tilings to five tilings of length (3k+2).

4, we see that the first (3k+2)-tiling will necessarily contain a square in both

cells k + 1 and 2k + 2, which we denote by SS. The second (3k + 2)-tiling

will have R in cell 2k +2, but it could have either S or L in cell k +1. Hence

the second (3k + 2)-tiling must be of the form SR or LR. The other three

tilings are demonstrated in the following table.

Tiling Cells k + 1 and 2k + 2
1 SS
2 SR or LR
3 RS or RR
4 SL or RL
5 LS or LL

In our mapping, tiling 1 will hit every element of T denoted by SS and

tiling 2 will hit every element of T denoted by SR or LR. However, tilings 3,

4, and 5 will miss some elements of T because of tailswapping. Specifically,

all elements of T that correspond to tiling 3 are covered except for those

where A− and B+ consist entirely of dominoes (which forces k to be odd).
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Thus, tiling 3 fails to hit those elements of T of the form dk+1C, where C

has odd length k. Likewise, tilings 4 and 5 respectively miss those tilings in

T of the form d(k+1)/2Bd(k+1)/2 and Adk+1 where B and A have odd length

k.

This suggests a natural way to handle tiling 3 for the cases not covered

by the original mapping. When (A,B,C) = (dk/2, dk/2, C) for some even k,

then we replace C with its conjugate C with odd length k, and map it to

the (3k + 2)-tiling dk+1C. Notice that since n is odd, and k is even, we must

have k ≤ n − 1 and therefore k ≤ n, so this mapping is well-defined for all

(A,B,C) considered here. Likewise, we can extend tilings 4 and 5 in a similar

way. For tiling 4, if (A,B,C) = (dk/2, B, dk/2) for some even k, then replace

B with its conjugate B with odd length k and map it to d(k+1)/2Bd(k+1)/2.

For tiling 5, if (A,B,C) = (A, dk/2, dk/2) for some even k, then map it to

Adk+1.

Extending tilings 3, 4, and 5 as just described ensures that every element

of S (except for the empty triple) is mapped to exactly five elements of T .

As predicted, there are precisely 3fn−1 elements of T that are unhit by this

mapping. These unhit elements of T are of the form dn+1C, d(n+1)/2Bd(n+1)/2,

or Adn+1, where A,B,C have odd length n and end in a square. These

elements of T are unhit because the conjugates of A,B,C would each have

length n + 1 and therefore not belong to S.

When n is even, we apply the same mappings that we used when n is
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odd. In this situation, every element of T is hit by this mapping. On the

other hand, the mapping is undefined for exactly 3fn−1 elements of S, namely

those (A,B,C) of the form (dn/2, dn/2, C) or (dn/2, B, dn/2) or (A, dn/2, dn/2),

where A,B,C are n-tilings that end in a square. The mapping is undefined

here because the conjugates of A,B, and C would have length n + 1 causing

the images of these tilings to have length 3n + 5, and hence not belong to

T . Consequently, these 3fn−1 elements of S will only be defined for four of

the five cases,and thereby only generate eight elements of U instead of ten.

Thus, when n is even, we have

10
n∑

k=0

f3
k − 6 − 6fn−1 = f3n+4 − 1,

as desired.

Next we present a new identity for the sum of cubes of Fibonacci numbers.

The identity is simpler than the first one by having a smaller denominator,

which leads to a simpler combinatorial proof.

Identity 5. For n ≥ 0,

n∑

k=0

f3
k =

fnf2
n+1 + (−1)nfn−1 + 1

2
.

Proof. We begin by answering a simple counting question in two different

ways.
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QUESTION: How many ways can one create an ordered triple (A,B,C),

where A is a tiling of length n, B is a tiling of length n + 1 and C is a tiling

of length n+1?

ANSWER 1: By tiling A, B, and C separately, there are fnf2
n+1 such

triples.

ANSWER 2: Next, we claim that the number of such triples is also

∑n
k=0(f

3
k + fk−1fkfk+1). Suppose that A covers cells 1 through n, B covers

cells 1 through n + 1, and C covers cells 1 through n + 1. For 0 ≤ k ≤ n,

we shall define (A,B,C) to have parameter k if k is the largest cell for which

either (i) A, B, and C are all breakable at cell k or (ii) C has a domino

covering cells k and k + 1. Notice that conditions (i) and (ii) are mutually

exclusive since if C has a domino covering cells k and k + 1 then it is not

breakable at cell k.

We point out that the case k = 0 only corresponds to the triple (A,B,C)

where C consists entirely of squares, (C = sn+1), and A and B are “fault

free”. That is, when n is even, A consists of all dominoes (A = dn/2) and B

begins with a square followed by all dominoes (B = sdn/2). When n is odd,

A = sd(n−1)/2 and B = d(n+1)/2.

The number of tilings with parameter k that satisfy condition (i) is f3
k ,

since cells 1 through k of A, B, and C can each be tiled fk ways. The rest

of the tiling is forced so as to prevent k from being larger: tiling C must

contain all squares on cells k + 1 through n + 1 and all cells bigger than k of
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A and B must be tiled fault free in the unique way.

The number of tilings that satisfy condition (ii) with parameter k is

fk−1fkfk+1. For this to happen, tiling C can be created fk−1 ways (arbi-

trary tiling of cells 1 through k − 1, followed by a domino on cells k and

k + 1, followed by all squares on cells k + 1 through n + 1). In order for A

and B to be fault free after cell k, one of them (depending on the parity of

n − k) must contain all dominoes from cell k + 1 to the end, and the other

one must have all dominoes from cell k + 2 to the end. Thus A and B can

be tiled in fkfk+1 ways. Altogether, condition (ii) occurs fk−1fkfk+1 ways.

Summing over all possible values of the parameter k, we have that Answer

2 equals
∑n

k=0(f
3
k + fk−1fkfk+1).

Equating Answers 1 and 2, gives us the identity

fnf
2
n+1 =

n∑

k=0

(f3
k + fk−1fkfk+1). (1)

If we allow ourselves the algebraic luxury of Identities 3 and 4, then we have

fnf2
n+1 =

n∑

k=0

(f3
k + fk(f

2
k − (−1)k))

=
n∑

k=0

(2f3
k − fk(−1)k)

and hence,

2
n∑

k=0

f3
k = fnf2

n+1 +
n∑

k=0

fk(−1)k

= fnf2
n+1 + 1 + (−1)nfn−1,
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as desired.

Of course, a combinatorial purist prefers to avoid algebra altogether and

the above argument can be modified to accommodate that desire. Similar

to what we did in the proof of Identity 1, we establish an almost one-to-two

correspondence between S (the set of triples of k-tilings as k ranges from 0

to n) and the set V = Fn ×Fn+1 ×Fn+1 consisting of all triples (A,B,C) of

tilings with respective lengths n, n + 1 and n + 1.

For almost every triple (X,Y,Z) in F3
k , we wish to identify two triples

in V . The first triple we generate depends on the parity of n − k. We map

(X,Y,Z) to the triple

(A,B,C) = (Xd(n−k)/2, Y sd(n−k)/2, Zsn+1−k),

when n − k is even. (For example, the n-tiling A is equal to the k-tiling X

followed by (n − k)/2 dominoes.) When n − k is odd, we map (X,Y,Z) to

the triple

(A,B,C) = (Xsd(n−1−k)/2, Y d(n+1−k)/2, Zsn+1−k).

Notice that in both cases, (A,B,C) has parameter k and satisfies condition

(i) of the previous proof. This mapping is well-defined for all elements of S

and is easily reversed.
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Next, for almost every triple (X,Y,Z) inF3
k , we generate a triple (A,B,C)

with parameter k that satisfies condition (ii). Here we create, through tail-

swapping, the tilings Y + and Z− with respective lengths k + 1 and k − 1.

These tilings exist unless Y and Z both consist entirely of dominoes. We

now map this tiling to the triple

(A,B,C) = (Xd(n−k)/2, Y +d(n−k)/2, Z−dsn−k),

when n − k is even. When n − k is odd, we let

(A,B,C) = (Y +d(n−1−k)/2,Xd(n+1−k)/2, Z−dsn−k).

Notice that in both cases, (A,B,C) has parameter k with condition (ii), since

the last domino of C covers cells k and k+1 and that (A,B,C) is unbreakable

at every cell j ≥ k. Given a tiling triple (A,B,C) with parameter k satisfying

condition (ii), this mapping is easily reversed, except when Y + and Z− consist

of all dominoes.

To summarize what we have so far, this mapping is well-defined for all

(X,Y,Z) in Fk except for those with even values of k where Y and Z consist

of all dominoes. Almost balancing this out, however, this mapping hits all

tiling triples (A,B,C) that satisfy condition (ii) except those with odd values

of k for which Y + and Z− consist of all dominoes. To pair most of these triples

up, we extend our mapping so that for even values of k, we map the triple

(X, dk/2, dk/2) to the triple

(A,B,C) = (dn/2,Xd(n+1−k)/2, d(k+1)/2sn−k),
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when n is even, and to the triple

(A,B,C) = (Xd(n−k)/2, d(n+1)/2, d(k+1)/2sn−k),

when n is odd. As before, X, is the conjugate of X with odd length k.

This mapping is not defined when k = 0, since Y + and Z− do not ex-

ist. The only other situation where the mapping is undefined are those

(X,Y,Z) = (X, dn/2, dn/2) in F3
n where n is even and X ends with a square,

since this would cause k = n + 1 and the triple (A,B,C) would therefore be

undefined in its third component. Thus there are fn−1 triples (X,Y,Z) where

this extended mapping is undefined. However, when n is even, all elements

of V are hit, since X has length k ≤ n−1, and so X can be recovered. Thus,

when n is even, 2|S| − 1 − fn−1 = |V |. That is, for even n ≥ 0,

2
n∑

k=0

f3
k = fnf2

n+1 + fn−1 + 1,

as desired.

On the other hand, when n is odd, the mapping is always well-defined.

Thus every non-empty triple (X,Y,Z) in S generates two triples in V . How-

ever, some elements of V are not mapped onto. Specifically, those (A,B,C) =

(X, d(n+1)/2, d(n+1)/2), where X has length k = n and ends with a square.

Since there are fn−1 ways to create such an X , we have 2|S|−1 = |V |−fn−1,

when n is odd. In other words, for odd n ≥ 1,

2
n∑

k=0

f3
k = fnf

2
n+1 − fn−1 + 1,
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as desired.
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