Turnpike Structures for Optimal Maneuvers

Arthur T. Benjamin

A dissertation submitted to The Johns Hopkins
University in conformity with the requirements
for Lthe degree of Doctor of Philosophy.

Baltimore, Maryland
1989

Abstract

This dissertation is concerned with problems of optimally maneuvering
a collection of objects (“pieces”) from one location to another, subject to
various restrictions on the allowable movements. We illustrate and prove
that when the “distance” from the origin to the destination is large, and the
movement rules and environment satisfy certain “homogeneity” properties,
there exist near-optimal trajectories with very special (turnpike) structure.

These results are obtained by representing the problem through a con-
figuation graph. Here, we have a node for each configuration and an arc
for every “different” legal move. Each arc is endowed with a scalar weight
for the move’s cost, and a vector weight for the move’s “progress” towards
the desired final placement. Optimal solutions to the maneuvering problem
are shown to be equivalent to minimum-cost walks from the origin node to
the destination node with a prescribed amount of progress. The turnpike
solution to the graph problem (which spends most of its time going around
at most m cycles) is constructed by utilizing a basic optimal solution of an
associated linear program.

We begin to explore potential applications of our configuration graph
models to other types of problems (not all having to do with optimal ma-
neuvering), and discuss further research directions.

i

Acknowledgments

I thank my family, friends, faculty and staff of the Mathematical Sci-
ences Department for their support and encouragement. [am especially
grateful to Roy Mathias, Ingrid Busch, and Professor Edward Scheinerman
for their attention and active participation throughout the research pro-
cess. Joel Auslander, Dan Wilkerson, and Professor Gregory Sullivan also
provided valuable technical contributions. I thank Deena Dizengoff for her
assistance with the figures. Most of all, I am indebted to Professor Alan J.
Goldman for his support, leadership, and inspiration.

i1

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Appendix A
Appendix B
Appendix C

TABLE OF CONTENTS

Abstract

Acknowlegments

Table of Contents

List of Figures

Thesis Outline

Motivating Problems

Graphs, Maneuvers and Turnpikes
Implementation Ideas

Maneuvering Within Boundaries
Turnpiking Over More General Environments
Applications and Research Directions
Detecting Negative Cycles
Generating Columns

Turnpikes with Inequalities
References

Vita

iv

100
104
108

LIST OF FIGURES

Figure 1 ... 4
Figure 2 ... oo 7
Figure 3 ... 8
Figure 4 ... 8
Figure 5 ... 9
Figure 6o 12
Figure 7 ... oo 15
Figure 8 ... o 15
Figure 9 ... 16
Figure 10 ... 17
Figure 11 ... 23
Figure 12o 25
Figure 13 ... 28
Figure 14 ... 29
Figure 15 ... 34
Figure 16 ... 35
Figure 17 ... 37
Figure 18o 54
Figure 19o 55
Figure 20 ... 59
Figure 21 ... 62
Figure 22 68
Figure 23o 71
Figure 24o 72
Figure 25o 85
Figure 26 89
Figure 27 ... 91
Figure 28 94
Figure 29o 97
Figure 30 ... 99

Thesis Qutline

This dissertation is concerned with problems of optimally maneuvering
a collection of objects (“pieces”) from one location to another, subject to
various restrictions on the allowable movements. We illustrate and prove
that when the “distance” from the origin to the destination is large, and the
movement rules and environment satisfy certain “homogeneity” properties,
there exist near-optimal trajectories with very special (turnpike) structure.

In the first chapter, we examine some illustrative problems arising from
Chinese-checkers-type games (e.g., jumping and sliding problems). The
results and conjectures arising from the analysis of these games (obtained
by the author, his thesis advisor, and others) are what led to the more
general and theoretical results of the following chapters.

In chapter two, we rigorously express the ideas of the opening paragraph.
For example, two placements of the pieces belong to the same equivalence
class, if they are translates of each other. Using the vocabulary developed
there, such placements have the same configuration, but are placed at dif-
ferent positions. It is proven that when our movement environment is the
integer lattice Z™, and the origin and destination are far enough apart, then
if the problem obeys certain “natural” conditions (namely: Finiteness (of
the configuration set), Homogeneity (with respect to cost, time, and space),
Brute Force Ability, and Cycle Positivity), we can construct a near-optimal
solution which accrues almost all of its cost repeating at most m different
simple patterns of movement.

These results are obtained by representing the problem through a con-
figuation graph (abbr: C-Graph). Here, we have a node for each config-
uration and an arc for every “different” legal move. Each arc is endowed
with a scalar weight for the move’s cost, and a vector weight for the move’s
“progress” towards the desired final placement. Optimal solutions to the
maneuvering problem are shown to be equivalent to minimum-cost walks
from the origin node to the destination node with a prescribed amount of
progress. The turnpike solution to the graph problem (which spends most
of its time going around at most m cycles) is constructed by utilizing a
basic optimal solution of an associated linear program.

In chapter three, we discuss ways of solving the associated linear pro-
gram when the C-Graph is of manageable size. In particular, we report
favorable computational results from use of a column generation scheme
which utilizes a “negative cycle detector” as a major subroutine. We an-
alyze a modified Bellman-Ford algorithm for finding negative cycles, and
suggest ways of speeding up the detection. Possible algorithmic perfor-
mance is bounded by showing that the decision problem associated with
the C-Graph is NP-complete.

Chapter four returns to the maneuvering problems of the second chap-
ter, but with the added restriction that the pieces must stay within certain
boundaries. Here, the space homogeneity assumption is violated, but only
at the borders. It is shown how a border-ignoring turnpike trajectory can
be systematically modified to accommodate this situation.

In the fifth chapter, we examine maneuvering problems over move-
ment environments more general than Z™ (e.g., finitely generated abelian
groups). Results analogous to those of chapter two are obtained by re-
defining configurations to be equivalence classes under an appropriate bi-
nary relation (analogous to the translation relation of chapter two).

In chapter six, we begin to explore potential applications of our C-Graph
models to other types of problems (not all having to do with optimal ma-
neuvering), and discuss further research directions.

The appendices contain computational results and technical extensions
of the material presented in the main chapters. A list of references follows.

Chapter 1
Motivating Problems

In the present chapter, we consider a series of attractive special cases
arising from jumping problems and sliding problems. In every instance, the
optimal trajectories have exhibited a special repetitive structure. The desire
to “explain” and generalize this common feature provoked the investigations
in the chapters that follow.

A reader who is only interested in the “serious” mathematical aspects
of the dissertation could skim the results of this chapter without much
loss of clarity in the subsequent chapters (i.e., all concepts and notations
used in those chapters are defined there). On the other hand, it was the
initial “evidence” provided by the analysis of these problems that led us
to the more general theories developed later. Besides, most of the results
presented here seem (at least to the author) to be interesting in their own
right.

1.1 A 1-dimensional Jumping Problem

The first example we consider is a game resembling Chinese checkers. This
solitaire puzzle is played with a finite set of indistinguishable pieces, using
the set Z' of integers as our game board. At each move, exactly one piece
is displaced. Suppose that a piece is situated at the point z € Z'. If z+1 is
unoccupied, the piece can shift there; similarly for z—1. If £+1 is occupied,
but z + 2 is not, then the piece can hop over the occupant of ¢ + 1 to arrive
at z + 2, where it may either remain or hop over another adjacent piece,
etc. (Similarly for a hop over ¢ — 1 to z — 2.) A mowve consists either of
a shift or a jump (a sequence of one or more hops by a single piece). Qur
objective is to transfer, in the minimum number of moves, all pieces from
some configuration near the origin 0 to a specified destination configuration
near d where d > 0 is large.

In 1983, Castells and Goldman solved the above problem when the p
pieces initially occupy the points 0,1,...,p — 1, and must maneuver to
occupy the points d,d +1,...,d + p — 1 in as few moves as possible. The
solution consisted of maneuvering the pieces so that the back piece could
jump over the remaining p — 1 pieces. This was followed by shifting the

3|
*es --- @——-00 ¢ w--- ¢ ¢g—'
12 Pl oL 3 5 2p-3 2p-1

0
@ @ e---@ge——0 8 e--—-¢
1 3

S 2p-1 2p 1 3 s -1 2p+l -
e 6-— 0 90— 30 0--—9 -1
23 5 2p0-1 2p+l as 7 2p+l 2p+3
e ©-——-0 @ 3}---_ 399 e--- @ -
6 7 9 2p+3 2p+S d+p-2

3] -
® & &---@0——9 0 6-——8
d-p d+p=2 dip-1 d d+p-1

Figure 1: Solution to a 1-dimensional jumping problem when d > 2p — 1.

(new) back piece forward and the (new) front piece forward, resulting in
the original configuration (now translated two spaces forward). When the
front piece reached position d, the pieces were “collapsed” to the desired
destination placement in the obvious way. This was shown to be optimal
by means of an elegant induction argument which employed a metric that
diminished as the front and back pieces neared their destinations. The
trajectory is illustrated in Figure 1 when d + p is odd. (The trajectory
when d +p is even is similar.) Notice that when d is large, almost all of the
time is spent repeatedly performing the same three-move sequence.

Next, we consider a 1-dimensional “forward jumping” problem with des-
ignated origin O = {0y,...,0,}« (notation: ¢y < -+ < 0,) and destination
D = {6;,...,6p}<, with 6; > o,. We shall further assume that our pieces
are only allowed to move in the forward direction. For this problem, we
define a configuration {z,...,z,}< to be connected if z; — z;_; < 2, for
1= 2,...,p. We define a trajectory to be a sequence Xo, X1,..., X, of con-
figurations, where configuration X; can be reached from configuration X;_,
in one move. We say that a trajectory is connected if all of its configurations
are connected. We shall always use the symbols O and D to represent the
Origin and Destination configurations respectively.

Claim 1.1 In the above problem, if O is connected and D is connected,
then there is a minimum length trajectory from O to D which is connected.

Proof. We can obviously find a (generally,disconnected) “brute force”

trajectory with length 3°7_,(6; — 0;) by repeatedly shifting the front piece
from o, to é,, then shifting the next piece on o,_; to 0,1, and so on. Since
a feasible trajectory exists, a minimum length trajectory must exist. Let S
be the set of all minimum length trajectories from O to D. To avoid trivial
cases, we shall assume p > 1 and the length of each minimum trajectory to
be n > 2. We assert that S contains a connected trajectory.

Suppose, to the contrary, that no such connected trajectory exists.
Thus every minimum length trajectory contains a disconnected configu-
ration. For each trajectory T € §, T = (O = Xo,Xy,..., X1, X, = D)
(where X} is the k** configuration, reachable in one move from Xk-1), let
ir = Min—o,.. n{¢ : X; is disconnected}. Since O and D are connected,
1 < iy < n -1, and the configuration X;,_; = {a1,a,,...,a,} must
have been connected, and became disconnected after moving forward the
piece located at, say, position a;. Define jr = j, and give T the label
(?r,J1r). Now choose T* to be any trajectory with label (i7+,31+) = (3,7)
where i7. = maxres{ir} and jr. = minges{jr : ir = i}. In other words,
T~ delays disconnecting until the last possible moment, and does so with
the rearmost piece possible, without loss of optimality. Let T = (O =
Xo»X1y.-.,Xn 1, X; = D). Thus, X7, = {a1,...,a,}< is connected, but
after moving the piece on a; forward, we reach X; = {cy,...,c,} which
is disconnected. Notice that since the piece on a; either shifted forward
to 1 + a; or jumped over a piece on 1 + a;, we must have ¢, = a; for
k=1,...,7 —1and ¢; = 1+ a;. It is clear that j # 1 and that the
only disconnecting “gap” created by this move must exist between the
pieces on ¢;_; = a;_; and ¢; (i.e., ¢; — ¢j—1 = 3). Thus, since D is con-
nected and backwards movement is prohibited, we must eventually move
forward one of the pieces located on a; for some k € {1,2,...,5 — 1}.
Suppose the next time we move one of these pieces is on the #** move
where ¢ > 1. Let X,y = {b1,...,b,}<. (Now here’s the key idea.) Since
by =ay,...,bj_1 =aj_y and b; —b;_; > ¢c; — aj_iy = 3, the piece situated at
b, may not move beyond 1+b,_, since no piece occupies 2+b;_y. Therefore,
all pieces situated beyond 1 + b;_; are not relevant toward executing this
move. Consequently, this same “move” (that is, physically moving the piece
on aj, = b) could have been executed just before the move i actually made
in T, rather than at move ¢. Since movesi+1,...,t—1 do not concern the
pieces on b; through b;_;, we would still reach the same configuration X,

after the ¢t** move. Hence, we have a new minimum trajectory that post-
pones the “offending” i** move another turn. If this new i** move preserves
connectivity, then we have contradicted the definition of i7.. If this move
disconnects the configuration, then we have contradicted the definition of
Jr+ since k < j. Either way, we are provided with the desired contradiction.
O

What does such a claim do for us? It assures us that, for this particular
problem, when origin and destination are connected, we can restrict our
attention to connected configurations without loss of optimality. We can
therefore fit each configuration into a boz of length 2p—1. If two placements
of our pieces are considered, in some sense, to be equivalent, should they
look the same when “left-justified” in our box (i.e., they are translates
of each other), then we have reduced the number of possible “different”
configurations down to 2P~ (if the first piece is fixed at z1,then z;,, = 142
or 2+ 2,1 =1,...,p— 1), a quantity which not only is finite, but does
not depend on the “distance” between O and D. The usefulness of such a
bound will become apparent in the next chapter.

1.2 Higher-Dimensional Jumping Problems

We now direct our attention to the higher dimensional version of the jump-
ing problem from the last section. Here, the m-dimensional integer lattice
Z™ is our game board, and at each move, exactly one piece is displaced.
The movement rules are analogous to those given previously. Specifically,
letting e; denote the i-th unit vector of Z™,i = 1...m,ifa piece is situated
at the point z € Z™, and the point z + e; is unoccupied, the piece can shift
there; similarly for — e;. If = + ¢; is occupied, but z + 2e; is not, then
the piece can hop over the occupant of z + ¢; to arrive at z + 2e;, where it
may either remain or hop over another adjacent piece, etc. (Similarly for a
hop over z — e; to z — 2¢;.) A move consists either of a shift or a jump (a
sequence of one or more hops by a single piece). Our objective is to trans-
fer, in the minimum number of moves, the pieces from some configuration
near the origin 0., to a specified destination far away, parameterized by the
scalar d.

For example, if we consider the two piece, two-dimensional jumping
problem with origin {(0,0),(1,0)} and destination {(d,d — 1),(d,d)}, the

LY ® —t ‘_.‘_> L o
® o @
(a..o) *d.1) e, d-0)

Figure 2: Solution to a two piece, 2-dimensional jumping problem.

trajectory presented in Figure 2 is indeed optimal. The notation X —*» ¥
in the figure denotes using s moves to reach configuration Y from configu-
ration X. One point in the configuration is labeled with its position in Z2,
and the positions of the remaining pieces are thereby automatically deter-
r.nined. Notice that almost all of the time is spent in configurations ee and
..

In 1985, Belur and Goldman solved the three piece, two dimensional
jumping problem. Here, the prescribed origin configuration was the “lower
triangle” situated at the points (0,1),(0,0) and (1,0). Our destination con-
figuration is the “upper triangle” situated at the points (d—1,d), (d,d),and
(d,d — 1) for some prescribed positive d.

The solution is portrayed in Figure 3. Notice that the second and fifth
configurations are merely translates of each other (in the direction (1,1)),
and the same sequence of three moves is used to reach the subsequent
configurations. The sequence requires 3d — 1 moves. This was shown to be
minimum by projecting down to a simpler 1-dimensional problem, similar
to the one analyzed in the previous section.

Based on the “speed of light” results of the following subsection, an
optimal solution to the analogous two dimensional four-piece problem (for
d sufficiently large) would spend most of its time performing the two-move
maneuver of Figure 4.

For the general p-piece problem (p > 4) in two dimensions, the following
two solutions are conjectured to be optimal. The first solution is to use

e oo °
oe @

- (0,0) (0,0) - (0,0)

o0 00 o0
Q.) T @

. (.b;l) o . (1 ,.‘_1‘) o 7(2;2.)

., e eo
T e T 7 e

(d-1,d-1) (d,d-1)

Figure 3: Solution to the 3-piece 2-dimensional jumping problem.

L ® e
@ .—HQ .————>O o
| (%+1,xH)
L N @

(x,x) (x+l,x) (x+1,x)

Figure 4: Solution to the four piece, 2-dimensional jumping problem (in-
termediate phase).

-® K & 4: '..~
F T 3 T 1 e
| . s) ° .‘ ..
(x,x) Gblyx) - (ekl,xdl) (efluxbl) (bl tl)

Figure 5: Conjectured solution to the p-piece 2-dimensional jumping prob-
lem (intermediate phase).

the aforementioned optimal 1-dimensional configuration to crawl along the
y = 0 axis, then after “turning the corner”, to crawl along the = = d
axis in a similar way. The other solution is to maneuver into a diagonal
configuration, and repeatedly use a three-move procedure (see Figure 5) to
translate it in the direction (1,1) until we are near (d,d). (In Figure 5,
the two alternatives for the third configuration correspond to the different
possible parities of p.)

1.3 Speed of Light Configurations

As in the last section, we are interested in efficiently moving a collection of
p indistinguishable pieces over the integer lattice Z™, using the movement
rules of the jumping problem described in the last section.

We begin with some definitions. A placement of pieces is a size p subset
of Z™, usually denoted as X = {z;,...,z,}. We define the center of a
placement X to be ¢(X) = :7 1, which is a vector in ;jZ"‘. For place-
ments X and Y, the scalar quantity d(X,Y) = (c¢(Y) — ¢(X))T1,, is then
defined as the displacement from X to Y, where 1,, is the vector of all ones.
Loosely, displacement measures the distance between placements, where the
directions e; are viewed as positive directions. Note that d can be negative,
or non-trivially zero. For n > 1, a (n-move) trajectory Xo,X;,...,X, is a
sequence of placements where X;,; is reachable from X; in a single move.
The speed of an n-move trajectory from X to Y is defined as d(X,Y)/n.
The results of this section came about from an attempt to characterize the
speediest trajectories.

Theorem 1.1 The mazimum trajectory speed is < 2 — ﬁ, where p > 2 is

10

the number of pieces. When p =1, the speed is bounded by 1.

Proof. By linearity and telescoping, we have d(Xo, X,.)/n = ¥, d(X;_;, X;)/n
for any trajectory X. That is, the speed of the trajectory Xi,...,X, is
equal to the average of the speeds of its moves. Hence it suffices to prove
that any single move (say from X to Y') has its speed (equal to d(X,Y)
since n = 1) bounded by the above constant. Note that by definition, if
X ={z1,...,zp} and Y = {y1,...,yp}, then d(X,Y) = %Zfﬂ(y,' —z;)T1,.
Thus, if the placement Y is reached from X in a single move, say by mov-
ing the piece at z; to y;, then d(X,Y) = %(yj —z;)T1,,. Thus, when p = 1,
d(X,Y) = tel 1, = £1. Now suppose p > 2. A shifting move has speed
(equal to its displacement) of ; <1<2-— 12>’ since p > 2. Note further
that since a hop from z to z + 2e; implies that there must have been an-
other piece at = + e;, a jump from X to Y can have an excess of at most
p — 1 positive-displacement hops over negative-displacement hops, and so
has speed at most %Z(p -1)=2- 12_7’ as asserted. O

When X = {0,,€;,3eq,5€;,...,(2p—3)e; } and we “long jump” the piece
at 0, to (2p — 2)e;, the upper bound is attainable. Note however, that this
speed is not sustainable; the above move cannot be followed immediately
by another long jump. In fact, the next theorem shows that a “repeatable”
trajectory has speed at most 1.

We say that placement Y is a translate of X if there exists a € Z™ such
that Y = X +a (i.e,, {y1,...,9p} = {z1 +a,...,2, + a}). Such placements
X and Y are said to be represented by the same configuration. Next we
define the following convenient (though somewhat abusive) notation. For
z € Z™ define ||z|| to be 2T1,,, and for all integers M, let the border M be
{z € Z™ : ||z|| = M}. When M = B(X) = min!_, ||z;||, for placement X,
then such a border is called the back border of X and is said to have value
B(X). Replacing min with max provides us with analogous front border
definitions, and notation F(X) analogous to B(X). When we say that a
piece is situated on border M, we mean that it occupies a point in border
M.

Theorem 1.2 Let Y be a translate of X. Then any trajectory from X to
Y has speed at most 1.

11

Proof. Suppose Y = X + a for some a € Z™. For ease of notation,
assume that y; = z; +a,7 = 1...p, whence d(X,Y) = i Py —)71,
= i ? ,aT1, = ||a||. Next observe that at any move, the value of the back
border cannot increase by more than 1. For example, let z be the location
of a piece on the back border of some placement. If the piece at z does not
move, then clearly, the back border’s value cannot increase. If the piece
at ¢ does move (in such a way that the border value increases), then the
new placement must have a piece at = + e; for some i. (If the move was
a shift, this is clear; if the move was a jump, the piece at z had to make
an initial hop over a piece situated at = + e; for some i.) Hence, after this
move, the new back border’s value could not have increased by more than
1. Since B(Y)) = mini_, ||(z; + a)|| = mini_, [|z:[| + [[a|| = B(X) + [laf, it
follows from the previous observation that the number of moves n needed
for a trajectory from X to Y is at least ||a| = d(X,Y). If d(X,Y) < 0,
then since n > 1, the trajectory has non-positive speed. Otherwise, since
n > d(X,Y), its speed is d(X,Y)/n < 1. O

A placement X is called a speed of light placement if there exists a
non-zero vector a € Z™ and a speed one trajectory (called a speed of light
trajectory) from X to X + a. Since the rules of our game depend only
on the relative positions of our pieces, it is clear that if X is a speed of
light placement, and Y is a translate of X, then Y is also a speed of light
placement. Thus, a speed of light configuration is well defined, and has the
obvious definition. In figure 6, we illustrate speed of light configurations
for the two dimensional case (where p = 1,2,and 4, respectively). In fact,
the next theorem demonstrates that these are the only such configurations
in two dimensions, and essentially the only ones for higher dimensions, too.

Theorem 1.3 The following are speed of light configurations:

the atom {z} (whenp=1),

the frog {z,z + ¢} 1 <i<m (when p=2), and

the slug {z,z + e,z +e +ej,z2+2e;+e;}1<i#j<m (whenp=4).
No other speed of light configurations ezist.

Proof. The first part of the theorem is straightforward. The atom can
translate itself (in the direction e;) by shifting itself from {z} to {z + €;},

12

o
o e L N
® o0 o) W)
Atom Frogs Slugs

Figure 6: Speed of Light Configurations

a speed one maneuver when p = 1. The frog {z,z + ¢;} translates itself (in
the direction e;) in a single hop to {z + €;,z + 2¢;}, a speed one maneuver
when p = 2. When p = 4, the slug performs two consecutive double jumps
to go from {z,z + e;,z + €; + €j,z + 2¢; + e;} to {z + e; + ej,z + 2e; +
e;, ¢ + 2e; + 2e;,z + 3e; + 2¢;}, translating itself in the direction e; + ¢; in
two moves.

We establish the second part of the theorem by proving a series of
necessary conditions that must be satisfied by speed of light objects.

Lemma 1.1 Every move in a speed of light trajectory must simultaneously
increase the values of the back border and the front border.

Proof. As argued in proving theorem 1.2, a m-move trajectory from X to
X +a has speed ||a||/n, where n > ||a||. Note that B(X +a) = B(X)+ ||e|,
F(X +a) = F(X) + ||a|]|]. We observe (as in the proof of theorem 1.2) that
the functions B and F' cannot increase by more than 1 each move. Hence,
in order for n = ||a||, we must simultaneously increase the values of both
borders each move. O

Lemma 1.2 Let X be a speed of light placement. Then there is a unique
piece on border B(X), and a speed of light move must “jump” that piece to
a point on border F(X) + 1.

Proof. This follows immediately from Lemma 1.1 and the fact that only
one piece moves each turn. O
In fact, we have

13

Lemma 1.3 Given a speed of light placement X and B(X) < M < F(X)
there is at most one occupied point ¢ € X with ||| = M.

)

Proof. Suppose, to the contrary, that more than one piece is situated on
border M. By Lemma 1.2, the first M — B(X) moves of the trajectory
involve moving pieces from borders with values less than M to borders
with values greater than M, after which our new back border has value
M. But then this border has more than 1 piece, contradicting lemma 1.2.
(Note that we are using the fact that all intermediate placements in a speed
of light trajectory are themselves speed of light placements, and that the
“movement pattern” of such a trajectory can be repeated to produce an
arbitrarily long speed of light trajectory, if desired.) O

Notice that when p = 1, the atom is the only configuration. Henceforth,
we shall assume that p > 2.

Lemma 1.4 When p > 2, every move in a speed of light trajectory is a
jump.

Proof. Since p > 2, we have F(X) > B(X) by lemma 1.2. Since a shift
can not take a back border piece beyond border B(X) + 1 < F(X), it
cannot expand the front border, as required. O

Notice that in a speed of light trajectory, for a piece on border M to
make “forward progress”, it must hop over a piece on border M + 1 and
land on border M +2. (Here we are using the fact that all moves are jumps
and that each hop changes the piece’s border value by an even amount,
ruling out the possibility of hopping over border M during the jump.)

Lemma 1.5 Every speed of light placement X has at least one piece on
every border between B(X) and F(X).

Proof. By definition, the back border and front border are occupied.
Suppose, to the contrary, that there is no piece on some smallest border
M where B(X) < M < F(X). The first M — B(X) — 1 moves of a speed
of light trajectory starting at X must jump pieces from the back border
(initially B(X), then B(X)+1, then... M —2) to a new front border beyond
F(X) > M. At move number M — B(X), the back border has value M — 1
and a unique piece there, but there is no piece on border M over which

14

that “unique piece” can hop. Hence, the speed of light trajectory could not
repeat itself, a contradiction. O
Thus, by lemmas 1.3 and 1.5, we have

Lemma 1.6 Every speed of light placement X must have ezactly one piece
on each border between border B(X) and border F(X). Consequently,
F(X)=B(X)+p-1.

Lemma 1.7 If X is a speed of light placement with p > 2 pteces, then p
must be even.

Proof. By Lemmas 1.2 and 1.6, the first move must jump a piece from
border B(X) to border B(X) + p. Since that piece can only jump to a
border whose value has the same parity as B(X), p must be even. O

We note here that by lemma 1.4, when p = 2, all speed of light config-
urations must be of the form {z,z + ¢;} for some 1 < i < m, i.e., the frogs.
By lemma 1.7, p # 3. Henceforth we shall restrict our attention to the case
where p > 4.

It remains to prove that the only possible remaining speed of light con-
figurations are of the slug variety. The argument we give is a little tricky.
Let z be an arbitrary point in Z™. Let ||z|| = M. Now imagine that we
have a speed of light trajectory which makes one move every second. Sup-
pose, without loss of generality, that the sole front border piece of our speed
of light placement X is presently (¢ = 0) situated at . We shall focus our
attention on only those points in Z™ that occupy borders of value M or
higher. Thus at ¢ = 0, all that we see is a single piece, situated at z (see
Figure 7).

When ¢ = 1, the front border’s value has increased to M + 1. Since z is
the only occupied point in border M, the new front border piece must have
made its final hop over z to land on the point z + e; for some 1 <1 < m.
At t =1, we see, as in Figure 8, a piece at z and one at z + ¢;.

When ¢ = 2, the front border’s value has increased to M + 2. The
piece which landed there hasd to make its final hop over the (only) piece
on border M + 1, located at z + ;. Hence the piece on border M + 2 must
be situated at z 4 ¢; + €, for some 1 < j < m. We now show that j # 1 by
the following

M

Figure 7: What we see when ¢t = 0.

X X*C"

M+

Figure 8: What we see when t = 1.

15

16

Figure 9: What we see when t = 2.

Lemma 1.8 If the number of pieces is at least 4, the direction of the final
hop of a speed of light move must be different from the direction of the final
hop in the previous speed of light move.

Proof. Suppose that in the previous move, the jumping piece’s final hop
was over a piece situated at y to land on y + e;, becoming the unique
front-border piece. Then the jumping piece of the current move must have
hopped over y + e; to reach border ||y|| + 2; if its final hop had the same
direction as that of the previous move, it must be on y + 2e;. But if that
were the case, then the piece on y + 2e; must have originated from y. But
the piece at y could not have moved because (since p > 2) it is not a back
border piece. O

Thus, at t = 2, we see three pieces, situated at =, z + €;, ¢ + ¢; + e,
where 1 <1 # j < m. (See Figure 9.)

When t = 3, a piece is jumped to the new front border M + 3 and, since
it had to hop over the piece at = + €; + €;, it must end up at z +e; + e; + e
for some 1 < k < m. By Lemma 1.8, we know that & # j. We now show
that, in fact, K = i. The new front border piece, before it made its final hop
over £ +e;+e; to £ +e; + €; + e,, must have been at the point z+-e; +e; —e;
on border M + 1. But how did it get there? It had to hop over the sole
piece on border M, situated at z. But this requires e; + e; — ex to be a
unit vector, which is only possible when £ =7 or k = j. And since k # 7,
we have k = i. Hence at t = 3, we see four pieces, situated at z, ¢ + e;,
z + e; + e, and z + 2e; + e;, as in Figure 10.

17

] il
Figure 10: What we see when ¢t = 3.

When t = 4, the back border piece, wherever it is, jumps to border
M + 4, landing on z + 2¢; + €; + €, for some 1 < k < m. Hence, its final hop
originated from z + 2e; + €; — € on border M + 2, and the hop before that
(over the piece on z + e;) must have come from z + e; — e,. But in order for
the hop over z + e; to be legal, (z +2e; +¢; —e) — (z +€;) = e; + €; — e
must be a unit vector. Since k # 7 by Lemma 1.8, we have k = j. Thus,
the hop over = + e; was to = + 2¢; and therefore originated from =, which is
occupied. Thus, the piece at z must be the back border piece when ¢ = 4.
Hence, p = 4, and the pieces seen in Figure 10 are all the pieces (and are in
the slug configuration). By reversing the last four moves, we see that our
original speed of light placement X was also a slug. Specifically, at ¢t = 0,
the pieces occupied the points, y, y + e;, y + €; + e;, and y + 2e; + e;, where
y =« — 2e; — e;. The theorem is proven. O

As a consequence of this theorem, we see that no speed of light config-
urations exist when the number of pieces is three or greater than four. In
these cases, it is easy to see that there exist configurations which are trans-
latable with speed 2/3. For example, see Figures 1, 3, and 5. The question
of whether the speed 2/3 is optimal for the two (and higher) dimensional
problem, when p = 3 or p > 4, remains open. If this is the case, then
(for d sufficiently large) the first conjectured solution to the 2-dimensional
problem (see the last paragraph of the previous section) would be “almost
optimal”, when p =3 or p > 4.

18

1.4 A Sliding Problem

Here we consider a 1-dimensional sliding problem on Z! with p indistin-
guishable pieces. A piece situated at point z can slide to point Y in one
move, provided that y is unoccupied, and all points between z and y are
occupied. (Note thatif y =z + 1 or y = & — 1, then the slide from z to Y
is simply a shift.) The pieces originally occupy the points in @, where @ =

{ai,as,...,8p}< (i-e,, a1 <@y <:-- < @), and we wish to maneuver them
to occupy the points of D = {b,b,,...,b,}< in as few moves as possible.
Let us define for any placement X = {z,,2,,...,2,}., the back border of

X to be z; and its front border to be z,.

Claim 1.2 When b, > a,, the unique solution to this problem is: each
move, slide forward the piece that is farthest back and not on a destination
point. The optimal sequence of moves requires A = b, —a, — (p—1) moves.

We denote the optimal trajectory described above by T'. T begins with
an opening leading to a “long slide configuration” (i.e., all p pieces are
scrunched together—no gaps) with front border at a,. This is followed by a
sequence of “long slides” (i.e., sliding the back piece to the front) until the
back border reaches b;. At this point we ignore the piece on b, and proceed
as before, depositing subsequently-fixed pieces on b,,bs,..., b, in turn.
Proof. First, we make some useful observations:

o The front and back borders cannot change by more than 1 in any
move (i.e., they are “discrete continuous” functions).

* A move can simultaneously increase (or decrease) both borders, if and
only if the pieces are in the long slide configuration (i.e., the difference
between the front border and back border is p — 1).

¢ At any given move, a particular piece can move to exactly 2 locations—
the next unoccupied spot in front of or in back of the piece.

e Since all moves are reversible, there is an obvious one-to-one corre-
spondence between sequences of moves (trajectories) that take O to
D and trajectories that take D to 0. This correspondence preserves
the length (i.e., the number of moves) of the trajectory.

19

We begin by proving the claim when the origin is already in the most
efficient configuration.

Lemma 1.9 The above theorem is true when ap—a; =p—1 (ie., when
we start out in the long slide configuration), and the destination obeys the
(weaker) data assumption that b, > a,. Furthermore, T ezpands the front
border each turn.

Proof. First observe that since a, = a; + (p—1), we have A = b, —q,,, i.e.,
A is the difference between the front borders of the origin and destination.
Thus, by discrete continuity of the front border, any trajectory from O to
D requires at least A moves.

We now prove inductively, that there exists a trajectory from O to D
of length A. Notice that

A=b—a—(p-1)>2(b1+(p—1)—a;—(p—1)=b, —a, >0,

and that equality holds if and only if b; = a; and b, = b, + (p — 1), (i.e.,
by, = ap); that is, A = 0 if and only if O© = D. Thus, the base case A = 0
is vacuously satisfied by the “null” trajectory. Now suppose, inductively,
that there exists a trajectory of length A for all origin-destination pairs
satisfying the conditions of the lemma with A < k (k > 0). Next, consider
an origin-destination pair satisfying the lemma’s conditions with A = k+1.
Let D' be the position obtained by sliding the front piece of D sdrawkcab.
This produces a position with the front border diminished by 1. (The data
assumption remains true since A > 1.) Thus, for the pair (O, D'), we have
A = k. By the induction hypothesis, there exists a trajectory which takes
O to D' in exactly k moves. By sliding the former front piece forward again,
we reach the destination D. Thus, we have found a trajectory which takes
the pieces from O to D in k + 1 moves; the induction is complete.

Next, we show that the trajectory T (described in the Claim) takes
A = b, — a, moves when the conditions of the lemma are satisfied. We
proceed by induction on p. When p = 1, our trajectory merely moves the
sole piece forward A = b, —a, times, as asserted. Inductively, our trajectory
with p pieces spends its first b; — a; moves moving the current back piece to
the front, at which point the new back piece is at destination point b;. The
rest of the trajectory proceeds as if we started with p— 1 pieces in compact

20

formation, with the back piece at position b; +1 and hence with front piece
at position b; + 1 4 (p — 2). By the induction hypothesis, this subproblem
takes b, — (by + 1 + (p — 2) moves. Thus, the total number of moves used
is (by — a1) + (bp — (b +1 +(p — 2)) =by,— (a1 +(p—1))=bp—ap=A,as
desired.

To prove uniqueness, notice that since A = b, — ap, any optimal tra-
jectory must increase the front border at every move. Consider any in-
termediate configuration in an optimal trajectory. Let be the location
of that piece which is farthest back and not on a destination point. We
now show that we must move the piece at = forward, by showing that any
other move would ultimately lead to a move that did not expand the front
border. Clearly, in order to expand the front border each time, we must
always be moving our pieces forward. If we moved forward a piece that
was behind z, then that piece left a destination point b;. Thus, we have at
most 7 — 1 pieces occupying the at most i — 1 destination points behind b;,
with b; unoccupied. Thus, at some point we will have move a piece back to
“reclaim” one of these 7 destination points. Such a move will not expand
the front border; thus it is not optimal to move forward a piece behind z.

Next, suppose we move forward a piece, located at z, that is in front
of . Such a move necessarily creates a “gap” at z, separating the piece
at ¢ from the front border piece. When it comes time to move the piece
on z forward (which must eventually happen since z is not a destination
point), a gap will still exist between z and the front border piece because
the only moves which could close the gap are backward moves in front of
z (which can not be optimal) or forward moves of pieces behind (which
as previously argued also cannot be optimal); thus we will be unable to
expand the front border on this move. Hence, the only possible optimal
move is to slide ¢ forward. Thus T is the unique optimal trajectory, as
asserted, and the lemma is proved. O

To prove the theorem, let us consider an arbitrary (O, D) pair satisfying
the conditions of the theorem (here, b; > a,). We aim to prove that T is
the unique optimal trajectory taking O to D. We define a scoring function,
D (like the one used by Castells and Goldman (1983)) for any intermediate
configuration {ci,...,¢cp}< as D(ci, . .., ¢p) = |bp—cp|+|b1—c1|. Thus, Do =
d(0) = (b,—ap)+ (b —a1), and D(D) = 0. Recall that A = b,—a;—(p—1).

21

Thus it suffices to prove that T takes the pieces from O to D in A
moves, that A is the minimum number of moves needed to take D from D,
down to zero, and that this can be done in precisely one way.

To see that T takes A moves, note that the first [a, — a; — (p — 1)]
moves of T expand the back border (i.e., we move the back piece forward;
this follows from b; — a; > a, — a;) but do not expand the front border
because the front piece and back piece are more than p — 1 apart. After
these moves, the front piece and back piece are exactly p — 1 apart, and
hence all spaces in between are occupied. Let us call this configuration
(with back piece presently at the point a, — (p — 1)) configuration LS (for
Long Slide). From this placement of LS, our lemma asserts that T takes
b, — a, moves to attain destination D. Thus, T takes our pieces from O to
Dina,—a;—(p—1)+ b, —a, =b, —a; — (p— 1) = A moves. .

Next, we notice that from any configuration, D can decrease by at most
2 in a single move. The only way D can decrease by exactly 2 is when
both the front and back borders move closer to their destinations. This
can only occur when the front border is less than b, and we make a “long
slide” forward, or the back border is greater than b,, and we make a long
slide backwards.

Note that when p > 1, an optimal trajectory must eventually make long
slide moves, for otherwise D would diminish by at most one each move and
therefore at least dg = b, — a1 + by — ap > b, — a; > A moves would be
required when p > 1. Next, we show that long slide positions with front
border strictly less than a, are undesirable. Roughly, if we use L (leftward)
moves retracting the front border to a, — L, we earn the right to perform
L more long jumps, but at the cost of having L more spaces to travel than
before—a net waste of L moves.

More rigorously, let a, — L be the front border of the leftmost long slide
configuration in our trajectory. Denote the back border, a, — L —(p—1), by
a'. At least L moves are spent bringing the front border down from a, to
a, — L. If @’ > a,, then at least a’ — a, other moves are spent bringing the
back border up from @, to a’, and by our lemma, at least b, —a’' — (p — 1)
other moves are spent maneuvering from LS (with back border a') to D,
resulting in a total of at least L+ (a’ —a1)+(bp—a'—(p—1)=L+A > A
moves. If a' < a,, then the total number of moves needed is at least

L+0+(bp—ad —(p—1)>L+b,—a;—(p—1)=L+ A > A. Likewise,

22

it does not pay to have the back border of LS strictly greater than b, (say
at b; + R), since we would need at least b, + R — a; moves to reach LS,
then at least R backward moves to bring the back border back, and (by our
lemma) at least b, — (b, + R) — (p — 1) forward moves to go from LS to D,
thus requiring a total of at least (b; + R—a,)+ R+ [b,— (b1 + R)—(p—1)] =
R+b,—a;—(p—1) = R+ A > A moves, which would be suboptimal.
That is, to perform a LS in an optimal trajectory we must have its front
border less than b, + (p—1) and (from earlier this paragraph) at least at a,.
Therefore, since it is obviously sub-optimal to repeat the same placement
in a trajectory, any optimal trajectory can perform at most b; +(p—1) —a,
long slides, which is precisely the number that T uses. Hence T must be
optimal, since it diminishes D by 2 the maximum number of times, and
diminishes it by 1 at all other moves (because b; > a,, all the pre-LS moves
bring the back border closer to b; (without affecting the front border) and
all the post-LS moves bring the front border closer to b, without affecting
the back border). Furthermore, any optimal trajectory must perform all of
these long slides, and therefore reach configuration LS (with front border
ap,). We know from our lemma that T is the unique optimal trajectory
from LS to D. (Note by > a, > ap, — (p — 1).) Similarly, by our lemma,
“the reversal of T”, call it T", is the unique optimal trajectory from LS to
Q. (Here we need the data assumption b; > a, since the first “destination
point” is a,.) Our lemma asserts that 7" will always increase its front
border (i.e., bring it closer to O). Thus the reversal of T' (from O to LS)
always increases its back border, which is never at a destination point since
b1 > a,. Thus, the reversal of T’ from LS to O is just T from O to LS.
Therefore, T is the unique optimal trajectory from O to D, and requires
exactly A moves. The claim is proved. O

The solution is illustrated in Figure 11; most of its time is spent (when
by > a,) performing the “long slide”, a one-move sequence.

1.5 Summary

All of the preceding solutions share a common feature. When the distance
between the origin and destination is sufficiently large, most of the cost
(i.e., the number of moves) is spent repeatedly translating one or two con-
figurations (such as ee and e in the two piece jumping problem solution,

23

1
®------ S ——ege—eo—
u1 e R *»
1 1y 1
esge-— a8 — 6 0--- &8 -
a_-pr l+a a_=~p+3 ‘
? -~P P P
© hawbeprl
see---9¢—1—0----—2
1 b1+p-l bJ. ‘bP

Figure 11: Solution to a 1-dimensional sliding problem.

or LS in the sliding-problem solution). This resembles the phenomenon
that if one had to efficiently drive a great distance (say from Baltimore to
Los Angeles), one would spend most of the time on (perhaps only one or
two) high speed interstate highways or turnpikes.! Instances of this turn-
pike theme have been identified in the operations research literature, mak-
ing both theoretical and algorithmic contributions toward solving knapsack
problems (see Gilmore and Gomory 1966 and Shapiro and Wagner 1967)
and Markov decision problems (see Shapiro 1968). The theme has been
somewhat more prominent in mathematical economics (see Cass 1966 and
McKenzie 1986). In a similar spirit, we are led by the procedding examples
to attempt a unification, by identifying and proving turnpike theorems for
general maneuvering problems.

1Strictly speaking, a turnpike is a high speed highway where some toll is charged, as
opposed to a freeway. We shall not make use of this distinction.

24

Chapter 2
Graphs, Maneuvers and Turnpikes

2.1 One Dimensional Turnpike Theory

The general problem of finding a minimum cost sequence of moves from one
subset of Z' to another can be viewed as a minimum cost path problem on
an infinite directed graph, where each node represents a possible placement
of the pieces on Z', and there exists an arc with weight ¢ directed from node
X tonode Y if it is possible to reach ¥ from X in a single move with cost c.
(In our earlier examples, each arc had unit cost.) Of course, unless we make
some additional assumptions about the rules for movement (and hence, the
associated graph), we cannot hope to make any useful statements about
these problems in general.

Before presenting such assumptions, we clarify the concepts of config-
uration and placement, and develop a useful notation. At each moment
in time (i.e., before each move) our pieces are arranged in some configura-
tion X, whose back piece is situated at the position a € Z!. We will refer
to (X,a) as a placement of configuration X at the point a. For example,
Figure 12 illustrates the situation where p = 3, X = e e o and a = 4.
Thus, if we consider placements to be “related” if they are translates of
each other, then configurations are precisely the equivalence classes under
the translation relation. In this more discriminating terminology, “config-
uration” matches the intuitive notion of “formation”, while a placement is
a “placed configuration”. The notation (X,a) — (Y,b) denotes moving
from (X, a) to (Y,b) with cost ¢ (e.g., in ¢ moves). If no c is identified, it
is assumed that ¢ = 1. [The choice of representing the position by its back
piece is a fairly arbitrary one. The front piece, second piece, or location
of its center of gravity (as in section 1.3) would also be acceptable, and in
certain proofs, may be easier to work with. For instance, if one piece has
special properties, its location may be a natural position parameter.] We
are now ready to state our assumptions on 1-dimensional movement, which

we abstract from the properties of the particular cases discussed in Chapter
1.

25

X= @ @ L X,a)=0 @ e
4 5 6 7
a =4 ’

Figure 12: Configuration X and placement (X, a).

2.1.1 Rules-for-Movement Assumptions over Z!

We are interested in moving a collection of objects (called pieces) from one
subset of Z'! to another at minimum cost, subject to restrictions on the
allowable moves. We assume our rules for movement obey the following
assumptions, to be discussed after their statements:

Finiteness. Without loss of optimality, we can prescribe a finite set C
of allowable configurations for our pieces. From each configuration,
there are a finite number of legal moves available.

Time Homogeneity. For all (X,a) € C x Z', the legal moves available
from (X, a) do not depend on the particular moment in time.

Cost Homogeneity. For all (X,a) € C x Z?, the legal moves available
from (X, a) do not depend on the total cost accrued previously in
reaching (X, a). ‘

Space Homogeneity. For all (X,a) € C x Z', the legal moves available
from (X,a), as well as their costs, do not depend on a. In terms
of our notation, this says that for any a,b,c,6 € Z!, and X,Y € C,
(X,a) = (Y,b) is legal if and only if (X,a+8) -5 (Y, b+ 6) is legal.

Brute Force Ability. There exist 7 > 0 and non-negative integral “brute
force” constants {c; : § > r} such that for all X,Y € C, a € Z! and
§>r,(X,a) =5 (Y,a + §) is legal.

Cycle Positivity. If (X,a) = (X,a + §) is legal, then ¢ > 0. If § # 0,
then ¢ > 0.

Remarks:

26

e By stating that the pieces must occupy some subset of Z™, we have im-
plicitly assumed that all pieces are indistinguishable and that points
cannot be occupied by more than one piece at the same time. We can

easily accommodate more general situations by changing notation.
(This is discussed further in Chapter 5.)

o For some rules for movement, the finiteness property is ezplicit— for
instance, if the rules themselves actually list a finite number of legal
configurations or require some sort of “connectivity” or “compactness
of formation”. It would be desirable, as in Claim 1.1, to derive useful
conditions sufficient for our rules implicitly to yield the finiteness con-
dition. Also, we may wish to weaken the without-loss-of-optimality
assumption to without loss of asymptotic optimality, meaning that .
the difference between the minimum trajectory cost when restricted
to our finite configuration set and the minimum (unrestricted) cost
is bounded above, by a constant which does not depend on the “dis-
tance” between the origin and destination.

e Even when time homogeneity is not strictly present, we can sometimes
modify C so that time homogeneity is obeyed. For instance, suppose
that our rules involve periodic “refueling” or “maintenance” restric-
tions like “you cannot go more than t; > 1 time units without maneu-
vering into some configuration in the set $; C C,i = 1...n.” Then
one “simply” multiplies the number of configurations by [I7-,(¢;) by
associating, with each X € C, the new configurations X(o1182,0080) 0 <
8; < ti,1 =1,...,n. The legal moves are precisely those of the follow-
ing form: supposing that X — Y when time is not a consideration
(e.g., at time 0), that J = {j : Y € §;}, and that s; < ¢; — 1 {or all
j € J, then in our restricted problem

)((,l yeey8n) N Y(a; yerrBin)

where
, _fo ifjed
%7 sj+1 ifjed

With C redefined to be {X (1) 1 X € COId,O < 8; < t;}, our rules

now obey the time homogeneity assumption. In a similar way, one

27

could accommodate restrictions of the form: you cannot make more
than t; consecutive moves of “type” 7,2 =1,...,n.

Similarly, certain cost non-homogeneities can be accommodated in
the same way as time non-homogeneities.

It would be desirable to weaken the space-homogeneity assumption
to allow for boundaries on (or obstacles in) an otherwise homogeneous
environment. This line of generalization will be explored in Chapter

4.

By space homogeneity, to verify Brute Force Ability it suffices to show
(X,0) =% (Y, 8) is legal.

We could allow the arc costs to be non-integral, and all subsequent
theorems would follow, provided that we re-interpret the notation
(X,a) =% (Y,a + 6) in the brute force assumption to mean that we
could maneuver from placement (X, a) to placement (Y,a + §) with
cost not ezceeding cs.

The non-negativity of » (as in “radius of maneuver”) in the brute
force assumption means that the existence of any legal “backwards”
moves is not guaranteed, so that our destination had better be in the
forwards direction. A stronger assumption implying “there exists ¢
such that (X,a) — (Y, a) is legal”, would exclude situations like the
“forward moving jumping problem” (analyzed in Claim 1.1) where
backwards movement was not allowed. (There would be no way to
reach (Y,1) from (X,1) with Y = eee and X = ee e, while one
could reach (Y,2) from (X,1).) We can often assume, without loss
of optimality, that for any X € C,a € Z!, (X, a) 15 (X, a) is legal;
this can ease verification (and satisfaction) of the brute force ability
assumption.

The cycle positivity assumption is needed to ensure that we cannot
make arbitrarily long progress without accumulating positive cost.

The name, “cycle positivity”, will be clear when we introduce the
C-Graph.

28

Y § ey’ Y

Figure 13: An arc in our C-Graph.

2.1.2 The C-Graph (1-Dimensional)

If our rules for movement obey the aforementioned assumptions, we can
conveniently represent our problem in terms of the following Configuration-
graph (abbreviated C-Graph). Our C-Graph consists of a vertex-set (or
node-set) C consisting of the (finite number of) allowable configurations,
and a weighted arc (or directed edge) set E, where an arc exists from node
X to node Y with cost ¢ and progress § if and only if (X,a) — (Y,a + §)
is a legal move for some a € Z' (and hence for all a € Z', by space
homogeneity). In terms of our graph, the arc in Figure 13 represents the
ability to move from placement (X,a) to (Y,a +) at cost ¢ in a single
move, for any a € Z'. As before, if no c is present, then a cost of 1 is
assumed. If no § is present, then a progress of zero is assumed. Based on
an earlier remark, we can assume without loss of generality, that a zero-
progress, unit-cost loop exists from every node to itself (to accommodate
the brute force assumption).

Consider the 1-dimensional forward moving jumping problem analyzed
in section 1.1, specialized to the situation where we have only p = 3 pieces.
By Claim 1.1 we need only consider four different configurations, namely:

A eeoe
B ee o
C o oo

De o o

The corresponding C-Graph appears in Figure 14 (é values shown, ¢ = 1).
From the C-Graph, we see that the brute force assumption is indeed valid
with » = 2, and ¢s = 26 + 1, as follows:

(X,0) 2 (4,2) 15 (C,2) -5 (4,3) 5 (4,4) 5 (4,5) 5

29

Figure 14: C-Graph for the 3-piece, 1-dimensional jumping problem.

o235 (4,6) (Y, 8)

Notice that (X,0) — (A4,2) and (4,6) - (Y,§) are possible for all X
and Y (using the loops at X or Y, if necessary).

Define a walk on a graph to be an alternating sequence of vertices and
arcs (vy,€;,v2,...,€,_1,V,) Where e; is an arc from v; to v;;;. When the
context is clear, we will omit mentioning the arcs. A walk is closed if
v; = v,. A closed walk is called a cycle (or circuit or dicycle or simple
cycle) if vy,...,v,_1 are all distinct. For a C-Graph, we define the (total)
progress of a walk to be the sum of the (progress) weights of the arcs of the
walk, where each weight is counted as many times as the associated arc is
used in the walk. Similarly, we can define the (total) cost of a walk. (When
all arcs have unit cost, this is simply n — 1, the number of arcs in the walk
counting repetitions.)

The original problem is to reach (D, d) from (O, 0) with minimum cost,
subject to our rules for movement. This is equivalent to finding a minimum
cost walk from node O to node D with total progress exactly d.

Notice that a closed walk (and in particular, a cycle) beginning and
ending at node X, with total progress § and total cost ¢, represents the
translation of pieces at (X,a) to (X,a + §) with cost ¢ for some arbitrary
a € Z'. Define the speed (or average speed or efficiency) of a cycle to be
its total progress divided by its total cost. (Note that when all moves have

30

unit cost, this is equivalent to the cycle speed definition of Section 1.3.-i.e.,
the “change of center of gravity” divided by the number of moves.) In
our one-dimensional setting, a turnpike configuration X is one that lies on
a maximum-speed cycle of the C-Graph. Recall the definition of 7 in the
brute force assumption.

Theorem 2.1 (1-Dimensional Turnpike Theorem) Consider the task
of moving a collection of pieces over Z' from (O,0) to (D, d) at minimum
cost. If the rules for movement obey the previously stated assumptions, and
d > 2r, then there ezists a turnpike trajectory of the following form: Maneu-
ver the pieces from (0,0) into any turnpike configuration, T'. Repeatedly
translate this configuration until you are close to (D,d). Then maneuver
the pieces to (D,d). Furthermore, the difference between the cost of this
trajectory (if properly chosen) and the cost of an optimal trajectory from O
to D is bounded above by a constant that does not depend on d.

Proof. In terms of our C-Graph, the theorem (loosely) says that we can
find a near-minimum cost walk from O to D with total progress d, which
spends most of its cost repeatedly traversing some one cycle of the C-Graph.

Let C be a cycle of our C-Graph with maximum average speed s = r/q.
(p > 0 is the total progress of C; ¢ > 0 is the total cost of C. Note that the
finiteness, brute force, and positive cycle assumptions imply the existence
of such a cycle.) Let T be an arbitrary node of C, and consider the following
trajectory:

(0,0) < (T,r) % (T, r+p) -5 (T,r+2p) - -+ = (T,r+2p) = (D, d)

where ¢ = Ld—:l;g-'-J and § = d — (r + zp). The cost of this trajectory is
crt+zqtes < e tcs+ d—"fi. This is our turnpike trajectory, which translates
the configuration T through progress p (i.e., traverses cycle C) z times.
Notice that » < § < r + p — 1, which does not depend on d.

Let (0,0) =, (D,d) be a minimum cost trajectory and consider the
trajectory (O,0) N (D,d) = (O,d + 7). This represents a closed walk
(from O to O) along our C-Graph with total progress d + r and total cost
c*+c,.

Now we can “decompose” the arcs of any closed walk into cycles. That
is, if the cycles of our C-Graph are C,...,C,, we can find non-negative

31

integers z,,...,z, such that if we traverse cycle C; z; times, 1 = 1,...,n,
then every arc will be traversed exactly as many times as in the closed
walk. (This can be proven by induction on the number of arcs (repetitions
counted) of the walk as follows. If the closed walk is itself a cycle, we are
done. Otherwise, it contains a node v which is visited twice (if the only
such node is the first node, then it is re-visited before the end). Hence, our
walk contains an internal closed walk which, inductively is decomposable
into cycles. After removing this subwalk from our walk, the remaining walk
remains closed, and this too, by induction, can be decomposed into cycles.
Thus, we have decomposed our original walk into cycles.)

Thus, if our closed walk (after decomposition) traverses cycle C; exactly
z; times, and C; has total progress p; and total cost g; > 0 (cf. the positive
cycle assumption), then our total progress is ‘

d +r= Z PiT;.
i=1
Our total cost is n
c+e = Z q:T;,
i=1
and so our average speed is

d+7‘ _Ei:lp‘iwi <

n >
c* + ¢, Zi:l q:T;

9

where the inequality follows from p; < sg;. Therefore, ¢* > -‘ﬁ;—'- — ¢,. Since
the cost of our turnpike trajectory is at most ¢, +¢5 + 4:’31'-, it follows that
d+r d—2r

—C,._<_C*S
8 L]

+ ¢, + cs. (1)

Thus, the difference between the cost of our turnpike trajectory and an
optimal trajectory is at most

_ - d
=2 (e test 821')_(jr—c,)=2c,+c5—§;-,

C,.+C5+

with a bound (since § < r + p — 1) which does not depend on d. O

32

Cycle speed
AB 1/2
ABC 2/3
ABC’ 1/3
AC 1/2
ACDB 2/4
BCD 2/3
BCD’ 1/3

Table 1: Speeds of cycles of the three piece jumping problem.

The preceding result is analogous to theorems given by Chrétienne
(1984), with non-consructive proofs in the manner of Gilmore and Gomory
(1966), which imply that a “maximum valued” walk from O to D with
progress d necessarily spends most of its time travelling turnpike cycles as
d gets large. Those theorems were not extended to higher dimensions.

Note that we have shown the difference in cost of the optimal trajectory
and our turnpike trajectory to be bounded by a constant which becomes
relatively negligible as d gets large. That is, we have by equation (1)

*

1.

lim

d—oo d/s -
Thus ¢* =~ d/s, for large d.

2.1.3 Examples

- Returning to the C-Graph for the three piece, 1-dimensional jumping prob-
lem (see Figure 14), we notice that it contains seven simple cycles, excluding
the four zero-progress loops (see Table 1). Cycles ABC’ and BCD’ denote
cycles ABC and BCD where the zero progress arc from B to C is used
instead of the unit progress arc.

The cycles ABC and BCD are turnpike cycles, with maximum speed
2/3. Thus, if we let ABC play the role of our turnpike cycle with p = 2 and
g = 3 and let B be our “entering” turnpike configuration within BCD, then

33

our turnpike trajectory, from origin (A,0) to destination (D,99), would be
(4,0) = (B,2) = (B,4) — (B,6) = -~

-2, (B,94) - (B, 96) — (D, 99)

with a cost of 5 + 3(47) + 7 = 153. To illustrate the merely asymptotic
nature of the “optimality” provided by such a trajectory, we observe the
lesser length, 150 = 1 4 49(3) + 1 + 1, attained (via cycle BCD) by

(4,0) - (B,0) = (B,2) = (B,4) - -+

2, (B,98) = (C,99) - (D, 99).

This last trajectory is optimal, because if we could maneuver from (4,0)
to (D,99) at a cost ¢ < 149, then the closed walk (4,0) — (D,99) 2,
(B,100) 1, (A4,101) would have a progress/cost ratio of 101/(c + 2) >
101/151 > 2/3, which is impossible by Table 1.

As another example, consider the previous problem modified by the
presence of a distinguished piece. The same rules apply, but now only the
distinguished piece is allowed to perform a double jump. We can use the
same argument as in Claim 1.1 to restrict ourselves to connected configu-
rations. Here we have 4 x 3 = 12 nodes X1, X2, X3 depicting whether the
distinguished piece is in front, middle, or back, respectively, in the config-
uration X € {4,B,C,D}. In the corresponding C-Graph (see Figure 15),
the dotted lines denote arcs with progress 0, solid lines denote arcs with
progress 1, and all arcs have a cost of 1. We can prove that the maximum
cycle speed is ?; as follows. First, we prove that all cycles that do not use
the arc from B3 to C1 (corresponding to performing the double jump) have
speed at most % We see this by removing the arc from B3 to C1 and then
projecting to the C-Graph in Figure 16. Here we have a solid (dotted) line
from node X to node Y if there exists a solid (dotted) line from X; to Y; for
some i,j. Notice that the only simple cycle utilizing two consecutive solid
lines is cycle AC DB, with speed % All other cycles must follow a solid arc
with a dotted arc and therefore have speed at most 3 in this graph, and con-
sequently in the original graph as well. Thus any cycle with speed greater
than 1 must use the solid arc from B3 to C1 in the original graph. By

34

Figure 15: C-Graph for a three piece, one dimensional jumping problem
with a distinguished piece (loops omitted).

branching from C1, we see that the minimum length path from C1 to B3
is of length 6, which by the preceding argumnent cannot have more dotted
lines than solid. Hence the speed of the cycle is at most -l—ltf—m/—g, z > 6, hence
at most 4;—. This is attained by the cycle C1—A1-C2—- A2—- B2—- A3 - B3.

As a last, and less obvious example, consider the knapsack-type prob-
lem: .
Minimizez fiz;
j=1

subject to Z hjz; =d

i=1

35

| . /

| AL// -
(F——-O)

Figure 16: A “projected” problem.

z; non-negative integer

where we assume h; = 1 to ensure feasibility, and that f;,h; > 0 for all j.
Suppose further that for all j, % < %: Then we can construct the C-Graph
with a single node X bearing n (loop) arcs, where arc j has progress h;
and cost f;. The problem becomes that of finding a minimum cost walk
from (X,0) to (X,d). (Note that h; = 1 easily gives us our brute force
condition.) Our turnpike trajectory then spends most of its cost along the
“minimum cycle” from X to X along the nth arc. This corresponds to the

feasible solution
2n = [d/hn], 1 = d — huld/hal, 25 = 0,5 # 1,n

which is nearly optimal for d sufficiently large. (This is essentially the result
of Gilmore and Gomory 1966.)

To make the correspondence explicit, observe that the above integer
program can be represented by a simple one piece, one-dimensional problem
in which our piece must move from 0 to d at minimum cost, and the jth of
the n legal moves available from the single configuration propels the piece
forward h; units at a cost of f;.

36

2.1.4 “One good turn deserves another”, and other adages

We briefly mention a few other approaches to the 1-dimensional problem,
and their drawbacks. The first natural idea is to try to prove everything
using only the pigeonhole principle like this: If we only have a finite number
of different configurations, then if the distance between the origin and des-
tination is great enough, any optimal trajectory must at some point repeat
the same configuration. “If it was optimal to do so the first time, then
surely it should be optimal to do it again!” We were unable to get such
an argument to work. Further, this idea would not likely extend to higher
dimensional problems, since there we may want to change directions (cf.
Theorem 2.2 in the next section).

2.2 Higher Dimensional Turnpike Theory

The preceding theory extends rather nicely to higher dimensions. When
maneuvering our pieces over Z™, we make the following adjustments.
Now, (X,a) — (Y,a) denotes moving from configuration X placed at
a € Z™ to configuration Y placed at @ € Z™ with cost ¢ € Z'. More
specifically, we shall assume that a = (ai,...,am) and let (X,a) denote
that placement of X such that a; is the minimum ith coordinate among all
pieces in X. (For an example, see Figure 17. As in the one dimensional
case, other measures of location such as maximum coordinate, the location
of some distinguishable piece, or the center of gravity will also work, and
may be more natural for certain problems. (The last quantity would belong

to the set iZ"‘ where p is the number of pieces.))

2.2.1 Rules-for-Movement Assumptions over Z™

We are interested in moving a collection of objects from one subset of
Z™ to another at minimum cost, subject to certain restrictions on the
“elementary” movements. We assume our rules for movement obey the
following assumptions:

Finiteness. Without loss of optimality, we can prescribe a finite set C
of allowable configurations for our pieces. From each configuration,
there are a finite number of legal moves available.

37

., ® e o (Z,ZJ (4,2) (5,2)
X = pu i
| J’ 3,1) 7
- 3 .=. (2’1) .
4 X=

Figure 17: Configuration X and placement (X, a).

Time, Cost and Space Homogeneity. For all (X,a) € C x Z™, the
costs and legal moves available from (X, a) depend only on X. That
is, for all X,Y € C,c € Z, and a,8,6 € Z™, we have (X,a) = (Y,a)
is legal if and only if (X,a + §) — (Y, & + §) is legal.

Brute Force Ability. There exist non-negative integral brute force con-
stants {cs;} such that for all X,Y € C, and a,6 € Zm, (X,a) =%

(Y,a + §) is legal. In particular, (X,a) —% (Y,a) is legal.

Cycle Positivity. If (X,a) — (X, a) is legal, then ¢ > 0. If a # &, then
c>0.

The remarks following the one dimensional assumptions remain valid.
We are assuming that our desired destination from (0, 0) is (D, db) where
D € C, d is a (large) positive integer and b > 0. If the last condition
fails, we can reverse the axes of the offending coordinates without loss of
generality. Notice that here we are using a stronger brute force assumption
than in the one dimensional version. We shall say more about this after
the proof of the next theorem.

2.2.2 The C-Graph (m-dimensional version)

The C-Graph for the m-dimensional problem is similar to the 1-dimensional
C-Graph. Here, an arc is present from node X to node Y, with cost c € Z!
and progress § € Z™, if and only if in a single move, we can move from
configuration (X, a) to (Y,a+ 6) at cost ¢ for any a € Z!. As before, if no ¢

38

is present, then a cost of 1 is assumed. We shall usually assume that a zero-
progress, unit cost loop exists from every node to itself, to accommodate
the brute force assumption.

Also, as before, a closed walk from node X to X represents a translation
of configuration X, with total progress and total cost defined, respectively,
as the sum of the walk-arcs’ cost weights and the (vector) sum of their
progress weights. Determining a minimum cost trajectory from (O, 0) to
(D,db), d > 0, b > 0, is equivalent to finding a minimum cost walk in our
C-Graph from node O to node D with total progress db. If O = D, the

walk is closed.

Theorem 2.2 (m-Dimensional Turnpike Theorem) Consider the prob-
lem of moving a collection of pieces over Z™ from (0,0) to (D, db) at min-
imum cost. If the rules for movement obey the previously stated assump-
tions, then there exists a turnpike trajectory of the following form. Letting
O = To, proceed as follows. For i = 0,...,m — 1, brute force maneuver
from configuration T; to an appropriate configuration Ty, then repeatedly
translate T;yy @,y times , z;,, an appropriate non-negative integer. Then
brute force maneuver from T,, to D. Furthermore, the difference between
the cost of this trajectory (if appropriately chosen) and that of an optimal
trajectory is bounded above by a constant that does not depend on d or b.

Proof. In terms of our C-Graph, the theorem states that we can find a
near minimum cost walk from O to D with total progress db, which spends
most of its cost repeatedly traversing m particular cycles of the C-Graph.

Suppose the cycles of our C-Graph are cycles C',...,C", where for
t=1,...,n, cycle C* has total progress a; € Z™ and total cost ¢! > 0 (not
to be confused with our brute force constants cs).

Let A denote the m x n matrix with 7** column a;,1=1,...,n. We now
use the brute force assumption to prove that A has full row rank, as follows.
Consider any X € C, and any vector v € Z™. By the brute force assumption
there is a closed walk from (X, 0) to (X ,V). As shown while proving The-
orem 2.1, this closed walk can be decomposed into cycles. Therefore v can
be expressed as a (non-negative integral) linear combination of aj,... , 8y,
t=1,...,n. Hence any integral vector v can be expressed as a non-negative
integral combination of some of the a;’s. Thus, 4 has full row rank.

39

Let M = max;;|a;;|, and let 7 = (1,...,1) € Z™. For any linearly
independent set of m column vectors {ai,...,a;,}, we can express db as
a linear combination of these vectors in precisely one way (namely as db =

j=18i;¢j, where ; = (B~1db); € Q, where a;; is the j** column of B). If
X = (21,...,2m) is non-negative, we say that the basis B — {ai,...,a;,}
is feastble, and has total cost

Y cfiz; =3 (B 'db); = ¢ B~db.
j=1 Jj=1

Now since (O, 0) Zab, (O, db) is legal and decomposable into cycles, the
system Ax = db has a feasible solution. Therefore, by the Fundamental
Theorem of Linear Programming (see, for instance, Chvatal 1983), A must
contain at least one feasible basis. The number of feasible bases is finite;
assume for ease of notation that {a1,...,a,} is a feasible basis with min-
imum total cost dcgB~'b, where B = [a,,... ,8m] and ¢f = (cl,...,c™).
Let z; = (dB7'b); € Q.. Let T: be an arbitrary configuration node on
cycle C',i=1,...,m. Then our turnpike trajectory can be constructed as
follows:

C| ! T c c? 2
(0,0) =% (T1,0) (T, |2 |ar) 0 (T3, |24 |ay) L2

i-1 o i .
(T, [o1Jas + [22)5) =5 - 5 (T3, Y |25 ay) 22 (T3, 3|2 my) <2
j=1 j=1

m-—1 m o m .
e (T, Y L25)85) 28 (T3, 3 2]8;) 55 (D, db)
j=1 j=1

where
m

6 =db — }m:[a,-jja,- =db — db + iajfj = Z(ajf,-),
j=1 j=1

i=1
and f; =z;mod 1,0 < f; < 1,ie., f; = z;— |z;|. Consequently, —-mMe <
6 <mMe, and since {§ € Z™ : ||§||o, < mMe} is a finite set, cs is bounded
above by a constant ¢ that does not depend on d or b. The total cost of
this turnpike trajectory is

TPCOST = meco + Z ct |z:] + cs < meg + Z ¢ |z;] + . (2)

i=1 i=1

40

Notice that by construction, x = (z;,...,z,)T is a (basic feasible) op-
timal solution to the following linear program:

n .
u”* = min Z ctxe;
X

i=1

subject to Ax = db,x >0

Furthermore, if c* denotes the minimum cost to reach (D,db) from
(0,0), then c¢* cannot exceed the cost of the turnpike trajectory. Hence,
by equation (2), we must have

¢ < TPCOST < mcg + ¢ + u*. (3)

On the other hand, consider some trajectory (0,0) <, (D,db) with
minimum cost c*. Since the trajectory (0,0) - (D,db) =% (O,db) is
a closed walk on our C-Graph, it can be decomposed into cycles. Thus,

db = }°7_, a;y; for some non-negative integers Yi»J =1,...,n. It follows
that ,)
¢ +eco 2 mn}yi,cdz; > minYy}, dz; = u
s.t. Ax =db s.t. Ax =db
x > 0 integer x>0
That is, :
> —cog + u”. (4)

Combining relations (3) and (4), we have
—co+u" <" <TPCOST < mecg + ¢+ u*.

Consequently,
TPCOST —c¢" < (m+ 1)co + G, (5)

which does not depend on d or b. O

By analogy to the 1-dimensional turnpike theorem, we now proceed
to prove a similar result using a weaker brute force assumption. First,
we point out that the apparent weakening,“There exist » > 0 and non-
negative brute force constants {c; : ¢ > r} such that for all X,Y € C

and a € Z™, (X,a) 2 (Y,a + §) is legal whenever ||§|| > #”, is actually

41

equivalent to the current assumption, since for any X,Y €C, a,§ € 2™,
with [|6]] <7, (X,a) =5 (Y,a+ (1 +r/||6])6) <5 (Y,a+§) would be legal,
where t = ||§]| + 7.

However, if we assume that b > 0, then we can prove the previous
theorem under a genuinely weaker brute force assumption, namely: There
exist r > 0,, and non-negative brute force constants {es: § > r}, such
that for all X,Y € C, a € Z™, and § > r, (X,a) = (Y,a + §) is legal.
This is analogous to the earlier one dimensional brute force assumption,
and is motivated by the desire to include rules for movement where we are
restricted to move only in “forwards” directions.

Theorem 2.3 When b > 0, and d is sufficiently large, Theorem 2.2 is
true under the weaker brute force assumption above. ‘

Proof. As before, let the cycles of our C-Graph be C',...,C", where for
t=1,...,n, cycle C* has total progress a; € Z™ and total cost ci > 0, and
let A denote the m x n matrix with i** column a;, i = 1,...,n. Since {v €
Z™ : v > r} has dimension m, and (by the weak brute force assumption)
lies in the column span of A4, 4 has full row rank.

Let M = max;;|a;;|, and let T = (1,...,1) € Z™. Let b = db —
mMe—(m+1)r. As in the previous proof, for any linearly independent set
of m column vectors {a;,,...,a;, }, we can express b as a linear (though
not necessarily integer) combination of these vectors in precisely one way.

Since b > 0, we must have b > r for sufficiently large d. Thus (O, 0) b,
(O, l;) is legal and decomposable into cycles, so that A must contain at least
one feasible basis for the system Ax = b. The number of feasible bases is
finite; assume for ease of notation that {a;,...,a,,} is a feasible basis with
minimum total cost ¢§ B~'b, where B = [a1,...,a,] and ef = (c,...,c™).
Let z; = (B‘lf)),' € Q. Let T; be an arbitrary configuration node on cycle
Ci, i =1,...,m. Then our turnpike trajectory can be constructed as
follows:

(0,0) =5 (T, r iy (Th,r + |21]a1) =5 (Ty, 2r + |2, | &) ¢’ 2]

i-1 s i .
(T2,2r+[:c1_|a1+[zzja2) S S 3N (T},ir—{—ztzjjaj) c—t—';l (T,-,ir+2|_:cjjaj) Lr,
j=1 i=1

J'_-

42

m-1

0 (Tnymr + Y [25]a) 58 (T, me + 3 |2;]8;) <5 (D, db)

=1 ji=1

where
6 = db—(mr+ > |z;]a;)
Jj=1

= db—mr-(B—Za,-fj) (where f; =2; mod 1, 0 < f; < 1)

j=1
= db-mr+)Y a;f; —db+ (m+ 1)r + mMe
j=1
= r+) (a;f;) + mMe.

j=1

Consequently, r < § < r + 2mMe, and since {6ezm:r<s§<
r + 2mMe} is a finite set, ¢s is bounded above by a constant ¢ that does
not depend on d or b. The total cost of the turnpike trajectory is

TPCOST = me; + Z c |zi| + c5s < mer + Z c lz:] + e (6)
i=1 i=1
Notice that by construction, x = (z4,...,2,)7 is a (basic feasible) op-

timal solution to the following linear program:
v" = min Z; c'z;

subject to Ax = B,x >0

Furthermore, if c* denotes the minimum cost to reach (D,db) from
(0,0), then c* cannot exceed the cost of the turnpike trajectory. Hence,
by equation (6), we must have

¢" <TPCOST < mer + ¢+ u”. (7

On the other hand, consider some trajectory (0,0) = (D,db) with
minimum cost ¢*. Since the trajectory (0,0) <> (D,db) =% (0,db +r)

43

is a closed walk on our C-Graph, it can be decomposed into cycles. Thus,
setting b = db + r, we have b = 2.7-1 8;y; for some non-negative integers
Yi»J =1,...,n. It follows that

¢ +e 2 min)l lc’a:J 2> miny % ch:L', = z*
s.t. Ax=Db st. Ax=Db
x > 0 integer x>0
That is,
> —cp + 2", (8)

Combining relations (7) and (8), we have
—cr+ 2" <¢" < TPCOST < mer + ¢+ u™.
Consequently,
TPCOST —c"<(m+1l)es +¢+u" — 2~ (9)

But u* and 2* denote optimal objective-function values to linear programs
with parameters (4, b ,¢) and (4, b, c) respectively. Now by theorem (2.4)
of Mangasarian and Shiau 1987, there exist optimal solutions % and X to
the above linear programs satisfying

“’Ac - i_”w < kA”B - E”ocn

where k4 is a constant depending only on A. Thus,

U —2 = ¢ X—c¢'X
= c’(x - %)
< lefleoll% — %]/ oo
< kallefleollb — blloo

= kallc|leolldb — mMe — (m + 1)r — (db + 1)
= kallc]lo[lmMe + (m + 2)r||o, (10)

which does not depend on d or b.

Consequently, by relations (9) and (10), we see that the difference be-
tween the cost of our turnpike trajectory and the minimum cost trajectory
is bounded by a constant which does not depend on d or b. O

Remarks:

44

e The theorem of Mangasarian and Shiau is stronger than we need. The
theorem says that there exist two solutions to the linear programs
which are close together, when it suffices to show that their ob Jective
function values are close together. It would be interesting to see if
this extra information could be exploited to yield stronger results.

e C-Graphs were introduced as a tool for modeling, analyzing, and solv-
ing maneuvering problems. However, the previous theorems can be
applied to any problem which can be transformed into a C-Graph
question of the form just analyzed (i.e., given a C-Graph, nodes O
and D , and a progress vector db € Z™, find a minimum cost walk
from O to D with total progress exactly db). By applying simple
modifications to the proofs of Theorems 2.2 and 2.3, we can con-
struct almost optimal turnpike solutions to other C-Graph questions
as well, as in the following three remarks which were motivated by
the non-maneuvering applications discussed in Chapter 6.

o If the origin and/or destination node are unspecified, then we choose
O and D arbitrarily and construct the same trajectory as before. If an
optimal trajectory uses endpoints O* and D*, then by brute forcing
from (D*,db) to (O, db) with cost cg, we can decompose into cycles,
and proceed as before.

o Ifthe C-Graph problem contains inequality constraints, then the proofs
of Theorems 2.2 and 2.3 can be modified in a straightforward man-
ner. Specifically, suppose our problem requires us to maneuver at near
minimum cost, from (O, 0) to a variable terminal placement, (D, A)
where D is specified and A = (A, A,, A3)T must satisfy A, > db,,
A; = dby, A; < db;. Then as before we are led to solve the linear
program min cTx subject to Ax = B, x > 0, where the appropriate
choice of b differs between Theorems 2.2 and 2.3. The construction,
brute forcing and proof are similar to those already given; the details
of the necessary modifications are given in Appendix C.

o If we have to solve a mazimization problem, say where each arc has
vector progress and a scalar value, a desirable quantity, then we have
to make some adjustments so that the affiliated LP is not unbounded.

45

Naturally, if all of our cycles had negative value, then we could negate
the value of each arc and solve the minimization problem as before,
yet this scenario is not in the spirit of arcs having positive value.
Suppose, as in Theorem 2.3 with some r > 0,,, that for any X,Y € C,
and § > r, we can brute force our way from node X to node Y making
progress exactly § with a value of cs. (Perhaps ¢s; < 0.) Thus, we can
write the C-Graph version of the brute force assumption as before.
However, in order to keep the affiliated LP bounded, we replace the
cycle positivity assumption with the following

Cycle Positivity (Progress) All cycles with positive value have
(vector) positive total progress.

In this manner, the affiliated linear program max ¢ x subject to Ax =
db, x > 0, remains bounded, as before, since z; < min;j—,_ ., db;/a;;
whenever ¢; > 0. (In the case where the LP has inequality constraints,
it too is bounded unless all the constraints are of the form Ax >
b.) Theorems 2.2 and 2.3 (as well as the material in Appendix C)
generalize: if x* = (z],...,z.) is a basic optimal solution to the
above LP, then our turnpike trajectory can be expressed exactly as
before. We get TPVALUE > me; + ¢~ 37, |c;| + u*, where ¢ is a
lower bound to a finite set, and u* is the maximum value to the above
LP. By analogy, we have ¢* + ¢, < z*, and the result follows, as in the
last proof.

46

Chapter 3
Implementation Ideas

The construction of the turnpike trajectories of the last chapter de-
pended on the solution of a linear program (LP) based on the maneuvering
problem’s C-Graph representation. To approach such a problem directly
through linear programming would require an enumeration of all cycles in
the C-Graph, corresponding to the individual variables of the LP. This may
be prohibitively difficult; for instance, if our C-Graph contains a complete
directed graph on n vertices, there will be more than (n — 1)! cycles (the
number of traveling salesman tours). Assuming, for now, that our C-Graph
is itself of manageable size, (i.e., a representation of it can be stored in a
computer), we present in our first section a “column generation ” approach
to solving the linear program without enumeration of cycles. The proce-
dure relies heavily on efficient detection of negative cycles in a weighted
directed graph. We discuss the theory of detecting negative cycles in the
following section, and make some suggestions for improving the efficiency of
a standard method. In section three, we provide some illustrative computa-
tional results. Section four sketches alternative approaches to the C-Graph
problem, including ideas for how to treat an unmanageably large C-Graph.
In the last section, we bound the possibilities for rapid solution by showing
that a decision problem, naturally associated with our C-Graph problem,
is NP-complete.

3.1 Column Generation

For a one-dimensional maneuvering problem, the i-th arc of its C-Graph has
an associated cost 7; and progress p;, both scalar quantities. With the goal
of making long-term efficient forward movement, our turnpike trajectory
requires us to determine a forward cycle C (i.e., Yiec Pi > 0) with minimum
average cost Tico %/ Ticc pi-

This problem can be solved without explicitly enumerating all the cycles
of the C-Graph, by the following method, similar to one utilized by Lawler
(1966). Recall that all cycles of the C-Graph are assumed to have positive
cost, i.e., Y ;07 > 0 for all cycles C.

47

Start with any forward cycle (one must exist by the brute force assump-
tion); say it has average cost A > 0. Assign each arc in the C-Graph (not
Just in the cycle) the weight 4; — Ap;. Using your favorite method (e.g.,
the one discussed in the next section), find a cycle of negative weight or
determine that none exists. If no such cycle exists, then every forward
cycle C satisfies Y;cc(vi — Api) > 0, ie., Yiccvi/ YiccPi > A, and our
current cycle is optimal. Otherwise, if some cycle C has negative weight,
then 3;cc(v:i — Ap;) < 0. C is necessarily a forward cycle, since otherweise
YiecYi < AXiec Pi < 0, contradicting the positive cycle (cost) assumption.
Hence, 0 < Yiec vi/ Tice Pi < A, and C is a forward cycle with smaller av-
erage cost. The process can now be repeated, with C becoming our current
cycle. According to Lawler (1976, p.97) this procedure has a polynomial
(O(n®)) worst case time complexity, where n is the number of nodes, and
the weights of the arcs do not grow with n.

We now generalize the above procedure to obtain a solution method for
higher dimensional maneuvering problems. Here, arc i has scalar cost Yis
and vector progress p; € Z™, where m is the dimension of our movement
environment. The j-th cycle (call it C') has total cost ¢/ = ¥, v:, assumed
to be positive, and total progress a; = ¥;.c p; € Z™. If our desired direction
of movement is b > 0,,, then from chapter two, we must solve

min Z iz ;
i=1
st. Ax=b, x>0 (1)
where z; (after truncation) denotes the number of times our turnpike tra-
jectory utilizes the j-th cycle.

As before, we wish to solve this linear program without explicitly enu-
merating all the columns of our matrix A, representing cycles of our C-Graph.
We now present a column generation scheme, analogous to the procedure
above, to solve (1) directly. If necessary, begin with an initial artificial
basis consisting of m “artificial cycles”, each making one unit of progress
in a unit direction at enormous cost. Using the columns of our A matrix
generated so far, solve the linear program to optimality. Let x € R" and
A € R™ be the primal and dual solutions to this restriction of (1) to the

generated columns (i.e., z; = 0 if the j-th column has not been gener-
ated). From duality theory, x is an optimal solution to (1) if and only if

48

¢/ —ATa; > 0,7 =1...n. This can be determined directly on our C-Graph
by assigning the i-th arc a weight of v; — ATp;,i = 1... |E||, and looking
for a cycle of negative weight. If no such cycle exists, x solves (1); other-
wise a negative cycle is generated, and its associated progress column and
(unadjusted) cost is added to our set of generated columns. The new LP
is solved, and the procedure is repeated. The implementation and com-
putational experience with this method are the subjects of the next two
sections.

There is also the question of increasing the efficiency of column-generation
methods by judicious column-dropping. The ideas discussed in O’Neill &
Wildhelm (1976) and O’Neill (1977) may be useful.

Incidentally, contrary to the sequence of presentation here, this higher
dimensional procedure was formulated before its one-dimensional special
case. It was inspired by a paper of Ford and Fulkerson, 1958.

3.2 Finding Negative Cycles

Here, we address the issue of finding a negative cycle in a weighted di-
rected graph, i.e., a cycle whose arcs have weights which sum to a negative
number. In addition to our C-Graph application, detecting the existence
(or non-existence, really) of a negative cycle is evidently important for the
application of many shortest path algorithms, since a “shortest” walk or
path may not be well defined when such a cycle exists. Ironically, these very
shortest path algorithms can be modified so as to detect and determine neg-
ative cycles. In this section, we explain how the well-known Bellman-Ford
method (see Lawler 1976), for computing shortest paths from a specific
origin node, can be so modified. In addition, we suggest some ideas for
accelerating the computations.

For digraphs without negative cycles, the Bellman-Ford shortest path
algorithm computes shortest-path lengths from node 1 to all nodes 1,...,n,
as follows:

Begin

Line (0): Initially, uo(1) := 0, uo(i) := 00,7 =2,...,n.
Line (1): For k:=1ton—1 Do

Line (2): Fori:=1 to n Do

49

Line (3): For j := 1 to n Do
Line (4): ux(j) := min{ue_1(7), ue_1(3) + ¢;;}
End.

Here c;; (usually interpreted as some kind of cost) is the weight of the
arc from node 7 to node j. (When more than one arc exists from 7 to 7,
c;j denotes the cost of a cheapest one.) By induction, it is clear that u(1)
is the length of a shortest k-walk from node 1 to node i, where a k-walk
is a walk that takes no more than k steps. In the absence of any negative
cycles, a shortest walk need never repeat any nodes, and so can be assumed
to be a path requiring at most n — 1 steps.

In practice, using a linked-list data structure, Line (3) would be replaced
by “For all j € A(i) Do”, where A(i) C E is the set of arcs with tail 1.
Hence the algorithm has time complexity O(n|E|). Now suppose that after
running this algorithm, we set k = n, and execute lines (2)-(4) again. If for
some j, we have improvement in the sense that u,(j) < u,_,(j), then there
exists a walk from node 1 to node j which costs less than any path from
node 1 to node j. Hence that walk, and so the graph itself, must contain
a negative cycle that is reachable from node 1. We observe here that all
nodes on that cycle will be improved infinitely often as further iterations
proceed.

Conversely, if after some iteration (and, in particular, after the n-th
iteration) we have no improvement, then no subsequent iteration will yield
improvement. For, if there was no improvement at the k-th iteration, then
for all arcs 17, up_1(j) < ug-1(¢) + c;;, and the same | E| comparisons will be
made each subsequent iteration: no further improvement is possible. Thus,
by the observation of the previous paragraph, if a graph contains a negative
cycle (that is reachable from node 1) then there will be improvement at
every iteration.

From the above discussion we can conclude that if all nodes are reachable
from node 1, a natural property for a C-Graph, then a negative cycle is
present if and only if there is improvement at the n-th iteration of the
Bellman-Ford algorithm. As mentioned before, we can reject the existence
of a negative cycle at an earlier iteration if we have no improvement then.
In support of our column generation scheme, we are even more interested
in detecting negative cycles prior to the n-th iteration.

50

First, we address the issue of actually finding a negative cycle from the
Bellman-Ford computations. We do this by recording, for each improved
node, the arc (or node when there is no ambiguity) which led to its most
recent improvement. For example, if while going through node i’s ad jacency
list, we find that we_1(2) + ¢;; < up_1(j), then we assign uk(7) := ugp_1(3) +
¢ij; and assign Pred(j) := 4. Initially, we assign Pred(j) :=Nil for all
nodes j. By induction, at the conclusion of iteration k, Pred(j), if non-Nil,
denotes a node on a minimum cost k-walk from node 1 to node J which
is the immediate predecessor of the last appearance of node j. Note that
if all minimum cost k-walks to node j contain a negative cycle, then the
sequence j, Pred(j), Pred(Pred(j)),... must eventually intersect itself (not
necessarily at node j). For otherwise we would reach Nil, giving us (in
reverse) a shortest acyclic k-walk to node j, a contradiction.

Conversely, we assert that if the sequence J7,Pred(j),Pred(Pred(5)),...
cycles (after some iteration k), then this cycle must be negative. For sup-
pose, without loss of generality, that we reach the cycle o, — gy — .-+ —
o, — o4, (i.e., Pred(o;) = 0;,_;,1=2,...,t and Pred(o;) = o;). If the time
of node 0;’s last improvement, was iteration k(i) € [1, k]|, then

wr(0:) = ur(i)(03) = (i) -1(0i1) + o o0 > Ua(0ict) + Cor 0 (2)

Summing these inequalities (treating 0 as t), we get

t t t
Douk(0d) = D ur(00) + 3 Cory e
1=1 =1 =1

Hence, 3°!_, Coiy,o: Z 0.

Next, suppose node o; was the last node on the cycle to improve. Then
since node o, has not yet “reacted” to node o;’s most recent improvement,
the inequality ux(0j41) > ur(0;) + ¢5;,0;,, is strict. Hence ¢ ¢, | o <0,
as asserted.

Thus, we need not necessarily wait for the n-th iteration of the Bellman-
Ford computation: after each iteration we can trace back (via Pred) from
all the improved nodes; if we find a cycle, it must be negative, and the
algorithm can terminate. This traceback procedure (from all the improved
nodes) can be done in only O(n) time by exploiting the idea that once a
node has been examined, we need never trace back from it again. More

51

specifically, at the conclusion of an iteration, we “stamp” each node with
the symbol 0. In the general step, if improved node 7 is stamped with a 0,
-:en we re-stamp it with the symbol ¢, and then examine node Pred(z). If
Pred(7) is stamped with a 0, then we stamp it with an ¢, then examine node
Pred(Pred(z)). This process continues until for some k, either Pred*(i) =
Nil or node Predk(i) is found to bear a stamp j # 0. In the first case, we
have been led back to node 1 which has not been improved, and thus no
negative cycle utilizes the nodes stamped with 7 (for this iteration). In the
second case, if j = 7, then we have discovered a (necessarily negative) “Pred
cycle” (not necessarily containing node). If j # i, then node Pred*(:) has
already been examined (when we traced back from node j). Hence we need
not examine Pred**!(i), as we have reached a “dead end” information-wise.
Thus no arc (Pred(7),7) is utilized more than once, and so our trace-back
algorithm is O(n), which does not increase the O(|E|) time complexity of
the iteration.

We mention two further ideas for accelerating the algorithm. First, in
analogy to other iterative methods (e.g., the Gauss-Seidel method for solv-
ing linear equations), we can use the updated u information immediately,
rather than waiting an iteration to use it. That is, we can eliminate the
k-subscript, and replace line (4) with

u(j) := min{u(j),u(s) + ¢;}
or just as simply,

Line (4a): If u(j) > u(¢) 4+ ¢;; Then
Line (4b): [u(7) := u(?) + ¢;j, and Pred(7) :=1].

After the k-th iteration, u(j) may be interpreted as the length of a
minimum cost walk from node 1 to node j among all walks in “the k-
th class”. This class contains (usually, properly) all k-walks. All of the
preceding theory goes through with minor modifications. We note that the
inequality analogous to (2), namely

u(z) > u(Pred(s)) + CPred(i),

remains valid (sans k-subscripts) since when u(z) changes, it is set equal to
u(Pred(z)) +C¢Pred(i); 2nd the right hand side can change only by decreasing
before u(i) decreases again.

52

Second, we note that if a node i has not improved since the last time
A(?) was examined, then we need not examine it in line (4a) of this iteration.
For, after the last iteration we had u(j) < () + ¢;; for all j on A(z). Since
the right-hand side has not changed, and u(j) can not increase, line (4b)
will not be executed.

The acceleration ideas in the last three paragraphs do not increase the
asymptotic complexity of the algorithm. Based on the computational evi-
dence in Appendix B, they frequently identify (or establish the absence of)
negative cycles in significantly less time than the n iterations required by
the traditional version. A Pascal program (NEGCYC.PAS) implementing
these ideas is presented in Appendix A.

We briefly allude to other popular methods for detecting negative cycles.
First of all, the Bellman-Ford computations could possibly be speeded up
even further, using ideas from Yen (1970). Desrochers (1987), and Glover
and Klingman (1987) proposed a modified shortest path routine which
keeps track of the numbers of arcs in its shortest walks. If the number
of arcs in some shortest walk is n (the number of nodes) or greater, then
a negative cycle can be detected early. Our back-tracking procedure seems
to be stronger (i.e., it will find negative cycles that these methods might
miss, while adding nothing to the worst case complexity) with the same
order of O(n|E|) complexity. Another idea is to implement an “all-pairs
shortest path routine” (e.g., the Floyd-Warshall method or a matrix mul-
tiplication method, both described in Lawler, 1976), and after n iterations,
to check (for each node i) whether the length of a shortest path from node
i to node 1 is negative. We did not pursue this method, since its worst case
complexity was O(n?).

A branch and bound approach, exploiting the arithmetic property that
every negative cycle contains a node from which all “partial sums” of arc-
weights around the cycle, commencing from that node, are negative, was
proposed by Netter (1971) and Florian and Robert (1971, 1972). These
methods, as pointed out by Yen (1972), have exponential worst case per-
formances. Klein and Tibrewala (1973) suggested an improvement over the
technique of Florian and Robert by iteratively transforming the costs of the
arcs (in such a way that “shortest routes” are preserved) until a negative
cycle was found or was shown not to exist. Chen (1975) proposed a “node
elimination” method which performed better than that of Klein and Tibre-

53

wala for large graphs with low average degree. Despite the fact that all of
the methods mentioned in this paragraph had non-polynomial worst case
complexity, they did outperform the shortest-path based methods (using,
I believe, a shortest-path routine described in Ford and Fulkerson (1962))
for their chosen problems. These experiments, however, probably did not
incorporate early termination ideas, such as those discussed in this section,
with the shortest-path computations. It would be interesting to see how
the above methods compare with our modified Bellman-Ford procedure.

3.3 Implementation Details and Computational Re-
sults

In Appendix B we discuss our computer program COLGEN.PAS, which
implements the ideas of the first two sections to solve C-Graph problems of
manageable size. We exercised the program to solve for all directions b of
desired final progress, the three piece, connected two dimensional jumping
problem, restricted to connected configurations. Connectivity is defined as
follows. The graph of a placement consists of a node for every point in Z™
which is occupied. Nodes z and y are connected by an arc if ||z — y||; < 2.
The placement is said to be connected, if its associated graph is connected.

In Z?, there are 46 connected three-piece configurations (see Figure 18),
and the associated C-Graph has 294 arcs (obtained by doing a systematic
enumeration of all possible moves). In Appendix B, we demonstrate how
COLGEN.PAS solves this problem. For example, if we wish to maneuver
from a configuration placed at (0,0) to one placed at (a,b), witha > b >0,
then the calculated turnpike phase of our trajectory consists of approxi-
mately b repetitions of cycle 5 — 24 — 25 — 5 (the “diagonal snake”
translation in the direction (1,1) with cost 3), and (a — b)/2 repetitions
of cycle 29 — 31 — 20 — 29 (the “horizontal snake” in the direction
(2,0) with cost 3). This was efficiently solved by our column generation
scheme, whose complete details are in Appendix B. We note that the cycles
generated by COLGEN.PAS were usually found in just a few iterations of
the Bellman-Ford procedure. The negative cycle detection process (using
the program NEGCYC.PAS) is separately illustrated in Appendix A, using
some small examples.

4 ;15
1,’ S ®(2 |5
? H 7 4 11
-?—3—0——-— ‘?“fe—i‘-l—-‘—
22
21 25 28
@ 24 206 27 30

@® 39 40 l 41
—0— —6—

54

7

1€ 19
0-@—it—zo—
]
3p 35
® 34 37

~

¢
® us Y
1 ud L
L —

Figure 18: The connected three piece configurations. Each subfigure shows
the positions of two pieces, and configuration-numbers corresponding to the

different possible position of the third piece.

.‘A‘# 5 —

Figure 19: A turnpike trajectory in a problem with non-uniform costs.

In the problem just analyzed, all moves had unit cost. For the next
problem, we varied the costs (uniformly, among the integers 1,...,9 using
a table of random digits) and re-solved the problem for all right-hand sides.
[Note that in two dimensions, it suffices to consider those right hand sides
of the form (b,,b;)T, where the point (b;,b,) lies on the square surrounding
0,, with vertices (1,1), (-1,1), (-=1,-1), (1, —1). This made the sensitivity
analysis output especially useful. It would be interesting to see if a similar
“surrounding” of the origin could be efficiently accomplished in higher di-
mensions.] We note the presence of “retrograde” movement in some of our
turnpike cycles (e.g., in Figure 3.3).

3.4 Alternative Approaches

The linear program (1) can be reformulated as minimum cost circulation

problem
LE|l

min Z 'yjyj
i=1

st. Py =b, By=0,y >0 (3)

56

where here y; is the amount of flow on the j-th arc from the arc-set E, ~7
and p; are that arc’s respective cost and (m-dimensional) progress, and B
is the node-arc incidence matrix of the C-Graph.

The correspondence between these two linear programs can be made ex-
plicit by noting that every circulation can be decomposed as a non-negative
linear combination of cycles (with the same overall cost), and likewise ev-
ery such combination of cycles is a circulation. Note that a basic optimal
solution to (3) uses at most m + ||V || arcs, where V is the node set, and can
thus be decomposed into m + || V|| or fewer cycles in O((m + IV]])?) time
by a simple recursive procedure. If this decomposition uses more than m
cycles (and if we can not reduce this number by inspection), we can then
restrict (1) by using only those columns (representing cycles) obtained in
our decomposition, and proceed to find a basic optimal solution directly. It
would be interesting to compare this method with our column generation
scheme.

The minimum cost circulation problem should be most efficiently treat-
able by special “network with side constraints” algorithms (e.g. Chen and
Saigal 1977). In fact, since cycles are “extreme circulations” to the “net-
work without side constraints” problem, our column generation scheme
can be viewed as an application of Dantzig-Wolfe decomposition to the
minimum cost circulation problem. (See, e.g., Chvital, 1983.) The author
acknowledges Michael Schneider for pointing this out to him. When m = 1,
program (3) can be solved using a similar column generation scheme de-
scribed by Dantzig, Blattner and Rao (1967). Other efficient solutions to
the one dimensional problem of finding the minimum cost /progress ratio
cycle are given by algorithms of Karp (1978) (when all arcs have the same
cost) with time complexity O(|V||E|), and Megiddo (1979) with time com-
plexity O(|V||E|?). (Note: due to the absence of negative cycles in our
C-Graph’s, the error in Megiddo’s paper (pointed out by Ahuja, Batra and
Gupta (1983)) does not arise here.

Lastly, we address the situation when our C-Graph’s arc set, or even
its vertex set, is prohibitively large (i.e., we can not even store the graph
in a computer). (Recall that the 1-dimensional jumping problem with P
pieces has 2P~ connected configurations.) Does this mean that there is no
hope of finding a reasonable solution to our problem? Not at all. Opera-
tions researchers face this sort of difficulty, for example, when formulating

57

integer programs for crew scheduling of airlines. To consider all possible
assignments of subsets of crew members to all possible flights would be
overwhelming. However, one can restrict the domain of optimization to a
manageable number of reasonable looking assignments. (In some versions,
the “current optimum” can be tested for true optimality, in such a way
that a negative outcome also generates a new member of the “manageable
set”; cf. the use of “column generation”, above.) In a similar way, our rules
for movement may suggest certain promising translations of configurations,
and we might then restrict our attention to those particular translations
(i-e., cycles in the C-Graph), and thus to the vertices and arcs that they
contain. This idea can be extended to the case where we are unable to
prove that the finiteness assumption is satisfied by our rules for movement.
Here again, we can guess at a finite number of natural-looking efficient
configurations, and determine turnpike-like combinations of translations of
these, as before.

3.5 Complexity

In this section we show that the decision problem C-GRAPH naturally as-
sociated with the C-Graph problem for one-dimensional maneuvers, is NP-
complete. Given the apparent computational intractability of N P-Complete
problems, this suggests that efficient algorithms for finding “almost opti-
mal” trajectories, such as our turnpike trajectories, may be about as good
as we can expect—the computational price required for “optimal” trajec-
tories may be too high.

INPUT: A list of arcs each with an associated integral progress scalar
and a positive integral cost; an origin node @; a destination node D; a
“progress requirement” d > 0 and a positive integral cost requirement c. If
z denotes an instance of this input, then its size |z| satisfies |z| > n + |E| +
2 + logd + log ¢ (where the logarithm is to the base 2, and n = V).

DECISION PROBLEM: Does there exist a walk from O to D, with
total progress d, and total cost less than or equal to ¢?

To show that this decision problem (which we call C-GRAPH) belongs
to the class NP, we must determine a polynomial p such that (a) when
the input z to C-GRAPH has a “yes” answer, a “certificate” ¢(z) can be
written whose size is bounded by p(|z|), and (b) the certificate is checkable,

58

to verify the “yes” answer, in polynomial time (i.e., within p(le(z))).

Note that the “obvious” certificate consisting of the actual sequence
of arcs traversed in the walk would satisfy condition b) but not a), since
increasing d by a factor of n only adds logn to the input size, but would
increase the certificate size by a factor of n. Hence we provide the following

Lemma 3.1 Let W be a walk which satisfies the conditions of C-GRAPH
under input ©. Then the list L of distinct arcs of W, along with the number
of times each arc is utilized in W, provides a certificate c(z).

Proof. Indeed, the directed (multi-)graph induced by this list L would
be connected, with the further “balanced node” property that the number
of arcs entering each node is equal to the number of arcs leaving that
node (except if O # D when we make the obvious adjustments at these
nodes). Conversely, by the usual Eulerian trail or circuit arguments (see,
for instance, Gibbons, p.155, (1985)), the existence of an arc sublist with
these properties, and with total progress d and total cost < ¢, ensures the
existence of a walk that satisfies C-GRAPH. O

Note that the size |c(z)| = |L|(1 + £ ;e [log f;]) where f; is the multi-
plicity of arc j. Since all arcs are assumed to have positive integral cost and
¢(x) represents a “yes” certificate, we must have fi < cfor all j. Hence,
le(z)| < |E|(1 + |E|[logc]) < (|z|)®. Thus, condition a) is satisfied. Fur-
thermore, the connectedness of the induced graph can be checked in time
polynomial in |¢(z)| say by seeking shortest paths from node O to all other
nodes and seeing if all vertices are reached, as can the “balanced node
property”. Thus properties a) and b) are both satisfied, so C-GRAPHe
NP.

Now to prove that C-GRAPH is NP-Complete, we must further demon-
strate that some known NP-Complete problem can be transformed with
only polynomial effort into an equivalent C-GRAPH problem, whose size
is polynomially bounded in the size of the NP-Complete problem.

The NP-Complete problem we shall use is PARTITION (Garey and
Johnson, 1978, p.47) whose input is a finite set of integers 4 = {a,, ..., a,}.
The problem is to decide whether there exists some subset 4’ C A such that
Yaca(@) = Laca_a(a). The size of such an input is n + T, [log(1 + a;)].
Without loss of generality, we shall assume that Y acala) is even.

59

Figure 20: A C-Graph for the PARTITION problem

An equivalent C-GRAPH problem is constructed as follows. (See Fig-
ure 20.) The graph has node-set V = {0,1,...,n,n+1}. Fori =0,1,... ,n—
1, we have from node i to node i + 1 both an arc with progress a;;; and
cost 1, and an arc with progress 0 and cost 1. We have an arc with progress
0 and cost n + 1 from node n to node n + 1 and the same kind of arc from
node n+1 to node 0. Finally we have two loops at node n+1 with progress
1 and —1 respectively and cost n + 1. The corresponding C-GRAPH prob-
lem is: “Does there exist a walk from node 0 to node n with total progress
Y ie1a;/2 and total cost at most n?”

The one-to-one correspondence between these two problems is immedi-
ate. (The node n + 1 was placed in the network to accommodate the brute
force assumption of C-Graphs.) Hence, a polynomial algorithm for solving
C-GRAPH would result in a polynomial algorithm for PARTITION (and

60

consequently, all problems in NP). Thus C-GRAPH is NP-Complete.

Incidentally, we can associate a (somewhat contrived) maneuvering prob-
lem (called “RAINBOW?”) with the C-Graph in Figure 20. The game con-
sists of a single piece which “changes color” as it moves. The piece starts
off red, and in its next move (where it can make progress 0 or a,) it changes
color to orange. The following move, it changes to yellow (making progress
of either 0 or a3), and so on, until it turns violet (the n-th color). From
there, the piece turns black (making progress 0), and on its subsequent
moves can either remain black (with progress 1 or —1) or change back to
red (with progress 0). All non-black moves have a cost of 1, while all black
moves are very costly. The aim is a minimum-cost transition from red to
violet, with total progress %, a;/2.

61

Chapter 4
Maneuvering Within Boundaries

4.1 Maneuvering Within Boundaries

As before, our objective is to maneuver optimally within Z™ from (0,0,,)
to (D,db), where d > 0, but now we are restricted to have all placements
(X, a) satisfy a € dL for some prescribed “legal region” L € R™. This new
condition violates the Space Homogeneity assumption, and the previous
theories therefore need not apply. We shall show, however, that if the
problem obeys certain “interiority” conditions, then we can modify our
previous turnpike trajectory so as to maneuver within the “boundaries of
dL”, without loss of asymptotic optimality. It will also be shown that this
scenario can be adapted to handle the more concrete requirement that all
pieces remain in dL during the maneuver.

We begin with the “unit problem” of maneuvering from (O, 0) to (D, b)
subject both to the usual type of movement rules, and to the condition that
all placements (X, a) of our trajectory satisfy a € L C R™. Without loss of
generality, let x* = (z],2},...,2;) € R™ be the basic part of an optimal
basic solution to the associated linear program (LP): mincTx subject to
Ax = b, x > 0. Geometrically, x* can initially be thought of as a piecewise
linear path in R™, from 0,, to b that goes from 0 to zja,, to zja; + T,8,,
to...,to 31, z7a; = b, with total cost 72, ¢;z} (one summand per linear
segment).

Notice that we can in many ways “chop up and rearrange” the vectors
of this path to create another one with the same origin, destination and
cost (measured in the natural way). This yields an alternative solution
(geometrically speaking) to the LP, albeit with perhaps more segments.
For example, see Figure 21.

More formally, a path based on x* and A is one which begins at 0 and
is represented by a finite sequence {(yi,a;)}%, such that y; > 0, a; €
{ai,...,am}, i =1,...,k, and 2iai=a; Yi = z;. (Note that {i : a; = a;}
could be empty for some j, when x* is degenerate.) Hence, at the i-th step,
our path goes from its current position z € R™ to z + y;a;. For example,

62

(15 (2,1) (2,1)

0,0 (0,00 (4 0)

Figure 21: Two paths based on the same x~ and A.

1 1
10
sented by the sequences (1,(1,1)), (1,(1,0)) and (1/2,(1,0)), (1/2,(1,1)),
(1/2,(1,0)), (1/2,(1,1)), respectively.

Given x*, A, and L, let us suppose that we can construct a path P
based on x* and A, satisfying the following interior condition

two paths based on x* = (1,1)T and 4 = (see Figure 21) are repre-

N(P,M) C L,

where M = max;-1, .| a:| (any norm will do), and N(P, M) is the M-
neighborhood of P, i.e., the set of points in R™ whose distance from P
(under the same norm, of course) is less than M. We shall later derive
sufficient conditions for the existence of a path P satisfying this interior
condition. Let P be represented by {(:,a:)}"_,. Thus P has precisely k
linear parts. (Generally, k > m.)

Next consider the path dP, with particular representation dP = {(dy;, o;)}%,.
This is easily seen to be a path, based on dx™ and A4, from 0 to db. For a
point z € R™, and a compact set Q C R™, define ||z— Q|| = mingeo ||z—Y||.
Note that ||dz — dQ|| = d||z — Q||

Claim 4.1 If N(P,M) C L, then N(dP,dM) C dL, for d > 0.

63

Proof. Let z € N(dP,dM). That is, ||z — dP|| < dM. Thus, iz — P| =
3llz —dP|| < M. Whence, 1z € N(P,M) C L. Hence, z € dL. O

Next, consider the path |[dP] = {(|dy:|,a:)}% . This is a path from 0
to 3F |dy:]a; = b.

Claim 4.2 [dP| C N(dP,kM). In addition, ||db — b|| < kM.
Proof. Let z € [dP]. We need to find a point 2 € dP such that ||z —z|| <
kM. Since z € |dP], z = Zf;ll |dyi| @i + na; for some j € {1,...,k}, 0 <

n < |dy;]. Consider z = YI_! dy;a; + na;. 2 € dP, since n < |dy;| < dy;.
Therefore,

i-1 j-1
1Z-zl = | dyio; — Y |dyi] e

= E(dy,- ~ Ldye))ex]

IN

Z (g — | i)Yo

j-1
< Dllaill (G -1)M < (k—1)M < kM.
i=1

Furthermore,

k k
ldb = bl = |3 dyii — Y |dyi] |
i=1

=1

= | ;(dye — |dy:])os|

IA

;(dyi — Ldy:])lleu|

k
< Y |leul < kM.

=1
Combining these two claims gives us the following

Lemma 4.1 When d > k, |dP| C dL.

64

Proof.
|dP] C N(dP,kM) C N(dP,dM) C dL.

O

Theorem 4.1 When the interior condition is satisfied, then for all d suf-
ficiently large (where db € Z™), there ezists a near-optimal “turnpike”
solution to the maneuvering problem from (0,0,,) to (D,db), restricted by
the requirement that all placements (X,a) employed must satisfy a € dL.
The trajectory can be considered “turnpike”, because it spends almost all of
its cost engaged in at most m simple movement patterns.

Proof. Our turnpike trajectory is constructed by “following the instruc-
tions” of |dP|. That is, we brute force our way from (0,0,,) to a turnpike
configuration (placed at 0,,) associated with a;, then translate that config-
uration |dy;| times, then we brute force to a configuration similarly asso-
ciated with a, (placed at |dy;|a;) and translate that configuration |dy: |
times, and so on. The trajectory concludes with a brute force from the
configuration associated with a; (placed at b) to our destination (D, db).
For d > k, our lemma assures that all intermediate placements (X,a) sat-
isfy a € |dP] C dL. (We are assuming that all brute forces can be done
without leaving the legal set dL—see the remarks following the theorem.)
The cost of the above trajectory is

k

kco + Z cj Z ldyi] +¢es5 < kco + Z c; Z dy; + ¢

7=1 i=1 7=1 1=1

a; = a; a; = 8a;

= kco-{-chjm;-l—E

i=1

= kco+c+u,

where § = db — b, (by Claim 4.2; note [|§]] < kM), ¢ = max{c; : 18] <
kM} < oo, and u* = deTx*. In chapter two, it was established that the cost
of any optimal trajectory from (0, 0,,) to (D, db), ignoring the restriction
a € dL, must be at least u*—cp, so that the same is true when the restriction
is imposed. Hence the cost of our turnpike trajectory exceeds the cost of

65

an optimal trajectory by at most (k + 1)cg + ¢, which does not depend on
d. O
Remarks:

¢ Note that under this scenario, we must qualify our movement assump-
tions with the words “provided a € dL”, whenever we use placement
(X,a). We must further assume that all required brute forces can be
achieved within dL.

e It may be more natural to analyze the scenario where all of our pteces
must remain inside our legal region dL. This situation can be handled
by the above model, by considering w = maxxec Radius(X) < oo,
where Radius(X) is defined to be max.¢(x,0,,)cz= ||x|. Hence every
piece in placement (X, a) is at most a distance w from a. It follows
from Claim 4.2 that any piece corresponding to a placement (X,a),
a € |dP|,is at most a distance kM +w from dP. Since dM > kM +w
for d sufficiently large (d > k + w/m), Claim 4.1 implies that all our
pieces remain inside dL.

¢ Lastly, we need to develop sufficient conditions for the interior condi-
tion to be satisfied. This will be the subject of the next section.

4.2 Getting Down to the Interior of It
Let £ denote the straight segment (path) from 0,, to b.

Lemma 4.2 If for some r >0, N({,M + r) C L, then the interior condi-
tion 13 satisfied for some path P based on x* and A.

Proof. Let v be a constant depending on our norm, and satisfying |y;| <
v|y|l for all y = (y1,...,Ym). (For the “usual” norms, v = 1 will do.) Let
@ denote the path represented by (z7,a,),(2;,a,),...,(25,8,). We claim
that multiplying @ by a suitably small positive constant ¢ > 0 yields a
path €Q = {(ez},a)}2; C N(£,7). Indeed choosing € = r/(vmM|x*|)),
makes €@ a path from 0 to eb whose distance from 0,, never exceeds
€ it zflla:]| < emMuv||x*|| < r. If we “repeat these instructions”, starting
at eb, we have a new path (call it (eQ)? = (¢Q) U ((¢Q) + ¢b)) from 0,, to
2eb, where the distance between any of our new points and eb € £ never

66

exceeds 7. Thus, (eQ)?> C N(£,r). Continuing in this way, we build up the
path (eQ)!'/¢) from 0,, to €[1/€|b, which is a subset of N(¢,7). Finally, de-
fine P to consist of (¢Q)!!/¢! followed by the appropriate translate of (eQ),
where € = 1 —¢|1/¢|. Since 0 < & < ¢, no point of this last subpath of P
has distance more than r from its initial point €|1/¢|b € ¢.

Thus, P is a path from 0,, to b which is based on x* and A, and
is a subset of N({,r). If x € N(P,M), there exists some point p € P
such that ||x — p|| < M. Since p € P C N(4,7), ||p — £|| < r. Hence
llx =€ <|lx—pll+lp—£|| <+ M. Hence, x € N(¢, M + r), a subset
of L, by assumption. Thus, N(P, M) C L, as asserted. O

Remarks:

e Note that when € is chosen as in the previous proof, the number of
linear segments in our path P is at least k = m[1/¢] ~ vm?M||x*||/r,
so that P could be quite “kinky”. Then the condition d > k, in
Theorem 4.1’s proof’s specification of “sufficiently large d”, might be
found restrictive. Although the present arguments are adequate for
our “asymptotic” purposes, sharper bounds would be of interest.

* The hypothesis of Lemma 4.2 implies N(¥, M) C L, requiring £ to lie
“comfortably interior” to L. But “comfortably” can be dropped from
this hypothesis. Indeed, suppose we only had N(¢,8) C L for some
0 < 6 < M. Then after multiplying by a suitably large constant u (say
u = [2M/$§]), we have by Claim 4.1 that N(uf, M) C N(ut,2M) C
uL, where uf is the straight line path from 0 to ub. And now, if we
treat ub and uL as defining our unit problem, then by Lemma 4.2 our
interior condition is satisfied (with k ~ vm2u|x*|| ~ 2uvm? M ||x*||/6).
Consequently, Theorem 4.1 remains true under the weaker hypothesis,
for all d sufficiently large (d > k) such that dub € Z™. Notice that
since d can take on rational values, we lose no generality by letting
ub be our “unit destination”.

67

Chapter 5
Turnpiking Over More General
Environments

5.1 Introduction and Notation

In this chapter, we continue the investigation of optimal maneuvering prob-
lems over a structured environment E. Whereas Chapter 4 treated the pres-
ence of maneuver-limiting “boundaries” violating the previous assumption
of Space Homogeneity, here spatial homogeneity will be maintained but the
“regular structure” of E will be of more complicated types. Most of the
basic theory developed in Chapter 2, where E = Z™, can be applied or
extended to these more general situations.

In section 5.2, we analyze the scenario E = Z™ x T, where T is a finite
set. This is the case, in particular, when E is a finitely generated abelian
group; see (Jacobson, 1974; Theorem 3.13). In section 5.3, we generalize
even further, to the case where E is a union of cosets of some subgroup G in
E, where G C E C E and E is a finitely generated abelian group. Section 4
extends the results of the preceding two sections when the movement rules
obey an additional homogeneity assumption.

First we clarify the notions of placement and configurations in such
more general settings. We define P to be a placement (of p pieces) over
E,if PC E, |P| = p < co. Actually, P could even be a multi-subset of
E, since multiple-occupancy of points of E by pieces may be permissible.
If all the pieces are distinguishable, then P should be thought of as a p-
tuple of elements of E. More generally still, if our pieces can be partitioned
permanently (i.e., transmutations are not permitted) into k distinguishable
types, with A; pieces of type 7,7 =1...k, Ef=1 A; = p, then p is a k-tuple
of multi-sets (with sizes Ay,..., A, respectively) of elements of E. To avoid
burdensome notation, we shall simply adopt the elementary notation P C E
to denote an arbitrary placement of (or over) E, and the notation P + a,
a € E has the obvious interpretation when the addition of components is
well-defined. [Example: if E = Z%, p = 3, k = 2, with (A, A;) = (2,1),
and P = ({(0,0),(1,0)},{(1,1)}) (see Figure 22), then fora € E, P +a =
({(0,0) + a,(1,0) + a},{(1,1) + a}).]

68

O

o

Figure 22: A Placement Example

Our objective is still to maneuver from one placement over E to another
at minimum cost, subject to various movement rules. As before, we assume
that there exists an equivalence relation among the placements (e.g., trans-
lation) with certain desirable properties. We define a configuration to be an
equivalence class of placements under the ahove relation, and denote one
placement in each equivalence class as its “canonical placement”. Some-
times we will use the term configuration to refer to its canonical placement,
when the context is clear. The “desirable properties” mimic those used in
Chapter 2, and are made precise in each section below. The only one we
mention immediately is Finiteness, expressed as before, i.e., “Without loss
of (asymptotic) optimality, we can prescribe a finite set C of allowable con-
figurations of the pieces. From each configuration, there are a finite number
of legal moves available.” In each section we shall let C denote the set of
configurations, even though we will be using different equivalence relations.

Much of this chapter relies on the finiteness of T, our ability to brute
force, and our limitation to asymptotic analysis. Together, these properties
imply that Chapter 2’s general approach and results continue to work,
though it is necessary to provide the precise definitions and technical details.

5.2 E=7Z"xT.

Suppose that our maneuvering environment E is isomorphic to Z™ x T,
where T is an arbitrary finite set. (A motivating example will be given

69

later.) For placements P,Q C E, we say that Q is a free-translate of
P if and only if there exists a € Z™ such that Q = P + (a,0). (This
notation (slightly abusive) should be interpreted to mean that P and Q
have the same T-component, and their non-T-components are translates
of each other.) This is obviously an equivalence relation over E. Thus,
after noting the coordinates of a canonical placement X , we can describe
its equivalence class as {X + (a,0) : a € Z™} and let (X,a) represent the
placement X + (a,0), for a € Z™.

Notice that every placement P has exactly one representation as (X,a),
where X is the canonical placement in the configuration containing P.
This follows from the fact that if (a,0) and (b,0) are distinct elements of
Z™ x {0}, then for some i € {1,...,m}, a; # b;. Suppose, without loss of
generality, that a; < b;; then the minimum j-th coordinate of X + (a,0)
will be less than the minimum j-th coordinate of X + (b,0). Whence
(X,a) # (X,b).

As before, we can use the notation (X,a) — (¥,b) to denote a legal
move from placement (X, a) to placement (Y, b) with cost ¢, where X Y €
C,a,b € Z™,c € Z'. Such a move is defined to have progressof b—a € Z™.

Using the notion of free-translation, and the corresponding interpreta-
tion of (X, a), we can write down our movement assumptions (i-e., finite-
ness, homogeneity, brute force and cycle positivity) ezactly as in Chapter 2.
A C-Graph can be constructed whose nodes represent configurations, and
whose arcs represent the cost and progress of legal maneuvers, and there
is the same correspondence between trajectories from (0,0,,) to (D,db)
and walks from the node O to node D with progress db € Z™. Likewise,
cycles represent simple free-translations. Thus, if our ob jective is to ma-
neuver from placement (0, 0,,) (wlog, by space homogeneity) to placement
(D,db), O,D € C, b > 0,,, and d > 0, then it is equivalent to finding
a corresponding minimum cost walk from O to D, with total progress db
along the C-Graph.

Hence Theorems 2.1 (when m=1), 2.2, and 2.3 (when b > 0,.), as
well as their proofs, proceed exactly as before in this more general setting.
The result is that if E is equal (or isomorphic) to Z™ x T, and our move-
ment assumptions are satisfied, then there is a near optimal trajectory from
(0,0,,) to (D,db) which (for d sufficiently large) spends almost all of its
cost performing simple, free-translations of at most m placements of the

70

pieces.
Remarks:

e The assumption that T is a finite set, while not used explicitly, can
be assumed without loss of optimality once the finiteness condition
is imposed. For, suppose E = Z™ x T, and that our movement rules
obey the stated conditions. Then, since our C-Graph (with node-set
C) is finite, and placements with different T component sets belong to
different configurations, we can restrict ourselves to those placements
whose T-components are represented on the C-Graph. Since each
configuration, consisting of p pieces, uses at most p elements of T,
we can replace T' by a subset with size at most pl||C||, without loss of
asymptotic optimality.

e By a well known algebraic structure theorem (see, for instance, Fuchs
(1960) or Jacobson (1974)), all finitely generated abelian groups are
isomorphic to Z™ x T for some m > 0 and some finite abelian group
T (as in Torsion). When the above group is free (i.e., isomorphic
to Z™), we have precisely the same theorems as in Chapter 2, since
T = {0} and all translations are free-translations.

e As an application of these results, we can consider a “connected Chi-
nese checkers” problem of maneuvering over the vertices of the equi-
lateral triangularization of the plane R?, where we arbitrarily label
one of the vertices as (0,0). (See Figure 23.) Qur p pieces maneuver
as in Chinese checkers, except that (to accommodate the finiteness
assumption) we are restricted to a finite set of connected configu-
rations. Our objective is to maneuver from one placement (“placed
at 0;”) to another, placed far away. The problem can be analyzed
using our earlier techniques by recognizing that our movement envi-
ronment is a finitely generated abelian group, isomorphic to Z? via
the isomorphism f : Z? — E defined by f(1,0) = (1,0) and £(0,1) =
(cos 120°,sin 120°), (so that f(z,y) = (z + y cos 120°, ysin 120°)); see
Figure 23. Note that the presence of the 45° lines on Z? does not add
any new points to Z?. They make the game easier to play, and may
help in defining a useful connectivity concept, but other than that,
they serve no real purpose.

71

Figure 23: The vertex set of a Chinese checkers board is isomorphic to Z2.

e If the above gameboard and rules are extended to a third dimension,
say E = Z? x Z,, where Z,, is the cyclic group of order n, then we can
also apply the previous results, even if (especially if) placements P and
Q@ = P +(ay,az,a3), az # 0, have fundamentally different maneuvers
available from them. (Note that P and Q are not free-translates
of each other.) It is precisely such possibilities that give non-trivial
content to this section’s generalization of Chapter 2’s scenario E =
zm.

53 GCECE=Z"xT.

Suppose for a motivating example that our movement environment E is
the vertex set of the regular hexagonal tiling of R? (see figure 24). Choose
an arbitrary vertex as (0,0), and then label each vertex by its Cartesian
coordinates relative to the origin (each hexagonal side has unit length). E
can be regarded as a subset (though not a subgroup) of the group U =
(R?,+). In fact, E can be regarded as a subset of a much smaller subgroup
of U, namely E, the subgroup of U generated by the points of E. Note that

.72

o <

9 =
9 2
® Z
(]
* 3
X2
e
o]
D
3 ' 2
o ® ®]

Figure 24: Hexagonal Tiling

all points in E can be reached from (0,0) by a piecewise-linear path where
each piece has length 1, and direction +v,, +v,, or +vj3, where v; = (1,0),
vz = (cos120°,5in120°) = (-1/2,4/3/2), and v; = (cos60°,sin60°) =
(1/2,\/5/2). (Note that v = v; +v,.) Thus V = {avi + bv; : a,b €
Z'} is a group containing E; whence, V O E. On the other hand, since
v1,Vz € E, any group containing E must contain V. Whence E D V.
Thus E = V. (Note that V is just the triangularization from the last
section.) Furthermore E contains a subgroup of E, call it G, denoted by
the shaded vertices in Figure 24 (and generated by the points (3/2, v3/2)
and (0,+/3)). Naturally, E is the disjoint union of its G-cosets, i.e., E =
GU(G +(1,0)) U(G +(2,0)). But unnaturally, we have, in addition, that
E=GU(G+(1,0)).

One anticipates that turnpiking should occur over so regular an envi-
ronment as F, if the movement rules are at all “sensible”. After all, F is
really just two superimposed copies of G (itself a finitely generated abelian

73

group). We shall prove this assertion for any environment E satisfying the
following conditions:

1. E is a subset of some finitely generated abelian group E.

2. E contains G, a (finitely generated, abelian) subgroup of E, such that
E=Ur,(G+e),e;e E;i=1... k, where k is finite.

Condition 2 says that E is the (disjoint) union of some finite (generally,
proper) subset of the cosets of G (relative to E). (If E = E, then E is
itself a finitely generated abelian group, a case which was handled in the
last section.) Since E is a finitely generated abelian group, we can assume
without loss of generality that E = Z™ x T, with T a finite abelian group.
Therefore, G C E C Z™ x T, with G a subgroup of Z™ x T. Note further
that the “free part of G”, Gr = {& € Z™ : (z,0) € G}, is a subgroup of
Z™. (The fact that GF, as a subgroup of Z™, remains free and abelian is
clear; that Gr must also be finitely generated follows from Theorem 10.3,
Fuchs (1960).) Observe that by Condition 2 any e € E can be uniquely
expressed as e =g+ ¢€;, g € G,1 € {1...k}. Further, if we translate e € E
by 6 € G, then the resulting point e + § = (g + §) + ¢; remains in the same
coset G + e;, and in particular, remains in E.

We can now define placements over E as before. By the above observa-
tion, for any placement P C E and any g € G, the placement P + g C E is
well-defined. We say that Q C E is a free-G-translate of P C E,if Q = P+g
for some g € G x {0}. Since this defines an equivalence relation among the
placements of E, we can define configurations (i.e., equivalence classes) un-
der free-G-translations. As before, all placements in the same equivalence
class have the same set of T components. Also as before, every placement
P can be uniquely represented as (X,a) = X + (a,0), where a € G, and
the canonical placement of P is X (aesthetically “placed” at some e;).

Let (X,a) — (Y, b) denote a legal maneuver from placement (X,a) to
placement (Y,b) with cost ¢ € Z'. Such a move is said to have progress
b—a e Gr C Z™. Now Gr is a (free) subgroup of Z™ and is therefore
necessarily isomorphic to Z* for some i < m (see, e.g., Theorem 12.1, Fuchs
(1960)). Thus, we could create a new C-Graph isomorphic to the old one
with all its progress data from Z°.

74

We only need to modify our movement rules slightly in order to obtain
the desired turnpike theorems. Specifically, letting C denote our set of allow-
able configurations over free-G-translations, we replace Z™ throughout by
Gp C Z™. This enables us to construct the appropriate C-Graph with the
usual correspondences. Here, cycles represent simple, free-G-translations,
and a trajectory from (O, 0) to (D, db) corresponds to a walk from node @
to node D with total progress db and with the same cost. From the theo-
rems of Chapter 2, we know there exist such walks of near-minimum cost
which spend almost all the cost (for d sufficiently large) traversing at most
i cycles of the C-Graph. Here there is a near-optimal trajectory from (0,0)
to (D, db) which spends most of its cost simply and freely-G-translating at
most m configurations. The proof of Theorem 2.2 proceeds just as before,
by virtue of its C-Graph representation.

As for Theorem 2.3, we make the following observations. First, we shall
require that the radius of maneuver vector r of the brute force assumption
belongs to G (for our applications, the > relation does not make much
sense over the torsion component), and that our isomorphism Gy & Z
carries the “meaningful” relation “6 > r” into the numerical one on Zi.
Thus all the progress data are expressed in terms of Gr. Now the proof of
Theorem 2.3 proceeds exactly as before over this new C-Graph (since the
constants M, e, and b of that proof are now well defined.) Hence the analog
of Theorem 2.3 is true in this more general environment (again, with <m
cycles replaced by <1 cycles).

Remark: The partitioning of E into a finite number of cosets of G is
implied by the movement rules, without loss of optimality. For suppose
that £ = U;c/(G + e;), for some index set I. As noted before, if z € P C E,
where z € G + ¢, then for any (a,0) € Gr C G, z + (8,0) € G + ¢;.
Thus, each configuration in our C-Graph involves at most p (the number
of pieces) cosets of G. Overall, the C-Graph represents at most ?|C| < o
cosets. Hence we may assume |I| < p|C| < oo, without loss of asymptotic
optimality.

5.4 Finitely Generated Abelian Groups Again

The results of sections two and three pertain to problems satisfying free
homogeneity requirements. That is, they allow for placements which are

75

non-free translates to have different maneuvering capabilities. Now suppose
that E = G = Z™ x T, where T is a finite, abelian group (i.e., E = G is a
finitely generated abelian group), and that our movement rules are invariant
over non-free translations, as well. Since all the necessary free-homogeneity
conditions (and more) are met, the results of sections two and three apply
here too. However, one suspects that the C-Graph constructed is about
|T| times larger than it really needs to be. For computational purposes, it
would be useful to reduce the size of the C-Graph. In this section, we make
the above ideas precise.

Specifically, we assume that our rules for movement satisfy, in addition
to the conditions of section two, a stronger translation-invariance condition,
namely: for all placements P,Q C E, and all a € G, P - @ if and only
if (P 4+ a) = (Q + a). (In Section 5.2, this was only assured when the T
component of a was zero.)

Thus we define an expanded equivalence relation, namely the familiar
translation relation via elements of G (rather than the previous G x {0}).
Hence the configurations are the equivalence classes {X +a: a € G}, where
X is the canonical placement for the class. However, due to torsion effects
(not present in the earlier sections) it may be possible that X +a, = X +a,,
where a; # a,. (For example, the placement P = {(0,0),(0,1)} C Z' x Z,
is equal to P + (0,1) if the two pieces are indistinguishable.) To treat this
possibility, we define, for a placement P C E, the stabilizer of P to be
Hp={9€G:P+g=P}.

Lemma 5.1 Hp is a subgroup of G.

Proof. Clearly, 0 € Hp. Suppose g',g°> € Hp. Then P + (g + ¢?)
(P+g')+g¢*=P+g° =P Hence, g' + g> € Hp. Further, P =
P+(g'—g')=(P+g')—g' =P —g'. Hence, —g' € Hp. O

Lemma 5.2 If Q =P +a, a€ G, then Hy = Hp.
Proof.

g € Ho Q+g=0Q
(P+a)+g=P+a
P+g=P

g€ Hp

111

76

O

(The converse of this lemma is easily seen to be false, by noticing, for
example that two placements with stabilizer {0} need not be translates of
each other.)

Thus, if X is a canonical placement, Hx will be the stabilizer of every
placement in the corresponding equivalence class. For that configuration
{X+a:ac G}, weseethat X +a=X +bifandonlyifa—b € Hy
(i.e., a=b (mod Hy)). Note that by the same “minimum coordinate”
argument used before, we have for all g € Hy, g; = 0,5 = 1...m. Thus,
Hx is a subgroup of {0,,} x T and is therefore finite. We shall adopt the
notation (X,a) to denote placement X + a, where it is understood that
(X,a+ h),h € Hx, represents the same placement.

As before, we let (X,a) — (Y,b) denote a cost ¢ maneuver from place-
ment (X, a) to placement (Y,5). Note that this maneuver can also be repre-
sented by (X,a+h;) — (Y,b+h,) for any h, € Hx,h, € Hy. Note further
that since for X,Y € C, Hx and Hy are finite abelian groups, then so is
Hx+Hy = {hy+hy: h, € Hx,h, € Hy}. Observe that if (X,0) — (v,4)
is a legal move, then so is (X,0) — (Y,§+h) for any h € Hx + Hy. For if
h =h.+hy, he € Hx,h, € Hy, then (X,0) = (X, —h.), (Y,6) = (Y,6+h,).
Thus, (X, —h,) — (Y,6 + hy) is a legal move. Hence, by homogeneity,
(X, ~he + hs) == (Y,6 + hy + h;) or equivalently, (X,0) == (Y,6 + h) is
a legal move.

We define a formal trajectory T of length n as a formal sequence

(XOaao) ‘ﬂ" (X17a1) _Cz__) e ﬂ" (Xn,an)
such that (X;_;,a;_,) = (X;, a;) is a legal maneuver. The above trajectory
is equal to the trajectory

(Yorbo) 5> (Y, by) <2 o0 55 (V1)

n’“n

if and only if n = n/, X; = Y,,¢; = cl,a; = b;,3 = 1...n. For notational
convenience, we occasionally abbreviate T as (Xo,a0) — (X,,a,), where
c=3r,¢.

Hence the associated maneuvering sequence from placement (Xy, ao) to
placement (X,,a,) is represented by each of [[, |Hy,| different trajecto-
ries. The total cost of the trajectory is defined to be 7, c;, and its total

77

progress is defined to be a,, — ao. Note that the total cost of a trajectory is
the same as the cost of the maneuvering sequence that it represents. Thus,
to find a minimum cost maneuvering sequence from placement (X,a) to
placement (Y,5), it suffices to find a minimum cost trajectory with first
term (X,a) and last term (Y,).

We now construct a C-Graph in the usual way. Specifically, the graph
has one node for each configuration, and an arc exists from node X to node
Y with cost ¢ € Z! and progress a € G if and only if (X,0) - (Y,a) is a
legal maneuver. (Note that such an arc implies the existence of an arc from
X to Y with cost ¢ and progress a + 6, for all § € Hx + Hy.) Without loss
of generality, no two arcs between the same pair of nodes have the same
cost and progress, since the moves associated with such arcs accomplish the
same movement at the same cost.

Lemma 5.3 There is a one to one correspondence between the set of (length
n) formal trajectories from (Xo,0) to (X,,a,) with cost ¢ and the set of
walks on the C-Graph (of length n) from node X, to node X, with total cost
c and total progress a,,.

Proof. Let S1 be the set of length n, cost ¢ trajectories from (Xo,0) to
(Xn,an), and let S2 be the set of length n walks from node X, to node X,
with total cost ¢ and total progress a,,. Consider r € S1,say 7: (X,,0) =%
(X1,81) = -+ = (X,,a,), whence ¢ = ¥, ¢;. Define f : S1 — S2,
by taking f(7) to be the length n walk over nodes Xy, Xi,..., X, (in that
order, repetition allowed), where the i-th arc has cost ¢; and progress a; —
a;_1,1=1...n.

f(7) is well defined since (X;_1,a:;-1) —> (Xi,a;) represents a legal
maneuver, and there is exactly one arc from node X;_; to node X; with
cost ¢; and progress a; —a;_;. f(7) has length n, total cost 3%, ¢; = ¢, and
total progress (a; — 0) + X% ,(a; — a;_1) = ay,.

Consider in $2 walk w over nodes Xg, X;,...,X,, in that order, where
thei-th arc has cost 7; and progress a;, i =1...n. Whence, 3", 7; = c and
Y10 = a,. Then w = f(v), v € S1, where v : (X,,0) =5 (X;,a;) =
coo 5 (Xny@n), €k = Yk, and @ = Y% @;. Thus f is onto.

Futhermore, any trajectory 7 € S1 satisfying f(r) = w must clearly
satisfy a; = ;. Since a; = a3 — a3, a3 = a; + a3 = a; + a,. Proceding

78

inductively, we have that o) = ax—ax_;. Whence, a, = az_; +ap = Zﬂ;l a;.
(Note that a, = Y7, a; is consistent.) Hence, the inverse image of w is
unique, and f is a one to one correspondence, as desired. O

Hence, if our objective is to find a minimum cost trajectory (repre-
senting a sequence of maneuvers) from placement (O, 0) (wlog, by space
homogeneity) to placement (D,db,;), (d > 0,b € Z™, 7, € T), then by
the previous lemma, for any (0,6) € Hp, it suffices to find a minimum cost
walk from node O to node D with total progress (db,7; + §). Notice that
cycles in the C-Graph correspond to G-translations of configurations.

Theorem 5.1 Under the movement rules of Chapter 2, with Z™ replaced
throughout by G, there ezists a near optimal turnpike solution to the above
maneuvering problem. Specifically, for d sufficiently large, we can construct
a trajectory that accrues almost all of its cost simply translating at most m
configurations. The cost of this trajectory differs from the optimal trajectory
by a constant which does not depend on d, b or 7.

Proof. The proof closely mimics the proofs of Theorems 2.2 and 2.3 (for
Theorem 2.3’s analog, we must assume b > 0,,.) Note that by the brute
force assumption and the finiteness of T', there exists a constant ¢ such that
(X,a,7) =5 (X,a,7;) is a legal maneuver for any X € C,a € Z" 1,1 €
T.

To construct our turnpike trajectory, we first construct the turnpike
trajectory from (O, 0,,) (not m + 1) to (D,db), with cost TPFREE, tem-
porarily ignoring the torsion constraints. (We do this by removing the
torsion component from all the arcs of the current C-Graph, and then pro-
ceeding as in Chapter 2—we do not coalesce arcs which become identical in
the process.) Upon returning the torsion components to the arcs used in the
above walk, our walk represents a trajectory from (0,0,,,0) to (D, db, 1)
for some 7, € T. Next we brute force from (D,db, ;) to (D,db,7,), with
cost ¢y. Whence our turnpike trajectory

(0,0,,,0) "PEREE (D, db, ;) <Z (D, db, 74)

has total cost TPCOST = TPFREE + cr. As in the proof of Theorem
2.2,
TPCOST < mcg +¢+u* + cr.

79

Similarly, if (O, 0,,,0) =, (D,db,14) is an optimal trajectory, then by
considering

(0,0m,0) < (D, db, 75) =% (0, db, 7y),

we must have ¢* > —cg + u*. Whence,
TPCOST—C* S (m+ 1)60 +E+CT,

which does not depend on d, b, or 7.

The proof of the analog of Theorem 2.3 is essentially unchanged. The
only difference is that the final brute force of the turnpike trajectory takes
us from (T, mr + 372, |z;]a;,7), for some 7 € T, to (D, db, 74), with cost
s T =T4—TE€T. Theset {§ € Z™:r < § <r+2mMe} x T remains
finite. u* and z* play the same roles as before, and the new theorem is
proven. O

Remarks:

e When m = 1, we have the analog of Theorem 2.1 .

e The implementation ideas of Chapter 3 can still be used for the more
general problem. Note that for every configuration X here, there are
|T|/|Hx| configurations in the free C-Graph of Section 2. Hence the
ratio of the number of nodes in the new C-Graph to the number of
nodes in the old one is |C|/ Y xcc(|T|/|Hx|). If most X have Hxy =
{0}, then this ratio is approximately 1/|T|.

e If our movement environment F is not all of E = Z™ x T, but instead
satisfies the additional two homogeneity conditions of Section 3, we
say that placements P and Q = P+g, g € G are G-translates, and this
defines an equivalence relation among the placements. Defining con-
figurations and canonical placements in the usual way, we let (X,a)
denote the placement X + a,a € G. (Again, X + a may have mul-
tiple (|Hx|) representations.) If our movement rules obey the usual
conditions (with Z™ replaced by G), we can represent the problem
on a C-Graph (as in this section) with progress labels coming from
G, a subgroup of Z™ x T, and thus G = Z* x T’, where i < m, and
T' is a finite group. The problem has now been reduced to the one
considered in this section. Thus for d sufficiently large, there exists

80

a near optimal turnpike trajectory from (0, (0,0;)) to (D,(db,,))
which spends most of its cost doing simple G-translations of at most
1 < m different configurations.

81

Chapter 6
Applications and Research
Directions

6.1 Applications

In this section we present some problems that can be posed as C-Graph
problems, and thereby have turnpike solutions. Interestingly, the first two
problems we consider are not even optimal maneuvering problems.

6.1.1 The Recycling Problem

We begin with an original contraption O with d units of “life” in it. After the
contraption is utilized, it is transformed into another contraption, whereby
it loses life units, and is subsequently utilized. The process is continued
until we no longer can (or desire to) transform any further. The objective
is to maximize the total amount of utility achieved during this process.
More precisely and more generally, we have a finite set C of contrap-
tions. The value of a contraption X € C is u(X) € Z' monetary units.
A transformation takes a contraption X to a contraption Y at a cost of
txy € Z' monetary units, and a destruction of p € Z™ life units. Hence
the net monetary value of the transformation is u(Y') — txy = cxy. (There
may be more than one way to transform from X to Y, but we assume this
number is finite. In such a case, we would adopt new notation for cxy.) Ini-
tially, we begin with contraption O € C with db € Z™ life units (b > 0,,,
d large). We wish to make a sequence of transformations consuming at
most db life units, and maximizing the total monetary value achieved. We
assume (as in the homogeneity assumptions) that the amount of life units
remaining to a contraption does not affect its utility nor its transformation
parameters. We also assume (as in the brute force assumption) that there
exists a vector r such that for any X,Y € C, and § > r, there is a sequence
of transformations from X to Y with value cs and “destruction” §. Lastly,
as in the cycle positivity progress assumption at the end of Chapter 2, we
have a “law of entropy” asserting that for any X € C, any sequence of
transformations taking X back to itself must destroy a positive amount of

82

life units.

With these assumptions, the problem can be modeled by a C-Graph and
the theorems of the second chapter apply. (Cf. the remarks after Theorem 3
there.) Our turnpike solution spends most of its time repeatedly applying
at most m different transformation cycles. Hence our recycling problem
has, so to speak, a re-cycling solution.

6.1.2 Crop Rotations

A farmer has a plot of land from which he can grow a single crop each year.
The land has m nutrients, ¢ = 1...m. If one year he plants crop X, and
the next season he plants crop Y, then he makes a profit of vy, but uses up
Pxvi > 0 units of each nutrient i. Assuming initial nutrient endowments
b; > 0, and that nutrients cannot replenish themselves, how should the
farmer schedule his crop plantings so as to “reap” the greatest profit (while
his land is usable). Using a Crop graph analogous to the Contraption graph
in the previous subsection, we obtain our desired near-optimal turnpike
sequence of “crop rotations”. Note that in this problem, the associated
C-Graph is likely to be complete (one node for each crop), and that the
radius of maneuver r = (ry,...,7,) can be defined as r; = maxyy pxy; > 0.
Thus the amount of soil deterioration from one season to the next is at most
r. Note further that we can weaken the positivity assumption on pyy; by
the appropriate cycle positivity assumption, and that the profit ~y can be
taken to depend on the previous season’s crop (and thereby be denoted as
Txv)

Remark: Perhaps more realistically, suppose the farmer wishes to max-
imize his profit, discounted over time. That is, the money he earns during
his second season is multiplied by a discount factor a, the money he earns
in his third season is multiplied by a?, etc., where 0 < a < 1. If a is small
enough, the profit obtained the first few seasons may dominate the remain-
ing profit, and therefore it may not pay to get onto a turnpike immediately
(if indeed a turnpike solution is even near-optimal). Perhaps a turnpike
result for this situation could be established in a manner analogous to that
of Shapiro and Wagner (1967). Another possible objective could be that
the farmer only intends to plant for ¢ seasons, where ¢ is large but finite.
If such is the case, we add a new constraint to our problem. In fact, we

83

could even remove the pessimistic constraint that nutrients never replenish
themselves, by allowing the land to “go to pasture” for some seasons at the
expense of losing time. This type of situation is developed more fully in
the next example.

6.1.3 Optimal (Bi)cycling

Before presenting this application, we state a weaker cycle positivity progress
assumption for maximization problems when the associated LP has m =
my + my + m3 constraints, where the first m, constraints are the < con-
straints, and the next m, constraints are the equality constraints, and
mg # m.

Weaker Cycle Positivity Progress Assumption. Let C; be a cycle with
positive value ¢’ and progress a; € Z™. Then a;; > 0 for some
jzl,...,ml—}—mz.

This ensures that the associated LP remains bounded.

A team of m —1 marathon bicyclists wants to see how far they can travel
within ¢ time periods. The cyclists can maneuver into a finite number of
different configurations. Depending on a cyclist’s talents and position in
a configuration, he expends a certain amount of energy during that time
period (e.g., a bicyclist “in front” encounters more wind resistance than
the other cyclists, and thus expends more energy here than if he were in
another position). At the beginning of each time period, the cyclists can
change into a new configuration (say from configuration X to configuration
Y). The distance travelled during this time period (which begins w;th
making the transition to Y') is denoted as yxy, and pxy; units of energy
(perspiration?) is exhausted by cyclist 7, where the notation is chosen to be
analogous to the cost and progress parameters used earlier. The cyclists can
even maneuver into a “resting” configuration, where they can recuperate
energy (but travel a distance of 0 for each time period there).

We may now construct a C-Graph having a node for each configuration
(from a finite set C), and an arc between every pair of nodes X,Y € C
(perhaps X = Y'), with distance and energy parameters yxy and pxy as
described above. Letting O denote the resting configuration, the objective
is to find a walk from node O to itself such that the sum of the distances

84

(gammas) of the arcs is maximized, subject to the constraints that the
number of arcs used is at most ¢, and that the sum of energies exhausted
is at most b, where b; > 0 is the initial amount of energy of bicyclist 1.

The LP used to construct the turnpike solution is: min eTx subject
to Ax < (b,t)T, x > 0, where if the i-th cycle is denoted as C;, then
its cost is —¢* = Y xyec, Yxy, and its progress a; = Yxvec;(Pxy,1)T is
the i-th column of A. (The 1 denotes the one unit of time used up in
that time period.) It may be the case that pxy > pyy and yyy > 02.0%
for all X,Y € C, representing the extra energy and time expended while
making the transition from X to Y. (Note that most of the time during
this period is spent in configuration Y.) In such a case a simple cycle
Xy - X; - -+ - X, —» X, is dominated by the set of s loop cycles
X, - Xy, Xo — X,,..., X, — X,, which makes at least as much progress,
and uses no more energy. Thus, we could restrict our attention to the loop
cycles only, when constructing our turnpike solution. Hence, we could solve
the associated LP directly without needing to resort to column generation
(provided of course that the number of configurations is itself of manageable
size).

In the earlier crop rotation example, it may have been the case that
7vy < vxy and pyy > pyy if more nutrients were absorbed when a crop
was immediately repeated in the following season, and the quality (and
hence price) of the crop was diminished. Here, the turnpike cycles would
tend not to include loops.

6.1.4 Other Potential Applications

C-Graph like objects have been used to analyze VLSI designs with regular
structure. (See Kosaraju and Sullivan 1988, Orlin 1984, and Iwano and
Stegilitz 1987. The design gives rise to a (generally infinite) dynamic graph
and an associated finite static graph. (See Figure 25, from the last of the
papers just cited.) Since brute-force and positive cycle assumptions are
generally not assumed for problems of this type (for example, Kosaraju
and Sullivan developed and analyzed algorithms for determining whether
a static graph has a non-trivial cycle with progress 0,,), C-Graphs can be
viewed as a special class of static graphs with exploitable structure.

Problems arising in robotics often involve the maneuvering of a single

85

| N\ \‘

"_é @‘}é)((O ©) (O ag

N { I N

"“\:é) @‘}é \U @4__\.‘
L

' ,
Nt Nt N ;

Figure 25: A dynamic graph and a static graph

piece (i.e., a robot) to a particular destination, while avoiding various obsta-
cles in the environment. If there are too many obstacles (irregularly placed)
in the environment, then one could not expect to see regular turnpike-like
maneuvering. When there are not too many obstacles, Brooks (1983) has
shown how one can find feasible (though not necessarily minimum cost) tra-
jectories by using long corridors of free space, denoted as “freeways” where
the robot can move freely, generally staying a good distance away from
obstacles. The analogy between freeways and turnpikes is tempting. How-
ever, it seems unlikely that brute-force and space homogeneity assumptions
are likely to be realistic, since often the real issue involved is the detection
of feasible trajectories.

6.2 Research Directions

Finally, we mention a number of questions remaining open, and intended
for future research:

o When is the finiteness assumption valid? Are there natural conditions
sufficient to imply finiteness? For instance, we have not yet been able

86

to show even that a 2-dimensional jumping problem with connected
origin and destination configurations must necessarily have a near-
optimal trajectory whose intermediate configurations are confined to
a finite set (e.g., of connected configurations).

In Section 1.3, we characterized the fastest translating configurations
for m-dimensional jumping problems (the “speed of light configura-
tions” with speed 1, available only for one, two and four pieces), but
were unable to prove that the next fastest simple translation speed
was 2/3. (Such a result would resolve the last issue in the paragraph
above.)

The main theorems indicate that the turnpike solution is almost as
good as an optimal solution. When can we prove the stronger claim
that there exists an optimal solution with the turnpike property? The
papers by Gilmore and Gomory (1966) and Chrétienne (1984) may
suggest approaches to such a problem.

Suppose we extend the “turnpike” analogy to a hierarchy of roads
(corresponding, say, to cycles in the C-Graph) with successively higher
speeds. Does there exist an optimal trajectory consisting of subtra-
Jectories which first rise through this hierarchy (starting at the level
of the origin configuration) and then descend (to the destination’s
level)?

Consider the deterministic Markov Decision Problem over a given
directed graph with rewards on the arcs. The objective is to find
a walk of length n (possible n = co) starting at a particular node
O with maximum (perhaps discounted) total reward (see Howard,
1960). Adapting a result of Shapiro 1968, we have that for n suffi-
ciently large, there is an optimal solution that spends most of its time
traversing one particular cycle. This is related to a variant of our (unit
cost 1-dimensional) C-Graph problem, where the aim is to accumu-
late a prescribed amount of reward (progress) in the least amount of
time. (Here, the particular destination node is unspecified.) These
problems seem very much related, and perhaps results from one area
can supplement results from the other. For instance, it may be possi-

87

ble to define a “node value” for each configuration represented in our
C-Graph. Also, we may find some natural non-deterministic extension
of our problem.

o When the optimal solutions are necessarily disconnected, do they still
demonstrate turnpike-like behavior? For instance, it may be optimal
to break up seven pieces into two groups of sizes four and three which
move separately in turnpike fashion, possibly joining up somewhere,
then splitting up into configurations of sizes five and two for further
separate movement, and then finally rejoining to maneuver to the
goal in sequential fashion. This suggests the further generalization of
exploring “parallel movement” of connected configurations.

e Our emphasis on asymptotic results, and free use of the “brute force”
assumption, has permitted us to finesse the issues of efficient entry
to and exit from the turnpike cycle (when m = 1), and of efficient
sequencing of (and transitions between) traversals of the various cy-
cles, when m > 1. Both for applicability to situations in which the
asymptotic effects are not overwhelming, and for satisfaction of nat-
ural puzzle-solving curiosity, these issues call for serious study.

In addition to the theoretical issues raised above, many concrete open
problems remain:

¢ Add more maneuvering problems to our data set, both recreational
(e.g., a non-trivial higher dimensional sliding problem, or a problem
arising out of the more complex environments of Chapter5, like the
hexagonal tiling of the plane) and applied (e.g., in such fields as mil-
itary logistics, automated manufacturing or robotic movement (the
paper by Mitchell (1987) is suggestive)). The developments in Sec-
tions 5.3 and 5.4 may lend themselves to maneuvering problems in
environments where obstacles are regularly arranged.

¢ Perform probabilistic analysis and further computational experimen-
tation for the improved negative-cycle detection concepts of Section
3.2.

88

o Alternative versions of the column generation approach of Section
3.1 should be explored and compared with the alternative solution

method of Section 3.4. The heuristic proposals at the end of Section
3.4 should also be tested.

e How can we automate the construction of the C-Graph from “natu-
ral” descriptions of its nodes (i.e. configurations) and arcs (i.e. legal
moves)? Can this construction be usefully interwoven with the solu-
tion algorithms sketched in the preceding sections? Along these lines,
it appears fruitful to explore the connection between our turnpike cy-
cles and the macro-operators used in artificial intelligence. To quote
Iba (1985), “Macro-operators (or macros) are a kind of super-operator
which is composed of ... more elementary operators. Macros derive
their power from their ability to shorten the search process. Using
macros, it is possible to take ‘larger strides’ through the search space,
since applying a single macro may be equivalent to a large number of
more primitive steps.... The result is that a solution may be found in
a significantly smaller number of search steps than would be required
by a search using only the basic operator....Macros allow for more
efficient search as well as more economical representation and recall
of solutions.” Al techniques that generate and test efficient macros
may provide a means of generating a manageable number of useful
turnpike cycles (and configurations) based on simple descriptions of
movement rules, when the generation of the entire C-Graph is unde-
sirable.

We close by suggesting that the particular mathematical constructs
identified in this dissertation, that of “high-speed cycles in a C-Graph”,
and its multi-dimensional generalization to sets of cycles, should prove gen-
erally valuable in the treatment of many optimal-maneuvering problems.
The preceding results provide encouraging initial evidence, which we hope
will be confirmed by the additional investigations outlined above.

89

Appendix A:
Detecting Negative Cycles

In this appendix, we illustrate our negative cycle detection scheme with
two small problems. (Both appear as exercises in Lawler, 1976.) The actual
computer code. called NEGCYC.PAS and written in the language Pascal,
follows.

The data structure used to represent weighted directed graphs is an
array of linked lists. The i-th list contains those nodes reachable from 2
in one step (df., “A(i)” in Section 3.2), plus the cost of that step. (See
Figure 26.) As was discussed in Section 3.2, the i-th element of array u
will denote the “current” shortest walk length from origin node 1 to node
1, and PRED(?) is the predecessor node of 7 on such a shortest walk.

| @i —Big —1|

2 —Blg —

3 — @2 — @3 —||

4 — Rl —Ble! —=] —||
5 —[i] —||

Figure 26: A weighted digraph and its data structure.

EXAMPLE 1:

Initially, we set

1 2 3 45

us IO—OB"IET_ Tool PRED:[—|-|-[-]-]

where a horizontal line denotes “Nil”.
Iteration 1

90

We begin by going through the adjacency list 1: u[2] := min(0+1,00) =
1" and u[3] := min(0 + 10, 00) = 10*. (An asterisk denotes an improvement
in the u-value.) This gives us

12 3 4 5 1 23 4 5
u:l0|1]10foo[oow PRED:|—|1{1|—|—"

Next we go through the adjacency list of node number 2. (Note that
this step would be unnecessary if node number 2 had not improved just
previously.) »[5] := min(1 + 20,00) = 21* Whence,

12 3 4 5 1 23 4 5
w:[0]1]10 00 21] PRED:[—[1]1]-]2]

Going through adjacency list 3: u[2] := min(10 — 2,1) = 1 and u[4] :=
min(10 — 3,00) = 7%, yielding
12 3 4 5 1 23 45
w: 0]1[10[7][21] PRED:[-[1]1]3]2]
Adjacency list 4: u[2] := min(7 — 12,1) = -5, u[3] := min(7 + 6,10) =
10, and u[5] := min(7 + 1,21) = 8, yielding

1 2 3 45 1 2345
w:|0[-5[10]7[8] PRED:[-[4[1]3]4]
Adjacency list 5: u[3] := min(8 + 1,10) = 9*, yielding
1 2 345 1 2345
u:|0/-5[9|7][8] PRED:[-[4]5][3]4]

Tracing back from those nodes which were improved this iteration, we
see that Pred[2] = 4, Pred[4] = 3, Pred[3] = 5, while Pred[5] = 4, giving us

the negative cycle 4 5 -1 3 =% 4in just one iteration.
EXAMPLE 2:

Next, consider the weighted digraph of Figure 27. We initialize, as
before:

1 2 3 4 5 1 2 3 4 5
w:[0]w o0 oo lo0] PRED:[=[-[-[-1-]

91

e G~
3 —~ EE—~EE |

L}‘—* *v"’@,é—’ty“ —

Figure 27: Another weighted digraph and its data structure.
Iteration 1
Adjacency list 1: u[2] := —8" and u[3] :=1".

1 2 3 4 5 1 23 4 5
w:[0]=8]1]oo]oo| PRED:[—[1[1]=]—]

Adjacency list 2: u[5] := —8 4+ 20 = 12~.

1 2 3 4 5 1 2345
w:[0]-8[1]oo[12] PRED:[-[1]1]—-]2]

Adjacency list 3: »[2] := min(1 —3,-8) = —8 and u[4]:=1+0=1".

1 2 345 1 2345
w:[0[-8[1]1[12] PRED:[—[1]|1]3]2]

Adjacency list 4: u[2] := min(1—12,-8) = —117, »[3] := min(14-6,1) =
1, and u[5] := min(1 + 1,12) = 2~.

1 2 345 1 2345
w:[0[-11]1]1]2] PRED:[—[4][1]3]4]

Adjacency list 5: u[3] := min(2 + 1,1) := 1. (No changes)
Tracing back from those nodes which were improved this iteration, we
see Pred[2] = 4, Pred[4] = 3, Pred[3] = 1, Pred[l] = 0 does not lead to

92

a cycle, and Pred[5] = 4, which has already been explored. Hence, no
negative cycles have been detected this iteration.

Iteration 2

Since u[1] has not improved since the last time we went through node
1’s list, there is no need to go through it this iteration.

Adajcency list 2: u[5] := min(—11 + 20,2) = 2. (No changes)

Likewise, there is no reason to explore lists 3, 4 and 5. Since no im-
provement has been made this iteration, we may conclude that no negative
cycles exist in our digraph. Furthermore, the array Pred and u can be used
to back-trace shortest paths from node 1 to all other nodes, and the array
u to read off their lengths.

T TTEYY
AEEEREEER
o -
EE T %
LT %

o
%
% %
ARERREBRE
[EETETY)

ok Rk ok
LEEEEE LR T]

T
e
>
e
T
%
o
-k

%

QYVYANVLS

INIT WY

SWANHE

LS:6VivYL 68/8L/%0

Svd JAJ93N
% *x * * EEEEE SRR R PR R XX] LEEE R L 2
*% *a kR kkk LR E R EEE 2] LRSS EE R T EEEE R EE S X
* % K LR X 2 I 1 * % *x * % * %
LA AR LR * % * x% * LR
ERERERKRR L2 * % * % LEE R E R Z
% * % * % R * K LEEEREES T
*E e ¥ % * % * %
x % * % % * % x% o *% x %
L EE R R] % xn LR R EEEEE R Aok kR kK
EE 2] L E) ¥ LEEE RS T] RERERER

*300W
‘Y3IANIYd
PW3LSAS
FANIL
3714
L) LE]
e LT
* % -
o %
LT I T2]

*k kkk k%
kKR kKKK

EE 2

*h
*

* %K

*k
*

(* 3503 peay) £(3s09° 4 ‘Bltiul)uipeay
tpeeH =:pesH’ _d

(» Ped3y pesy) t(peay ‘a(tLjul)pesy
(% Lte} peay i) fLtel =:(tel” d
*(d)meN
(% PBOH<-———- ltel DJdB 8y} WOJjy UOLIBWIOJUL BY3} PJIOIAY 4) (% @Ltym «) uLBag

0Q (0 <> LteL) @lLym
t(lrepr*ajtgur)peay

CLEN =t(d]Y

0g N 03 | =3y dJod

(x U pedd) (N ‘3altjur)uipeay
uLB6ag

td3d :D‘d
tadA3apoN :peeH ‘LBl ‘Y Jepn
(» 'dtd Induir 8yl wouy s3si| Asusdelpe)

A* 9y} sI93eddd pue sa|qeLden S8zt |eLliUL B3IEBPIAYH u.v quﬂLL<LwQ iy Jdea an>quOZ N Lm>umym0a00 8J4Np8dodd
mbi*{****&i*&&&*iﬁ***b*{****{*{{****&{****ii***i&ii**&_..*****&i&&’**&*&&ii#iu
tpugz

t(81t4IN0)BILIMEY

‘(Bweud(L33INQ =:8weN 9(td4 ‘@|t43inp)uado

t (sweua | L 33nQ)upeay

(., 31t4 INdINO Byl 40 BweU BYI JBIUT,)IILJIM
uLBag
(x ®lt4 3INdINO 8Y3} 3JO BWeU BY3I SPESBJ 3| LJINOPEBY 4) t(Bweus|t4 awWeud|L4IN0 JEBA)O| L JINOPBEY IUNP3I0OId
n{*i**iil{*&i****Q*Qi&#*{**&{#ih*&&i&&#i*i*&ii&i{*{i****l**i****l&&{*ihiii&v
tpu3l

_ t(®ltjur)iesey

f(PLO =:AJ03SIH ‘Bweus |Ljul =:8weN @|it4 ‘@|Ljul)uedQ

t(sweus |t jur)u|peay

(., 814 INdup By3l 4o Bweu 8yl J83IUT,)BILJM
uiBeg
(# ®Lt4 3INdui ay3y 340 Bweu 8yl speey a|iLjuipesy) t(eweus |4 :3WBUB||JUT JEBA)B|LJULPEBAY auNpel0Jd

A*i*il&&*&i’*l**tib*4*&i{*{***6&.*{*&***i*&*lii***‘{*i&&&**i!i*i*ll"i***&iu

foweud L4 taweus || 43InQ ‘sweusd|tjur

t3IX81 * 9(14IN0 ‘@LJUl

(» I 3pou BuiAee| sdJe (|e 40 3SL| pequi| @ St [I]V «) tAeduydld : ¥
(» YydedB-3 8ay3 U} S8POU JO # 4) tadA38poN : N Jep

tdey) Jo [ZL° " L]Aeuuy pexded = sweuad|id
t43d jJo [xBWN® ‘|]Aeauy = Aeddydid

tpu3l
(# 1242 BAL3eB8U B8y} UO DJJe IXBU 4) td3d 9@ |2A)juoixaN
(+ 3St| Aousdefpe uo JJe 3IXBU) td3d fIXIN

tayabejuy :3so0)
tadA3apoN :peaH
tadAjapoN :|tel
pJ402ay = 2Jdy
o4y, = J3d

tuea|00g 40 ([xewu'* |]Aeduy = J40328A|00Q
ftu48bBajul JOo [xBwu-® |]ABJdy = J403}I8AU
txewN' "0 = 8dA3apoN adA)

(%SJ40448 jjopunod uo peseq N BuiAoddwl PLOAB 03 Pasny) (x-_0l%) *1000°0 = uo|isd3
(xSuoi3eindwod yjed 3ISO3ILO0YS 404 BN[BA AJLUL4Uly) ‘00l = wWBtig
(«SOPOU JO # XBwy) {106 = XBWN 3ISuU0)

(#%°UOL3BIUBWNIOP SLY3} 40 Pud 3y} 3B Jeadde SUOL3IINIISUL INAUT 44)

(%% "®LEJUL 31 L) wody pedS S| ydedB ayls)
(*%"S3Stx® auo 4t ‘ydedsB pajybiLam B uL 81242 @AL3BBOU B SPULY WRIBO0Jd SLUlex) f(a1t3In0‘atIurndinoindur)sa|d4A)6aN weuBoud

woJdy4 sy|em ||e (A|Jddoud) suieiuod sse(d yi-] 8YL °SSe(Id i)
Ui-I 8y3 uL sy|em ||e Buowe ‘r 3POU 03 BUO BPOU WOJL4 Y|BM 4)

jybiem wnwiutw e jo 3ybLem ayiy st [r]n ‘puoduew||dg 40 x) t(40328A(00g :dwWL]StYipBAOJdw] JeA
UOt3leJdIL Y3~ 3Y} Jd93I4y °(dWL]SLYylpeAoJdwW] BLA) UOL3IBUBIL «) £J03J9A[00g :8UWLj3ISBI9IULSPAAOICU] JBA
jeyy 6updnp pasoddwi 3ARY N 40 sjusduodwod YdiLym BuipiedLpul) tadA38poON N JBA
pue ‘n J403}d8A 3y} Buiiepdn ‘wy3iiJsoBie yied 3S8IJOYS) ‘tuea | 0o0g :judwanoJdw] JeA

(% PJO4-uBW| |3g 8y} JO0 UOL}BUDI| BUO SBOP pJOjuew||dg BJ4NPOI0Ud «) £10329AU N JBeA !Aeuauyald pP9Jd‘VY JeA)PJOjuUBW]| |BG 3JNP8J0Jd

n**********»**4**i*n»fnrag*e»*;*i****n&«**if*»**¢****u;*»*i*Q&*ngifri;***a-v
.
pul
t(,°"suoir3iea@3t ,‘zZ:1‘, J8@3je uUOL3jeULWII] tpai}de9}ep sa|d2Ad aaniLiebau ON,
‘91 L4INO)ULBILIM

t(, "suopiedait ,‘zZ:I‘, 4834 uUOLIBULWIS] ‘p83IdB3IAP S8 |2AD 3AL3e68U ON,)U[d3ILJIM
ULBILIM
tULBILIM
t(9LE3IN0)ULIBILIM
t(91Lt43IN0)UBILIM
u|Bag
(% ,,°Suoi3eus@ii I 48348 punoj s8|24AD "6au ou,, siuiud abfessawad | DAJON) t (adA3apoN:[)abBessane | 2AJON 3J4npedodd
PP N I I e e T R T T TR TR)
tpu3
(» doo| I 404 &) tpu3l
(% @LHUM #) tpu3l
f(8LL4IN0O)U(BILIM
t(8LLIINO)ULBILIM
(» doo| % 404 4) *pul
tpu3z
t3xXeN" 0=:0
f(.(, 1338027 0% ,), ", ,f9L14IN0)OILIM
uLBeg
(a "JJe 9AL3}D8dsad S3}L Yyjeaudepun 3sS0d 3yl BULISL| =) uayl (LN <> D 41
uiBeg
0Q 9ZLSU89UIS 03 | =:)y Jod
f(@LL4INO)ULAILIM
tpuz
tpu3
f3XON° _d=:d
t(z:peeH _d', <-—————— ,'91+343IN0)BILIM
uLBeg
uayl LtN <> d 41
uiBeg
(+ ‘BWi3l e 3}B S38POU g }SOW IV x) 0Q 9ZLSUBIUIS 03 | =3y 404
(#91tYMs) uiBeg
0 LN <> D 3LtUm
t[1lv =:0
t[1]v =:d
t(,,'2F1%aLE33N0)83 LM
uibBeg
(# I ®pou 403} 3si| Aouadelfpe ay3} 3juidd =) Og N 03} | =31 404

f(@Lt43IN0)UBILIM

t(Bweua | jul, wody B3I 404 3ISLT Aduedelpy, ‘9(L43IN0O)U|BILIM
tULBILIM

uLBag

td3d D °‘d
£9Z L SU89JIS 0 N
tadA3apoN 1 JeA
‘g = 9ZLSUBIJIIS 3ISUO)
(» ®Lt34 3Indino 8Yy3 03uL 3si| Aduedelfpe a8y} S33LJM BIBPAILIM x)
‘(sweus | L4:oweud | JultadA3apoN N tAeduedld 'y JeA)EIEBPBILIM 9JNPeJ0Jd
AQ*&**ii******i**&**********&****&****&*&*i************i***&i*iii*ii**&li&&v
tpug
(% @LLUM ») ‘fpu3l
(+ 0 @ yiytm spue Indul &) t(Ltel ‘@Ltjur)pesy
td =:[1telL]v
ﬁ*«mrp>uchMwuuwomcwccmmmoumuLMymecH*v "Hpmmh_<u"uxmz.(a

(* os|e 311 *812A)403483S apou e Buiideirs ‘2AD68N3IDB3IBQ =)
(% UL pai1dajap 824D aaiiebau ay3x 3ino sjutdd a(d2A)BaNIULId x)

¢ (adA3yepoN :8(2A)4034B3S ‘N ‘J93I ‘apoNpeAOJduwT fAeduydidipedd)d|2A)6aNjuLld 8Jnp8d0dd
nν»«&au;»c»***;»;»»««*;4*;***4*«»§;u*na*4*«;***u***a;.ernfaf;****a;a**aﬁv

tpu3l
‘pug
(% P8J4d BLA JJe 3J0W 3UO X}IBq 9dBJ]) tfLtel" _dlpaddd =:d
(* 43y3Jnyg ou 8Jo|dxd usyl) tandg) =:pugpeag
(% LlBD snoinaud e UL peuiwex® udaq SBY DdJB JNO 4O [LBI BY} JI «) uayjl B8poN <> [liel’_dlAgpautwex3d J1I
(= ‘3L auLwexd k) tepoN =:[l1tel" _d]lAgpsutwex3
(= usyy ‘pauiwexs ueeqg 30U Sey IJJB JNO JO LB} AU} J4I x) ueyy 0 = [LteL" dlAgpauiwex3 3]
tpug
(+ "®12AD4034831S 3POU UM BuiiJels) titel d =:8|dAjj403Je3s
tand) =:puno4dA)meN
(& PUNO} udaq sey 3[2AD anLjebau Mau B uayl} 4) tand] =:puno4d|dA)6eN
uLbeg
(% ‘LlBD Sity3 BuLJunNp pauiwexe useq SeY JJB JNO JO [LB} 3yl 41 =) uayl @9poN = [Liel _dlAgpautwex3 JI
uLBag

og ((pu3zpeeq 3ON) PUY (PUNOJDAIMBN 3ON) PUY (LLN <> d)) @LtUM
t[@pON]pPOId =:d

tas|e4 =:pujpesqg

tapoN =:[epoN]Agpauiwex3
uL6eg

tuea|oog :pujpeeg
tu3d :d Jea

(x(®124A030343S) 8pou peieadad ay3y e BuLiuels ‘324D 8Ai3ieBauU)

(% e puno4 aABYy 8M ‘@seD J833e| 8y} U] °J|9S}L S3eadad 8pou)
(% BWOS 4O [{U yOE8J B8M J3YILa (LIUN ‘U0 OS puBR ‘IPOU JBYIOUEB 4)
(% 03 8pOU 3}X8BU SiU3} 40 peJd SMO||0j UBY3J ‘IPOU 3IXBU BY} O3)
(s [®PON]p@4d SMO| |04 UBUI PpUB 9PON BPOU Y3 iM S3IJBIS >IBQAJBJIL &) t(ues|o00g :pPuUNO4IAJMAEN ‘PuUN0O4d|IAD68N JBA

fU0308AN :AgpauiLwex3y JeA

tAadJdydid :pedd :8dAiapoN 1812A)4034838 JBA
tadA3@poN :N ‘9poON)YIOega8ded)j 3Junpedlodd
A¢¢***«*n»*uo*¢***§4eynn.¢c¢*¢oe¢*¢§»¢¢*c*.*»;;»ui***rfn**afgﬁqau*ufuuuaaanv

tpu3
tpug
(31 tUMx) *pu3l
(# "3St| ADusJEB[PE-3NO S, LBl UO DJ4B }X8U B8Y} dULWExX3) t3x8N'_.d =:d
tpug

tenu] =:[pesH’ d]ewiistyipansoddur
tanu} u"Huan.(numsvhuwNJOUc*mnm>0LnEm
‘td =:[peay _d]pPeid

t3s02° d + [LteL]n =:[pedH _d]n

tanu] =:3juswanoudwl

uLBag
(* ‘ [peaH]peJad pue [pesH]n ajepdn uayy ‘daiys 3se| S}t Se)
(» (PEOH‘|LBL) Y}iM pBOH 3POU 03} XY|BM J33JOYS B puLy ugd aM JI x) uayy (uo|isde - [pedBH° _d]N > 3S02° _d + [Lter]n) 31
u|Bag
0g LIN <> d 3LtUM
tfitel]vy =:d
tes|eq =:[(tel]owi]isetaoutspanoadu]
uLbag
(&« ‘POULwWEX® 8J48M SOJEB 8SOY} BWL3} 3Ise| BIJULS peAouduil aAeY 3IBUY 4) ueyl [ttel]swiiiseeduispesoasdur 341
(« """Ltel [tB} YItm sdoue ||e ybBnody3 6uUL0n) Op N 03} | =:|te]l 404
tas|ed4 =:[I]owilIsStyipanoasdu]
oOp N 03} | =31 J0Od
uLBag
td3d id
tadA3apoN I ‘liel JeA
(* ‘[@POU 03 BUO BPOU WOJF A|EBM)

(«34yBLdm wnwiutw Yyons Bwos Ui 8pou sapadaud yoiLym 8pou 8y} x)
(% st [r]pedd °"Jemay Jo sdeis I 93B3 UILUM [dpOou 0} Buo 8pou *)

(»

‘uLeBe pJodjueuw| |8g

1t pue

‘anoaduwt
uayi

(*

‘anLieBau aq 3snw 3L
padeu} aJe sapou paaoddwl
sS80p N uaum
‘jusuodwod Aue ui
J83je JI

‘pauLWEXd SBM 3Si|
awL) 3se] 8duLS paaoddwl sSey | 8pou 4L BNJ} S|

LLed am 8sLmJdYylQ
‘punoy st

Aouaoelpe 3no s,L 9PON x)
[+1LIST #)

*3no pajutJad SL &)
8(24A2 @ 4I "¥deq)

o3jut Buirped| SdJe B8y})

*sa (243 aAir3eBau ou sey ydeuB ayl 4)
panoudwt

3Jou SL N ‘| |eDd ydns Aue)

"S8wL3 N 3ISOW e pJojuew||3g S|lBd II)
aAnL3Ie68U 4O 8|2AD B suLelUO0D ydedb a3yl | SBULWJIBIBP «)

(% pue Butindwod

(*

J9PJO0 9SU3NBJ

°3S02

812A)68aN32938Q x)

tJ03238AN :Agpautwexy
tu0328Aa|00g :awLjstyjipanoadwy ‘17SI
tAeddedld :pedd
tuea|00g :pPuUNO4dA)MBN ‘punog4ad|dA)BaN ‘juswanoddur
$U03238AU N
t43d * d
tadA3apoN :8|2ADjo3ue3S ‘U831 ‘I JeA

t (8dA38apoN:N ‘Aeddvyaid:y JeA)DIADBaN3}D@3}8g 84npedoud

A***b}*l**&**&i**{***i*i{I*********6*i****i{**&*i***6****i********{*i*ll*llV

"UOLJBWJO4UL JUBAB[3J 3yl BurjiuLad 4)
‘18pdao uadoud ay3z uiL saBpe 3440 dod)

UL ¥oEB3}SOJER UO 3|2AD jo sabpa ind)

|e303 S,9|24AD ay3y s3jutdd)

tpul
t(81L43N0)ULBILIM
t(a@1L43INQ)ULBILIM
t(31L43IN0)ULBILIM
,'B1LLIIN0)ULBILIM
fuleltum
tUlBILIM
tU(BILIM
Juleltim
fULBILIM
PLIN = d Li3un

ta|2AJuUoIXBN" _d =:d

£3S0)° _d + 3s0)|e30)] =:3S0)|B30}

t(g:3s0)|BIO0L, :3sSO0)|e3o]

t(g:3s0)|e3ol’, :3s0)(e3o]

t(Z:3s0)° _d°, :3S0) , ‘@1LJINO)UBILIM
t(Z:pedH” _d',<---—,‘LI8L" d‘9|L343IN0)3ILIM
£(Z:380)° 4, :3S0D) ,)U|8IIM
t(g:pedH” . df,<-~---, ' Ltel"’ d)O83ILIM

jeaday

t0 =:3}sod|e3jol

£yoe3sody =:d
tpugz

‘i{tel” _[8poN]pedd =:8poON
t[9PON]PB®Jd =:%2B3ISOUY
£3oe3SOUy =:8|2AJuUO3IXaN" _[8poON]paid
uLBag
0Qg 8(24A)3j034E3S <> IPON | LuM
‘el _[@12AD4034e3S]pOJd =:3PON

CLLN =:9(2AJUO3IX3BN’ _X%dB1sduy
t[@124A)403481S]PBId =:%de3souy
fULBILIM

fULBILIM

t(aLtFIN0O)ULaILIM
t(8LtiIN0O)ULBILIM

t(z:4@31', uUoOLiBUBYL 3B ,L)Ul33F|JIM
t(Z:9poNpenoJduw] ¢, 8pON paAoJdw] Buisn,)e3ItJm
fULBYLIM

fULBILIM

t(Z3:4931°, UOL3IBUD3L IB ‘B L4INO)JUBFLIM
‘(Z:opoNpanoJdwI‘, 3pON p8AoJdw] Buisn, ‘3 LJ43IN0)83ILIM
t(8LEIIN0O)UBILIM

f(3LEIIN0OJUBILIM

uiLBeg

¢Jefajul :3sod|e3jo]
ta3d :yoeilsouy ‘d
tadA318pPON :3PON JEBA

—
™~
- -~

$1va° LY3TMYT NI ¥V3ddVY VLIV DNIMOTT0d IHL --3TdWYXT =)
LI nInIImm I OIO Y T E PR TR)

(» LNdNI 3IHL 40 QN3 3IHL SILVOIANI---- 0 #)
(= 150D qavaH TIVL)
(% :SMOT1T04 SV ‘3IWIL V LV MOY¥ 3INO ‘SO¥V IHL LSIT %)
(* (HdVYD 3HL NI 3IAON a3¥IEWNN LSIHOIH IHL ‘ATIVALIV) HdVH¥D 3HL NI S3AON 40 HIGWNN FHL---- N =)
(:SMOTT04 SV QIILILSNA L4377 3IHV vivad IHL " (Lva" Ly3IMYT ‘°9°3) 3714 LNANI 3IWOS VIA Q3YIINI 3Y¥V viva 3IHL =)

A**{i***ili*******!*&i&’i!*i{*i*****&**************&i!i*l*l**}l******i****l******i****i***’&*{*&*i***&*Gﬁ**i*ll****i}ii&{*v

(sanreans SNOILONYLSNI LNdNI

TTIIL))

A&*{i**i**iil*i******li**{**i**i*i**i**&&****ii*&&*&***{*******l**&i&**li**i****Q**i*****&i******Q*l***.&**i*&i&***l&ih‘&*v

‘pug
t(®1t43n0)a@s01)
t(u*y)a4ApBaNioeiag
‘(PwWeUd| L JUTI'N‘V)BIBPAILIM
t(sweud| i j3inQ)adlLiinopeay
t(@tLtjur)esold
t(v*N)eileqgien
t(sweud | jur)e|tjutpedy
uiBeg

A*********Q*§l*&i*i****{***&i*******{*#{&*****{&{*ii*i&l***l*&i&*i*i***}!l&v

(ke ek ke n kRN R AR AR R AR R Rk

JUNAIO0Ud NIVIN sxsskkkh ks kb kb h e hns)

ni*{iil*****&&*ii{**i*&**{*&&******!*ii*i&l}**&*******ii'i{’****ﬁQiti‘lii*iv

‘pug

‘(1 - J4@31)ebBessayd|2AJON U8yl 3juswenoJsdwl 3ION 3I

tpu3l
fL + 4893 =:14031
tpugy
‘{pugy

t(a|2A)3034B3S ¢ N ‘4831 ‘I ‘pPaJd)®|dA)BaN3jutdd

(% "PuUNO4 s8|2AD aani3eBau | |B 3NO0 uLJud pue)

uayl punod4dA)meN IJ1I

{(PUNO42A)MaN ‘punoda|dA)B6aN ‘Agpeutwex3 ‘pedd ‘9(24A)j03delrs ‘N ‘I)3degadedy

tas|eqd =:puno4dA)meN
uLBeg

usul ((0 = [1lAgpautwex3) puy [I]ewiistylipeAoJdwr) 41

(%« Sepou paaoJdwi | |8 ybBnouy3l Xdoeq adedj 4)

t(awijsiyipanoadwy ‘17SI ‘N

0a ((Puno4s|24A)BaN 3ION)

(# LISI PUB N 8ZL|BLILUT)

(* *juaLdL44a adow aunpadoud xoegasded| ay} saxew AgpauLwexd)
(% ‘pJoquew| |8g 40 | (B2 3judsaud a8yl)
(= BuiLanp pasoJdwi sey [L]n JL 8nu3 st [L]awiistyipasosdul)

Op N 03 | =:1 Jod
‘0 =:[1]Agpeuiwexy
Op N 03 | =:1 404
uib6ag
ueyj) juswanoldwr 41
‘jusawenoddw] ‘n ‘peaudd ‘v)pJojuew||ag

tas|84 =:3juswanouduwr
uib6ag
Puy (N => J4831) Puy (3FusweAo.dwl)) 3|iumM
PLEN =:[1]POJd
0OQ N 03} | =:1 40d
L =id93]

tas|e4 =:puno4e|dA)B6eN
tanJd] =:jusweaAoudwr

‘pug
tesieqd =:[I]17S1I
tWbig =:[1]n
uLBeg
Op N 03} 2 =:1 JOd
tanuy =:[1]17S1
t0 =:[t]n
uLBeg

*)

93

Appendix B
Generating Columns

In this appendix, we illustrate our column generation scheme with two
large examples arising from the two-dimensional jumping game described
in Chapter 1. Here we have three pieces, and restrict ourselves to the 46
“connected” configurations. Figure 28 displays each configuration placed
at (0,0).

In the first example, THREEPC, all moves have unit cost. In the second
example, RANDCG, costs of the moves vary from 1 to 9 (and were gener-
ated from a uniform distribution using a table of random digits—with the
restriction that every move was given the same cost as its reversal move).
We solve the above maneuvering problems for all “right hand side” goal
directions. This can be done easily in two dimensions, since the edges of
the unit square completely surround the origin, and a solution to an LP
with right hand side db is just “d times” a solution with right hand side b.
Thus, since our problem data are rational, we can use integral right hand
sides. In the style of Appendix A, the C-Graph is represented by an array
of linked lists, where the i-th list consists of the arcs leaving node i. (More
exactly, the arc’s entry on the list is a record containing information such
as the arc’s cost and progress, and pointing to the next arc on the list or
indicating none exists.)

As columns are generated, they are printed out, are given a name (start-
ing with the first non-artificial cycle, #5), and their names, total cost, and
progress are recorded and placed on a list of generated columns (called Non-
BasicList). Our simplex method goes through NonBasicList sequentially,
and selects to enter the basis the first element on the list with negative
reduced cost. (Alternative selection rules may be worth exploring.) If the
variable leaving the basis is not artificial, it is placed at the top of the Non-
BasicList, and the new basis inverse is computed directly without pivots;
this is practical since m = 2 or 3. We next supply input and annotated
output for the two aforementioned problems. These are followed by docu-
mented Pascal code for the column generation scheme, COLGEN.PAS.

Annotated Output for Problem 1 — Threepc.out

1. Observe the presence of multiple arcs, representing different moves.

94

4 ;,:
i: S @2 |5 17
®47 f_u le 19
835 9-fc+ 0-8—2o—
22 2
21 25 L 9g 3p 35
@ 24 26 27 30 @ 34 37

@ 39 40 l qi ?'42
— 00— . —0— 00—

¢
® 45 4o
O

Figure 18: The connected three piece configurations. Each subfigure shows

the positions of two pieces, and configuration-numbers corresponding to the
different possible position of the third piece.

10.

95

Artificial cycles have numbers from 1 to 4. The initial “goal direction”

is (1,0).
The non-basic list starts off empty except for a dummy header.

Using A = (100,100), the initial dual solution, we find a negative
cycle in the first iteration of Bellman-Ford. (The details of finding
such negative cycles are given in Chapter 3 and Appendix A.) Cycle
#35 is the vertical one-dimensional Castells-Goldman cycle (with three
pieces); it makes a progress of (0,2) in 3 moves, and thereby has speed
2/3. “Weights” are defined in section 3.1.

The cycle is brought into our basis degenerately, replacing artificial
cycle #2.

With a new dual vector of (100,1.5), our negative cycle detector finds
two cycles. Cycle #6 requires 7 moves to translate all 3 pieces by
the vector direction (2,0). That is less efficient than simply doing
6 horizontal shifts, so we won’t describe it further. It replaces the
remaining artificial cycle #1 in the basis.

Cycle #7 translates the “snake” (configuration 25 in Figure 28 in the
direction (1,1) in 3 moves. This will not be useful for the current

right hand side (abbr:RHS), but could be useful later.

Under the new dual vector (3.5, —.5), we find cycle #8 which trans-

lates the anti-snake "-. in the direction (1, —1) in 3 moves, and cycle
#9 which performs 3 horizontal shifts to translate the snake in the
direction (1,0).

An interesting, fairly efficient cycle with speed 3/5 (relative to the
direction (4+z,—y). (See the illustration on output.) Notice how a
piece shifts “upwards” in the move 36 — 39, even though the overall
translation is “downwards”. Combining this with the anti-snake cycle
yields an interesting (albeit sub-optimal) trajectory.

At last, we generate the horizontal one-dimensional Castells-Goldman
cycle #11 making progress (2,0) in 3 moves.

11.

12.

13.

14.

15.

16.

17.

18.

19.

96

In the process of finding our (degenerate) turnpike solution (which
utilizes only cycle number #11) we found many other efficient ones,
notably cycles #5, #7, and #8. By dual feasibility, any RHS vector
in the cone generated by the progress vectors in our optimal basis has
an optimal solution with the same basis. Thus cycles #11 and #7
are an optimal basis for any direction with angle 0 to 45 degrees.

For example, with RHS (2,1) (angle approximately 26 degrees) our
basis remains optimal as illustrated.

When entering the new RHS (1,1), our simplex procedure discovered
an alternative optimum using cycles #7 and #5, (the latter degener-
ately), with progress directions (1,1) and (0,1) respectively.

Whence, by dual feasibility, this basis is optimal for all angles between
45 and 90 degrees, as illustrated by the next two right hand sides. For
RHS (0,1), it is cycle #7 that is degenerate in the basis.

Next, we examine another corner of the square. Having no generated
columns that make progress in the negative horizontal direction, a
partially artificial solution is given after simplexing.

Our negative cycle procedure detects 2 “hop-shift” cycles (of speed
1/2), and also cycle #15, which is the reversal of the anti-snake cycle

#8.

Note that cycles #13 and #14, though distinct, are considered the
same in terms of our turnpike model, since they make the same
progress at the same cost.

Cycle #15 yields a degenerate optimal solution for direction (—1,1),
and along with cycle #5, provides us with optimal solutions for angles
of 90 to 135 degrees.

For direction (—1,0), cycle #16, the reversal of cycle #11, is gener-
ated for the optimal solution. Along with cycle #15, this solves the
problem for angles of 135 to 180 degrees.

20.

21.

22.

97
AGe)
#5 [3]
61 (()l)
'?(/
" A
By
e 2l el S

Figure 29: Optimal bases for problem 1

Because all moves in our problem are reversible with the same cost,
the reversal of an optimal cycle pair for 8 degrees is optimal for (360-
6) degrees. Hence, we have solved this problem for all angles. We
verify this with a few more right hand sides.

Note that throughout this procedure, all negative cycles were detected
in at most 4 (usually 1 or 2) iterations of the Bellman-Ford algorithm,
and absence of negative cycles was verified within 6 iterations.

The optimal bases can be represented by the graph in Figure 29.
Within each of the indicated 45-degree angular sectors, an optimal
basis is given by the two cycles associated with the boundary rays of
the sector.

Annotated Output for Problem 2 — Randcg.out

1.

The cycles generated during Phase 1, while artificial variables are in
the basis, are not guaranteed to be at all efficient. Cycles #5-#8 are
in fact pretty inefficient.

For RHS (1,0), there is a degenerate optimal solution that utilizes
only cycle #9 and consists of 3 inexpensive horizontal shifts, as illus-
trated. The non-utilized cycle (#11) has progress (1,2). Hence the
RHS directions in the cone generated by these 2 vectors have an opti-
mal solution with these as basis cycles. For an example, we examined

the RHS (1,1).

10.

11.

12.

13.

14.

98

While we know that the direction (1,2) has a degenerate optimal
solution using only cycle #11 (and #9, degenerately), when we re-ran
the simplex method from an artificial basis, it generated an alternative
optimum.

Cycle #13 is illustrated on the output. Note that it is cheaper to go
from configuration #16 to configuration #19 to configuration #21 at
a cost of 14-2=3 (with a net progress of (0,0) than to go from #16
to #21 directly (with the same progress) at a cost of 6.

Thus all directions in the cone generated by (1,2) and (—1,3) have
this same optimal basis.

Running the LP with RHS (—1,3) did not generate an alternative
optimum. Hence, we tried RHS (—1,1), and hoped for the best...

It generates some inefficient cycles. ..

. then some efficient ones. ..

then finally cycle #19, illustrated on the output.

The transition from configuration #21 to configuration #19 (with
cost 13 and progress (—2,3)) is made as in the reverse of cycle #13.

Since cycle #13 remains (albeit degenerately) in our basis, cycles
#19 and #13 form optimal bases for all right hand sides in the cone
generated by (—1,1) and (—1,3).

Re-running the RHS (—1,1) did not produce an alternate optimal
basis.

Thus we tried RHS (—1,0), and found that cycle #17 (the reverse
of cycle #9) provided an optimal (degenerate) solution together with
cycle #19, thereby solving all right hand sides between (—1,1) and
(—1,0).

As before, since our moves were reversible with the same cost, we have
solved the problem for all right hand sides.

99

15. For example, with the RHS (—1,—1), our solution’s basis is the re-

versal of cycles #9 and #11, as asserted.

16. The optimal bases can be represented by the graph in Figure 30.

{\("n5)
N"‘;Ia)) \
\\ 4 ‘o

. - N
N #'[t'i @ g\ #\

o
P #17 49 \

(-H,&) B3| [EB 7 o)

Figure 30: Optimal bases for problem 2

1333222
Y 333300
ok *x
'R 1] %
ok k .k
*x
* %
** T
S 222302
EAERKRKK

koo ok
LEREEESER]

* %
T
* %
* %
* ¥k
* %
*
* %

¥

QYVYANVYLS

NITOH Wy

SWANHC

65:9v:LlL 68/€0/€0

1ino Jd33¥HL

-k * ¥ * * (EEE SRR E R I EE AL R R] L E R R R RS
* ¥ ¥k EER (L EER S SRR R IR ES SRR] LA EE R RN]
* * % LE R 2 2 I 3 LR e s LR
ko Kk kK okk *%* * LR * % s
LR ERERE SR * ¥ * % 4 (AR ERE R
* * % *x * % % L EEEERS S
* % * % * % * % % %
LR * & *% * ¥ LR L2] LR LR

LES S R * % * % L EEREE R R R] L EEEE R RS R

* Kk ok * % * ok IR EEEE R] R R EER R

:3Q0W

P¥ILINIYd
W3LSAS
PINTL
3714
* % L X
s .
e s
e s
T §
TR T I
AEEX EREX
e e
e s
* .

Ol <mmm===Ql<mmm=m=|Z<mmm===GE<======0l <mm====ZZ<mmm===BT<-===== L]

1(0'0) 1(0'0) 1(o‘o) 1(o'o0)

£ <——--==ll<==-===fl<======1T<--===~

1(0'0) 1(0'0) 1(o*1) 1(0*t-) L(1-'0) 1(o*t-) 1(1-*0) L(1-°0)
£Z<m=mm==pE<mmmmm=f <===m==fl<-=====| 7<= LZ<======pE<======GE<-——---191

1(0‘0) L(L'0)
Zl<-—----- L <-=-=---- -1}

1(0*0) t(0'0)
9 <------0l<-----=1pl|

1(0'0) 1(0‘0) t(L1'0)
g <------Zl<------G <=-=---if]|

1(0°0) 1(0'0) 1(0'0) 1(0‘0) 1(0*0) i(L‘0) 1(0°i-)
G <mmmmm=ll<mm=m==fl<mmm=m=G | <mm====fPLmmmmmf (=====--fP<-----=iZ]|

1(0°0) 1(0'0) 1(0°0) 1(0°0) 1(0'0) 1(0'0) 1(10)
| <mmmmm—tp <=====eQl<mmmm==lZ<mm=m==Z | <mmmm==Th<mmmm==f <-=----i

1(0°'0) 1(0'0) 1(0°0) 1(0°0) 1(0°0) L(0't-) L(1-'0)
£ <m——mm=ll<=mm=m=pl<=m=m==ZE<======Ll<=m-===[| <=====-EE<-=--=-i01

1(0'0) t(L°0)
8 <m=====Z <=-----i6

1(o0‘0) t(o'o) L(1-*0) 1(0'0) 1(0°0) 1(1°0) 1(0*1-)

| <======l <=m====Z <====--f <======fl<===m==| <------Qp<------i8

1(0°0) 1(0°0) 1(0°0) 1(0°0) 1(1°0) 1(t=-°0) 1(o‘t-)

Y <==-===Q <-m-===pZ<======LE<======Q <======Gl<-=-=--9Z<------i{
1(0'0) 1(0'0) 1(0°0) 1(0°'0) 1(0'0) 1(1-'0) t(o*t-)

€ <—m-mm=pl<-—====fl<=m====QEf<-=====f <==--==f <===----BE<------iQ
1(0'0)

R

1(0°0) 1(0'0) t(0'0) 1(0'0) t(t'0) 1 (1*0) t(1-'0) 1(0't-)
b <mmmmmmZl<=m—m==|Z<=m=c==GELmmmmm=p <=====-pZ<==--==fl<mmm===GZ<-=-===}G

t(o0'0) 1(0°0) 1(0'0) 1(0'0)
€ <-mmm==ll<mmme==pZ&m=====§ <------

1(0°0) t(o0°0) 1(1°0) L(t=-*0) 1(1-'0) t(o*1-) 1(o't-) 1(0*t1-)
[<=mm—==pf<mmmme-f <mmm===G <m=me==Z|<mmmmm=plCmmm ==L~ — === L= === 1Y

1(0°'0) 1(0'0) 1(0°0) t(0'0)
Ol<----=-Ql<mmm===t <=====--9Q <-===-=

1(0'0) 1(0'0) 1(1-'0) 1(t='0) 1(0't-) 1(0*t-) 1(1='0) 1(0'1-)
ZE<======QE<-m-mm-f <======||<======Q|<====--fZ<===-==ZE<======QE<-==-= -ig

1(0'0) 1(0°0) t(o°0) 1(1°0) 1(1'0) 1(1-'0) t(o't-)
| <==-=--8§ <------ EE<——mmm=l <======§ <-====-f <-=-===TT<------iZ

1(o°0) 1(0*0)
Z <=---- -G <===---

1(0°0) 1(0°'0) 1(0°0) 1(1-'0) 1(1-0) 1(0*1-) 1(0'L-) 1(o0*1-) -
B <—=—m===ll<-=====ZE<-mm===T <=====- g <------ 1Z<==~===GE<——=~—=ZPp<——===~ i

jep-odaadJyy wouy vIeq 404 3St] Aduadefpy

I <—mm===BE<-m—==-Ql<m==mm=f <======BE<======Qp<-=---=Zf<-=-==-Eh<--=—=-ipE

1(0°'0) 1(0‘0) 1(1°0)
7 <------7E<-----~ Ol<------%€E

1(0°'0)
1(0'0) 1(0‘0) 1(0°0) 1(0'0) 1(0'0) 1(0'0) 1(1'0) 1(0‘1-)
€ <~-----0l<------EE<C-=—=~ ~GE<——mm=-Zp < - = 9€<—-~~-~ € <——----pp<------1Z¢

1(0‘0) 1(o*1)
62<------02Z<------*1€

1(0°0) 1(0°0) 1(0*1)
LZ<------ 6Z<----~-Bl<——---- :0€

1(0‘0) 1(o‘o) 1(o*t=) 1(0'0) 1(0'0) 1(o‘t) 1(L-*0)
Bl<======0Z<======0Z<===~—-0E<-==-==|E<----==Ql <==mm-m|P<-===--i6T

1(0'0) L(o‘t)

LZ<~===~ “ll<—===-=-18Z
1(0'0) 1(0°'0) 1(0°'0) 1(0°'0) 1(0'0) 1(o0*1) 1(L=-°0)
Bl<-=—-=--€Z<-==-~-BZ<--===-0E€<======0p<==-===Gl <m~===-QP<------3L2
1(0°0) L(L'0) L(o*t)
pl<m=====0Z<=-====L <------:92
1(0'0) 1(0'0) 1(L'0) 1(o't)
1Z<=—====pZ<======Bl<==—-=-=-G <------iGZ
1(0°0)
v <------
t(L1-'0) 1(0°0) 1(0°0) 1(0°0) 1(0'0) 1(0'0) 1(0°0) 1(0°1)
§ <mmmmmml <mm-——= 6l<—m===-EZ<———=~~ GZ<-==--~ 9Z<—~==-- Bl<———m=-tp <—=—-=-ipZ
1(0°0) 1(0‘0) 1(0°0) 1(0°0) 1(0'0) 1(0'0) 1(0'1)
Q <==--==Ql<mmm===Bl<mm=m==fT<——=—==-pT<-==—=-=-BE<-=~~~ -€ <------3g2Z
1(0'0) 1(1'0) 1(0'1)
[A B z <------:122Z
1(0°0)
S <------
1(0‘0) 1(0'0) 1(0°0) 1(o0*L-) 1(0°'0) t(o'0) L(L'o0) L(o*1)
Ll<mmmm Qlcmmmmm =l | <mmmm =Bl <mm====ZZ<m=m===GZ<—=====Q | <====—=| <==---=}|Z
1(0'0) 1(0°'0) 1(0*1) L(o't) L(Lt-'0) 1(o't-)
Bl<mm====BZ<======Gl <======-BZ<-====-QZ<~=--=-=|E<-~=—=~ 10z
1(0°0)
9l<mmmmmm
1(0'0) 1(o*0) 1(0'0) 1(0‘0) 1(o*t) 1(o‘t) 1(1-'0) 1(0'1-)
Bl<-=-===pZ<==—==- LT<—===== LE<=====-9|<~==---|2<-==~--GZ<----=—-0€<-~-—~~ 161

1(0‘0) 1(0‘0)
6l<------0Z<-----~

1(0‘0) 1(0°0) L(o0‘0) 1(0*1-) 1(0°0) 1(o*t-) L(1-*0) 1(1-'0)
£Z<----==6Z<-—==== 9€<-—~-~= 0Z<-=====pZ <=~ 6Z<-~=—-==LE<-~-==~ BE<--=~-= g1

1(0'0) 1(0'0) 1(0'0) 1(0'0) (o) 1(1-'0) t(o*1-)

C | ﬁiwwl@ w&tl
i
=

\h‘n\\ﬁzmvm\.\QQOQ

| uotjeus3}| JB}jE PBIdAOISLIQ
S Jaqunu d|24k)

[00°001‘00°001] = epquwe| :uo(3in|os |eng
[00°0 ‘00°L] = x :uop3INniOS Jiseg

ool $3s0) 1 0 :ssaJboud € Jqaqunu 3| 24)
001 $13s0) 0 1 :ssauboud | J83qunu 3| 24)
isyseq |epdtjtise (epypul

0 3 140328A SHY LeuibBiJo

1(0°'0) 1(1°0)

EY<------Zt<--=---10V
1(L'0) 1(o‘t)
Op<------Ebp<------iGp
1(0‘0) 1(0°0) 1(1'0) 1(0°t)
6E<~——-—=--Zp<-~-===-QE<C~=m-==ZE<-—~=~=i VP
1(0'0) 1(0°0) 1(0°0) 1(0°0) 1(L'0) 1(0*1) 1(0°t-)
Zl<—==—=GE<mmmm = =P <mmm === QP < ==~ === PE === == | <= === ==GP<---—--iEY
1(0'0)

Ll<===-=-

1(0‘0 t(Lt=) 1(0°'0) 1(0* 1{1'0) 1(o*t) L(t-'0)
ZE<—--- --vm -----mmAuln---quuu-;p-qvA--| "vm\-||||'_ <-=—----Qp<------ iz

1(o‘0) L(Lo) 1L(0"1)

op<------ 6Z<--—---6EL<-—~~--i1l¥
1(0'0) 1(0'0) 1(0°0) 1(0‘0) 1(1'0) t(o*t) 1(t-°0)
LZ<==~===[E<mmmm == fE <= mm == | P == === [T <~ == m == PP <= === = =GP <~ === 0V
1(o0'0)
€Z<------
1(0'0) 1(0°'0) LCL="1) 1(0‘0) 1(0°0) 1(L'0) 1(o*t) 1(0°1=)
PEC—mm == =QE<mmm ==Y <—==—=-0p<-~--—-Ppp<=---==Bl <=m— === PE<-----~-lp<------16E
1(0°'0) 1(o*t)
9€<~-----9 <------18€
1(0‘0) 1(0'0) 1(0'0) 1(0'0) 1(0'0) 1(1°0) 1(0*t)
L €====-=Bl€mmmmm <= === =QE <= === -0Qp<-==-- -Gl <-====mp <-=---=-I/Ff
1(0°0)
€ <----- -

1(0'0) t(0'0) 1(0'0) 1(0‘0) t(0‘0) t(0'0) t(0't) 1(i-'0)
9 <======Bl<=-====Zf<--==-=[E<-====-BE<-——= == 6E<=---=-€ <------pp<------39E

1(0'0) 1(0'0) 1(0°0) 1(0°0) 1(o‘o) 1(r'o) 1(o0'1)
§ <m-----ll<=-==-- ZE<-=-=-- pE<-=-=-~ Ep<------9l<===--- L o<mmmmme x>

1(0°'0) 1(0'0) 1(0'0) 1(0°'0)
v o<——-———- 9l<=-=-=--GE<———~=~ LE<----=--

1(0'0) 1(0‘0) 1(1'0) t(o*t) 1(0*1-) 1(o'1-) t(1-0) 1(1-'0)

\\N/sjm

IS K ooy

2SS PV ey

F@
T3] sIsv9

C

001

00°66-
00"t
06°0-

0S°L6-
00°66-
00"t
00°1
00"t
0s°0-
00"t

00°66-
00°66-
001

13yB oM

t3yBirem
t3yBiam
13ybBrem

t3yBiam
f3yBiem
t3yBiam

_—— - ==

$3s0) 0 0 :sseuboud

0S°0- 0S°€

| uoyjeuey

{os°0- ‘0S°€] = epque|

(o000 ‘050] =
$£3S0) uo3In|os
13s0) uojinjos

0S°€
00°00l

€ $3s0) (ejor | 1

0s°8
t380) 0 1 tss8J4604d
$3s0) Q0 0 :ssauboud
$3s0) | Q0 :ssoubBoud
0S°1 00°001

| uojjeuey

L $380) (e30L 0O ¢

byr<----2¢v

sienba epquwe| uaym

| 403}3@ paseaodsig
8 Jequnu 8| d4)

tuop3nios (eng
X :uop3IN|0S dyseg
L 9 :syseg meN
L1 isyseg MON

issaJBoud (®30})
6- :3iyBiem (w30}

S <----57
SZ<----v7
pZ<----

s|enba epquwe| ueym

} J83}je peJseA0IsSQ
A Jequnu 8 24)

t8884804d (@10}

00°€61- :3yBiem (ejoy

$350) (- :ss@uBougd Lp<----6¢€
t380) 0 1 iss9460ud BEC ===\t
t3S0) 0 0 :ssedBougd lp<-=--0v
1380) 0 0 :ss8s60ud Op<----LE
t3s0) 0 0 :ssadsboud LE<----9€E
$3s0) | Q0 ‘:ssaubouyd 9€<~~-~~-b¥
$3s0) 0 O tssaubougd pP<—=-==2¥

0s° 1 00° 001 s|enbe epquwe| ueym

| uoj3jeUe)| JB} B pPeJseAnods|q

9 Jaqunu 8 (2dA)

(oSt ‘00°00t] = epqwe| :uoj3in(os (eng

(00°0 00"t] = x fuopynios dyseg

00°00t :3s0) uot3intos s 1 isyseg meN

£ $3s0) (e3joL Z O

00°L6
t3s0) | 0 :sseuBouyd
$3Ss0) | Q0 :ssouboud
13s0) (0 0 :ssauboud

00°GOt 00°00!

:ssaJbBoud (e3o0})

L- :3ybBjem (e3oy
8 <----7
Z <----6
6 <----8

s|enbe epque| usym

&S bl

)

2

SISHG

L9 L~
L9 1~
00"t

00°zZ-
00"t
00"t
00°2Z-
[s]o Rt

08z~
00°1
00°1

00" €-
00"t

€
t3ybiem I :3s0)
t3ybrem | 13S0)
t3ybgem | t3s0)
[ee"
L9°2

S

t3yBiam 8
t3yBram L ¢
t3ybream I :3s0)
t3uBrem |
t3yBiram L

(oo°
00°'€
€
3yByam 1 3s0)
tyyBram | $13s0)
t3y6am | :3s0)
€
t3yByem | :3S0)
i3ybtem 1 :3sS0D

t3s0) (ejyor 0 ¢ :sseuBoud |e3O0]
€E"Z- *3uyBiem (e3jo)
01 :ssauBoud 62<----02
0t :sseauboud 0Z<----1¢
0 0 :ssaubBoug 1€<—=---62
€E°0 L9°2 s|enba epqwe| uaym
Z uUOj3jeJu8}| 493}j@ POeIdAOIS|Q
L Jaqunu 8|24)
0 ‘29°Z] = epquwe| :uo}3nioS (enqQ
[€€°0 ‘€€°0) = X :uo0t3IN|0S Jjseg

$3S80) uopinjos L 0l :siseg M3aN
$3s0) (eyoy (- 2 tssauabouyg (w30}
‘ 00°1L- *3yBram (e3o0}
L=t tssedsBoud Zy<----6E
00 tssaubBougy 6€E<----9¢
00 :ssauboug 9€<----2¢
01 :sseJub0oud ZE<~~~-b¥
0 0 :ssaJBoud py<----Zv
00°0 00°¢ s|{enbs epque| ueauym
| uUOj3leu®}} JB}jE PAJIBAODSIQ
ot Jaqunu 8124)
0 ‘00°€] = epquwe| :uot3inios (eng
[00°0 ‘00°L] = x :uop3inios dyseg
350D uoinjos L 6 isyseg MaN
$3$0) (®301L O I tss9u60ud (w30}
0S°0- :3yBrem (e30)
0L :ssauBouyg G <~=---GZ
0 0 :ssausboug GZ<----12
0 0 :ssausbouy 1Z2<----G
0s°0- 0S¢ s|enba epquwe| ueauym
| uUojleus}} JO}je PBUBAOISQ
6 Jequnu 3@ (24A)
$3s0) |e30)1 |- | :ss@u60u4g |@}0)
00°L- :3uyBtam (e3oy
1-1 fssaJboud Zp<----6E
0 0 :ssaJboud BE<C~—~=tV

e

[00°0 ‘00"t] = x tuot3ynios diseg
00°¢€ $3S0) uoi3In| oS S L isyseg MaN
00°€ $3S0) uoiinios € L isyseg MaN

001 13s0) 1 0 tssauboud ¢ Jequnu 8(24)
001t $3s0) 0 i tssausboud | J3qunu 3| 24)
isyseq (eydtjt3Jde (epIiul

L 1 :apts puey-3ybiy meN

[EE R E R R R R ESRS R RS R RS R RS RS R R R R R R 2

‘lew}3do S} UOLIN|O0S 8A0Qe 8y)

*SUO}3BUB}} ¢ JBIJE UOLIEBULWIB] (pPB3IJB}BP S8 |IAD 8AjjeBau ON

0S°L 0S°1 s|enbe epque| uaum

(0G°L ‘0§t] = epquwe| :uo0i3INioS (eng
[00°t . ‘0S°0] = x :uopinios Jjseg
0S°t :31S0D) UOLINIOS [|| :sjseg meN

00 €0l :3S0) uoi3inios Lo\ isyseg MaN

oot 13s0) 1 0 tgs88460ud € J8quwnu 8 24)
001 :13s0) 0 1 :ssa8u60ud | J489qunu 8| 34)
isyseq (eydijp3Je |epypug

L Z :epLs puey-3yBiy maN

IR A R R R R R RE SRS RERRR RS R R RS R R Rl)

‘lewi3jdo sy UoLIN|O0S 8AoqQe ayjy

‘suopjel8l} H J834e UOLIBULWIB] p83IBIep SB|DAD aajieBeu ON

0S°L 0S°1t sienba epquwe| uaum

[os°t ‘0S°L] = epquwe| :uoiinios (eng
[00"0 ‘0S°0] = x :uopinios dJjseg

0G°1 $3S0) uot3In(o0s L it ispseg maN
00°Z :3S0) uotin|os L ZL :sjseg mMaN

z 13s0) (@301 0O | :1sseubB0ud R3O0}
19°0- :3iubiem (ejoy

[9°1- f3yBrem | :3s0) (Q | :ssausboud b <----9%2
00°L :3ubtam | :3s0) (O Q0 :ssauboud PZ<m—=mt

€E€°0 L9°2 s|enba epquwe| uaym

Z uUOL3leJd}| JBY}je PBIdA0ISLQ
b4 Jequnu 8| 24A)

0ot
00!

‘suoijedslt ¢

oot
oot

‘suoiyedsly v

ool
0ot

‘Su0y3}euel}} b

t3S0) L 0 :ss8u4604d ¢ J8qwnu B|JA)
:3s0) 0 1 - :ssauboud 2 J8qunu 3 |24)
syseq (e}dtdpise (epyju]

l [:apis puey-3iy6iy maN

2R R R R R R R R R R R R R R R R R R SRR 2R R R R AR R 2 0

‘lewi3do S} uUOL3IN|OS dAoQe a8yl

J8314e uoileUiwIe] ‘pe3jdejep s8|d4Ad aAjieBau ON

0S°L 0S°t s|enbs epque| uaym

[0G°L ‘0S°L] = epquwe| :uoi3jn(os (eng
(0S°0 ‘00°0] = x :uop3inios dyseg

0s°t $3S80) uoi3iInjos S ¢ isyseg MmaN

0s° 1t $3s80) uoiinjos S isypseg MaN

1380) ! 0 :ssau60ud € J8qunu 3 24A)
$3s0) 0 L tssauBoud | Jaqunu 8(24)
isyseq |ejdtj13se (epypul

l 0 i8ps puey-3ybBiy maN

I E X R R R R R R R R R R SRR S R R R R R 2R

‘fewi3jdo S$§ UOLIN|O0S 8aAoqQe ayy

49338 UOLIRULWIB) pB3}de}ep $8|JAD 8A}jIeBau ON

0SSt 0S°1 s|enbea epque| uaym

[0S°t ‘0S°t] = ®pque| :uopinjos (eng
[0S0 ‘00"t] = x tuopinios Jjseg

0S°'y :3S0) uojnios S (L isyseg MmaN
00°€0l :3s0) uot3in|os s | isyseg MaN
$3S0) 1 0 issauboud ¢ Jaquwnu 8|234)
t13s0) 0 1 tsseJs6o0ud | Jaqunu 8 24)
ispseq (egdtjpyse 83Ul

Z l i8pys puey-3yByy maN

(R R R R R R RS R R E R R RS RS R R R R R R R RS R AR ER R

‘lewy 3ydo s} uoLIN|OS 8AoQe 8y

J83}je uOjlBUIWIB] !pB3}IB}Bp SB|JAD B8Ajjeboau ON

0S5t 0S°1 s|enba epque| usaum

[os't ‘'0S°L] = epquwe| :uo}3in(o0S |eng

*suoL3jedsart 9

0s 001t~
00°1t
0o°1t

00°'66-
00"t

00°66-
00°1

t3yBiom
13yBram
t3ubiam

t3yBiem
t3yBiem

13uBem
t3yBLom

33 IR E S S R]

*lewy3do s} uoLIN|OS aAoqe Byl

J8314® UOLlBULWIB] (pa}Ie8}8p sa[JAD eAijebau ON

3
L
L

L
L

3
3

0S§°t 0G°lL- stenba epquwe| uaum

[0St ‘0S°1-] = epquwe| :uo}3N(OS |eNng
[00°0 ‘00°L] = x :uog3inios diseg
00°€ $3S0) uoj3inos G Gl isiseg mMeN

€ t380) (@301 | L- :sseuBoud |®30}
05°86- :3uBiem (BIOY

£3s0) | |- :ss@8ubBoud 6E<—--=2V
:13s0) 0 0 :ssauboud Zy<----p¥
13s0) Q0 0 :ssedJboud py<----6¢
0S° 1 00°001- sienba epque| uaum

Z uoijeuadl| J83}je peuadnodsiqg
Gt Jequnu 8| 24)

z :3S0) |8310] O (- :Ssauboud |e3}0}
00°86- :3uBtem |e3joy

1380) 0 L- !sseuboud Er<-==~21
t3s0) 0 0 :ssauBoud AR

0s'1t 00°'00l- S{enbe epque| uaum

Z uojjeu8}} J83je pAIBAOISLIQ
vl Jequnu 8| 24A)

4 13s0) (e3o0r QO 1- issauboud (ejoy
00°86- :3uBiam (ejol

13s0) (0 |- :ssaJBoud 6l<----91
$3s0) 0 0 :ss@8uBoug 9l<----61
06" 1 00°00L- slenba epque| uaum

Z uO0Ojpjyeud}} J8)je peuenodsiq
>4} J8qwnu 8| 24A)

[0S°t ‘00°001-] = epquwe| :uoL3}nios (eng
[0S0 ‘00"t] = x fuojpinios dyseg

0S° 10l :3s0) uopinj|os s ¢ :syseg MeN

0" €-

1yBiom

oot
0ot

*suo3leday} 9

001~
00"t
00"t~

1y6Lam
1ubLoam
Iubtam

oot
00l

1

13s0)
:3s0)

L

13509
13s0)

1380)

[os®

00°9
0S°6

0S° 101

1 -

[os”

0s°1

13s0)
1350)
13509

[00°

00z

00°00t
00°001L

0

{oo-

L-0 :ss@auJBoud 6 <----2
0SS " v- 0G° 1L~ sienba epque| uaym
| uOj3jeu8}| I8} 4B PBIBAOISI(Q
Lt Jequnu a|24)
p- ‘0S°l-] = epqwe| :u0}3n|oS (eNng

I ‘00°L] = x :uotinios Jiseq

$3s0) uotinjos 8 9l :siseg MmN
$3S0) uUopinjos 0L 9L :sjiseg MeN

I ‘0S°L-] = epquwe| :uoy3in|os (eng
(00°0 °'0S°0] = x :uoyinios Jysug
$3s0) uoiyinjios Gl 91 :sisug M3N
:13$0) |e30) (0 Z- :ssaubBoud (B3}O])
00°L- :3yBiem (e30)
0 t- :ssauBoud 0Z<~----62
0 0 :ssaubBoud 62<----1¢
0 L- :ssaubBougd lE<===-=02
00"t 00" Z- sienba epquwe| uaym
f uUOoijlEUB)}| J83}jEB PAIdAOISQ
9l Jeqwnu 38| 24A)
1 '00°Z-] = epquwe| :uoi3}n|os (eng
[00°0 ‘00"t] = x tuopinios dyseg
$3s0) uotingos Sl vlL :sjpseg MmaN
$3s0) uotinjos S1 2z isyseg MaN
$3S0) uotnyos s Z istseg MaN
0 :ssaubougd ¢ Jaqunu 3| 24)
1= tsseuboud ¢ Jaqunu 8| 24)

$3s0) uoiin|os vy 91l :siseg MmN
1- 0 :ssaJsboud v J8qunu 8|924)
|- :ssaJboud 2 J8qunu 8| 24)

isyseq |eydtpIde (BpIUL
1 - iepis puey-3ybiy maN

(AR R E R R R R R R R R R R 2R R R A R R AR R R R R 2R

‘|ew3do S| UOLIN|OS 8AOQe 8y)

J3}je uojjeuUlwIB)] {pe}de3}ep S8 (|JAD @A 3eBau ON

0S°L 0G°t- s|enbe epque| uaym

isyseq |eydyjiide |(epyjul
L= iepis puey-3ybiy maN

‘suojjedel} v

0ot
oot

*SuUoL3}edd}t b

oot
00l

*SuOf3eJd}}L 9

0 €-
00°1

t3ubLam
t3ybiam

J4831je uotjeuilwad) ‘pejydejep s8|J24Ad aajjeBau ON

0S°t- 0G°1L sienbe epquwe| uaym

[0G°L- ‘0G°1] = epque| :uo}3inio0S |enqQ
(00°L °‘0S°0] = x :uotinios Jjiseg

0S°'v $3S0) uoiynjos 8 it isiseg MaN
00°S :3S0) uoiin|os 8 Ol :siseg meN
00°€0l :3S0) uop3in|os g8 1 is|pseg MaN

0S°10Z :3s0) uoiyn|os Lr o1 isyseg MaN
$3s0) I- 0 :$s84604d ¢ Jequnu 8| 24)
13s0) 0 1 :sseJb04d | Jequnu 8| 2d4)
isyseq (ejdtji3se (eprug

- z 1epts pueBy-3IYBLY MeN

L EE R SRR SRR R R R AR R R R R R AR R 2 X

*|ew3do 8§ UOLIN|OS BAOQR OY)

J83}je UO}}BULWIB] {pPB3}D838P SB|JIAD 8AjeBeu ON

0G°t- 0S°1 s|enbe epquwe| ueum

[0S°L- *‘0S°L] = epque| :uoi3inios (eng
[0S°0 °'00°0] = x :uopinios dyseq

oSt $3S0) uotinj|os Ly 8 isyseg maN

0s° 1 $3s0) uoiinjos Lt isyseg MaN

:13s09) t1- 0 :ssadboud p Jaqunu 8| 24)
$3s0) o l tssaJsboud | J8qunu 8| 24A)
isyseq (eydtjp3Ide (@pul

[0 t9pLs puey-3jybiy maN

(AR R E R R RN RAR R RN RRR Y]

‘lewy3do Sy UOLIN|O0S 8Aoqe ayjy

J83je UOLleULWId| (pP83JBIapP S8|JAD BAjIeBau ON
0S°L- 0G°'l- sSslenba epque| uaym
[0G°L- ‘0G§°t-] = epquwe| :uoiIn(0S |BNQ

(0S'0 °‘0S§°'0] = x :uopiniog Jjiseg
00°€ :3s0) uojin(os Ll 91 ispseg maN

£ 13s0) (e3yo)] ZzZ- 0O :sseub60ud |e3oy)
00°9- :3ubiam (e3o0y

1 $3S0) | -0 :ssaubouyd Z <----8
{ £3s0) (0 0 :ssauboug g8 <----86

C

‘lewit3jdo sy uotin|os aaoqe ayjy

LR
IR TETEL)
e Y
XY -
Rk .
* %
x
o '
R X E TR
I ET T EET

L E AR R R D]
LEEREE SRR D]

*%
*n
»n
*
E R
LR
*h
*

%

QYVANVLS

INIT WY

SWANHC

LE*YL:60 68/L2/20

ino 9I00NVY

=% LR » * LA ER S22 2R (A AL AR 2 *ESSERS
* % * ¥ EE R I K 2 L ER R E R R ER] (A XL R R XX] (AR RS S X]
x ¥ LR e KEX ¥ e LR e *rs
LR R EREE R E R *h * % e s
L EEREER SR * * ¥ 4 LA XX R R R
% * % * * % LR IR EEER X 2]
* % * % ¥ *» % % LR
¥ L LE] » ¥ LR e e L

LR E R RS * * % LA EEER R D] sEERBERES

LR R ok LR LA E R ER]] LA EREE LR]

:300W
TYILNTYHd
IWILSAS
TINIL
13714

LR] *e

e s

LR] L X]

LR] L B

e * e

s k$$ 3

s 88

LE R J L X R]

s LR]

» .

Ot<-=-=-=-- 9l <=m====1Z<======GE<======Ql<-====-ZZ<=-=-=-BZ<---===3L1|

L(0°0) 1(o°0) 9(0'0) 9(0'0)

€ <—=---=Ll<=====-fl<--=== -1Z<-mmmm

9(0‘0) L(0°0) S(0't) L(o*t-) €(L-'0) t(o*L-) Z(1-'0) L(1-°0)
EZ<======pE<mmmmm-f <m=m===fl<======|Z<-=====LZ<-====—PE<-—===-GE<--====19]|

s(0‘0) L(1'0)
Zl<—mmm=ml <=====-=iGl

8(0'0) S(0°0)
9 <---—=-Q0l<-=---=ip|

€(0°0) z(o0‘0) 8(1°'0)
8 <=m-===Zl<m=====G <=-====If|

1(0°0) z(0°0) zZ(0'0) s(0'0) 9(0°'0) z(1°'0) zZ(0*L-)
§ <mmm=—=|l<=mm===fl<======Gl<===—==fP<——====p <-—=-=-EP<--—===3Z1

6(0°0) 6(0°‘0) L(0°0) 8(0°0) z(o‘0) 8(0°'0) zZ(1°0)
| <m—=m—=pp <=====-Ql<==—===1Z<—mm=m=Z | <mmmmm=ZP<mmmmnf <-==--=i|]

s(0'0) £(0'0) S(0‘0) 6(0'0) £(0'0) &(0°t-) 8(L-'0)
€ <mmm—m=ll<mmmmmmpl <mmm=mmeZE<mmmm ==L [€mmmmm= [| <=—==——fE< === 101

1(0‘0) g(L'0)
8 <------Z <------:§

8(0‘0) 9(0'0) 8(1L-'0) 1(0‘0) €(0°'0) 1(L°'0) v(0‘tL-)
I <======l <======Z <====—=f <------€l<-=---=| <--=---9p<------i8

8(0'0) ¥(0'0) v(0°0) v(0°0) £(1'0) L(t-'0) Z(0'L-)
P <mm====Q <=mm—==pZ<m=====ff<======Q <-=====Gl<======QZ<--====1[

8(0°'0) 8(0°‘0) z(0°0) €(0°0) v(0°0) L(L1-°0) S(o0°'tL-)
£ <mmmmm-pl<==—==nfZ<=====-QE<-=—===) <-=====[<-—=----§€<--—--=19

9(0°0)

| <mmmmee

s(0'0) t(0‘'0) €(0‘0) 8(0'0) Z(1'0) S(L'0) 8(1-'0) S(0°'L-)
¥ <mm—m==Zl<mmmmm=|Z<=mm===GE<mmmmm=p <~—=——-pZ<==—===F|<-===—==GZ<~-=-===1G

L(0°0) 6(0°'0) €(0'0) S(0°‘0)

€ <-----=ll<=====-pZ<======G <--=—-=

8(0'0) €(0°0) €(1'0) Z(t-'0) Z(t-‘0) S(o‘t-) 6(0°t-) 9(0°t-)
L <mmmmmmpf<mmmmmmf <mmmm=nG <mmmm==Z|<mmmm==pZl<mmmmm e P mmmm == [E<mmmmmm i

s(0'0) £(0'0) £(0'0) 8(0°0)
Ol<======9l<======p <======Q <-====m

8(0'0) 9(0'0) e(1-'0) z(1-'0) S(0°'t-) 8(0't-) 9(1-'0) 9(0°L-)
ZE<mmmmmmQEL=mmmmmp <m=====||<======Q| <=====fl<==m===ZE<mmmm=mQE<mmm=m==if

L(0'0) 9(0‘0) s(0‘0) v(1'0) 8(tL'0) 8(L-'0) v(0'L-)

| <======8 <-=--=-fE<-=====| <====--§ <==-==-f <-=====ZZ<---===1Z

L(0°0) 9(0°0)

Z <===-=-G <-==-=--

8(0'0) 6(0'0) 1(0‘0) v(1-'0) 1(1-'0) 1(0*1-) 1(0‘1-) L(0'L=)
8 <==m==—ll<—=====ZEf<======Z <======f <-—====|Z<mmm===GECmm = I p<mmm == 1 |

jep-60pueds wouy ®vwIEQ J04 3Si Aduadefpy

Ih<m==m==BE<mmm===Ql <mmmm==f <=====-fE<mmm===Qp<-=====Zh<-==-==EP<-=-===iDE

s(0°0) L(0'0) 8(1°0)
Z <------ZE€<------0l<------IEE
1(0'0)
I <---=--
8(0‘0) 6(0'0) L(0°'0) z(0°'0) €(0'0) €(0°0) 9(1'0) r(0°L-)
€ <------0l<-=----£E<-———— ~GE<——=—==ZP<-=====-9EL<~~-==-f <——————pPp<-—---=1ZE
€(0°0) L(0*1)
6Z<------0Z<------1¢E
Z(0°0) v(0‘0) 9(0‘t)
LZ<----~--6Z<--—--=Bl<-----=30E
v(0‘0) 8(0°0) zZ(0't-) v(0‘0) €(0°0) 6(0“tL) r(1-‘0)
Bl<--==--0Z<---==-=-0Z<~=-=--=0f<-~~--= | E<~===nmG| <==mmcu [p<~===== 6T
v(0‘0) €(0‘t)
LT<-—=—==Ll<------3Q
L(0°0) 9(0°0) v(0°0) zZ(0'0) z(0'0) 1(0°t) g8(1-'0)
6l<-==-=-£Z<--~---8T<~~==-=0€<-~—===0f<~—=---Ql <==—===Qtp<-=--=-=3 [T
8(0'0) 6(1°0) z(o*'t)
pZ<--=-~~-0Z<-~-----L <------3QZ
z(0'0) €(0°0) 9(1°'0) s(0°1)
1Z<--=—=-pT<-~-===fl <-=~-==G <--=--=-3GZ
€(0'0)
P <mm—-—-
S(L-'0) v(0°‘0) zZ(0°'0) v(0°0) €(0°0) 8(0'0) €(0'0) s(0°t)
§ <-—m-m=l €===-=-Bl <= fZ<==—===GT< === ==Qf<~mmm =G C—mm === <==—===ipT
z(0‘0) 9(0°0) 8(0°0) 9(0'0) v(0°0) 1(0°0) 8(0°1)
9 <-=--m-Ql<-mmmm=Bl<—mmmmm [T~ mm =Pyl <—==~===BE<~———=-F <--===--1FZ
6(0°'0) t(L*o) v(o‘tL)
LZ<—=====ll<======Z <-===-=3ZZ
€(0‘0)
S <—=----
8(0°'0) 9(0‘0) 9(0°'0) Z(0*'1-) 6(0'0) Z(0‘'0) €(1L°'0) t(o‘t)
Ll€mmeemnQ|ommmmn | CmmmmeeBlCommmnnZ < m === G = mmm==Q | Cmmmm == | Cmmmmm=i|Z
¥(0°0) 8(0°‘0) zZ(0't) Z(0*t) 6(1-0) L(0*1-)
Bl<-—--=--BZ<-=~===Bl<-==—==FZ<-=====-9QZ<==~=== | £ <= === 102
9(0'0)
9l<—=——-=-
€(0'0) z(0°0) L(0'0) 1(0‘0) 1(o‘t) Z(0*1) 9(1-'0) 9(0't-)
Bl<mmmm =2 mmm e <~ m e e [E <= ==Q | <= == === | ZL == === =G === === 0 < == ===~ 1 §]|
€(0'0) v(0°'0)
6l<-=====0Z<~~~~~~
8(0°'0) v(0°0) L(0°0) zZ(0'tL-) €(0°0) 6(0°1L-) v(L-°0) 9(1-'0)
EZ<==r===Bl <=~ ====9E <~ == m=l <=l <=~ == =BT <=~ == [<= === ——GE <~ === == I G|
L(0'0) 1(0°'0) 9(0°'0) 8(0°0) 6(0'1) 1(1-*0) £(0°'1-)

| uUOjjeud3}} a83)je PaJBA0ISIQ
[Jaqunu 8| 24)

[00°001L°‘00°001] =" epquwe| :uo0}3inioS |eng
[00°0 ‘00°t] = x :uotin|os dyseg

oot 13s0) 1 0 :ssa@uBoud ¢ Jaqunu 3| 24)
oot 1380) 0 1 :sseuaboud | Jaqunu 8| 24A)
‘syseq (@(dtjp3de |@itu]

0 L $J403J9A SHY leutbiuQ

1(0'0) r(0‘L) z(1'0)

EY<------8 <-=-=--Zp<------i0¥
6(1°0) 8(0°'1)
Op<==-==uft<=mm===iGp
6(0'0) 8(0°0) 1(1'0) v(0°t)
6€<------Zp<------9E<------ZE<-=---=ipp
9(0'0) 2(0'0) v(0'0) 1(0'0) €(1*0) z(0't) B(O'L-)
Zl<-=====GE<=mmm==Zy<=—m===QP<-=====pE<-mm===Z | <======Gp<-=====iEY
8(0°'0)

R

€(0‘0) 8(0°0) L(L'1=) r(0‘0) 8(0°0) 1(1°0) L(0'L) zZ(1-°0)

ZE<=—===-pE<-=====-BEK—=——==Ch<——————ppp<—————=PE<=—=m==| <= ==QP<mmm=== 1T
s(o‘0) v(L0) v(0'1)
OV <--~---~6Z<~-~---BE<—=--===i |}V
z(0'0) v(0°0) v(0°0) S(0°0) 8(1°'0) v(0°‘L) 6(L-°0)
LZ<~=====E<~=====BE <= | <= ===l <= == === PL === == =GP < === === O¥
1(0°0)
€Z<----=~
Z(0'0) z(0°'0) L(L=-"1) v(0‘0) 6(0°0) 9(1'0) g(o‘t) ACNES
PELC~=~===0F< P <= Q<= m PP <—~ === =G| <= mmmm = pL <= === = | <= == === I G
€(0°0) S(0°1)
9€<-~----9 <------:g8¢
v(0°‘0) 1(0°0) r(0°0) zZ(0°'0) v(0°0) v(1°0) 9(0°1)
L <-==---6l<—===———pE<mmmmu~ 9E€<-—~---0t<--==-=Bl<-——===p <~——--=--3i/F
9(0‘0)
€ <------

€(0'0) £(0'0) €(0'0) z(0°0) €(0‘0) Z(0'0) 9(0‘t) 1(1-'0)
9 <===--=Bl<=--=--ZE<-=====[E<======BE<~=====FE<======f <m=====Pp<--====iQE

8(0‘0) 8(0'0) z(0'0) 6(0°'0) L(0°0) L(L°0) 1(o*t)
§ C=m=m==ll<=m=m=-Zf<mmmm =y L < m ===~ EP<---==-gl<====-= L o<-=---- g

€(0°0) «(0'0) 6(0°0) ¥(0'0)
b o<--=—--- 9l <-m-m-=GE<-m === LE<------

8(0‘0) zZ(o'0) Z(1'0) 6(0'1) 8(0°1-) r(0'L-) L(1-'0) e(L-*0)

00°S6-
00°2
00°€

00°081-
00°6
00°8

00°G6-~
00°S6-
00°€

00"t
00"V
00°86-

13yBram
13yBram
13y6pam

3yBLem
3ybLam
3yBiLom

131ybiam
3ybLem
13ybiam

3yBiem
i3ybam
t3yBrem

MmN

@ O~

M unuwn

NI -

ot

£3s0)
13509
$3so)

ve

$3s0)
$13s0)
:13s80)

$3s0)

o1
00
00

00° L8~

$3s80)

L=t
0o
00

00°L8-

te3ol 0 :ssauBoud (e30]
00°06- :3uBiam (e3joy

:ssauBoud G <----GZ
issaubougd GZ<==-==12
issaduboud 1Z<----G

00° 001t s|enba evpque| uaym

| uUOj3}eud}} 483} 4B PaJsBAOIS]
8 J8qunu 8| 24)

|ejyoy |- 1 :ss9JB04g (©30])
CO"€E9Ll- :3uBiem (e3joy

:ss9uB0uyg Ly<----6¢€
issouBouy G6E<~=—=bV
isseuBougd pr<——--Zp

oo-oot s|enbea epque| uaym

I uoj3leJs8l} 4938 PBJIBAOIS|IQ
L J8qunu 8| 24)

(00°(8-'00°001] = ®pquwe| :uo43INn|oS (eNQg

00° 00t

€l

180D
1350)
13s0)

L

13509
$3s0)
$3s0)

[oo'0
i3so)

:13180)

L0
01
00

00° o001t

t3s0)

00
00
L0

00°001

‘001] = x tuopinios Jyseg
uoy3nios 9 1 isyseg MeN

te3oyg 1 :$80460ug (®3IO0}
00°LBL~ 3uBLam (w30}

:ssauBoud pZ<-=~=G

:ssaJsBouqd G <===--GZ
issaJsboud GZ<==~-p2

00°00L sienbe epque| uauym

| UOL3Ieud}| Jd}jB PEIBAOISL(
9 Jequnu 8| 24)

te3oy | 0 :ss84B804d (@30}
00°€6- :3ubjam |ejoy

tsseuBouy Qp<-=-—-€p
issaubougd Ep<~-~—-=2V
tsseuBouyd Zy<----9¢

00°001 s|enbe epquwe| uaym

00"ty :3s0) uotinios LL 6 isiseg MeN

1t :3so) |e3o0p Z | tssauBoud (ejo]
00°S- :3uybiam =30y
00°€- :3yBiB8m | :3S0) QO | :SS84604d | <----1Z
00°Z- :3uyBiem Z :3s0) Q0 | issausboud 1Z<=----61
00°G :3ybBi®am L :3S0) QO |- :ssadBoud 6l<-=---01L
00°'v- :3uyBiam Z :3s0) | Q0 :ss@uBoud 9l <—===pE
00°G- :3ybiem | :3s0) | Q0 :ssadboud PE<C—===2¥
00°'€ *3ybiem £ :3S0) (0 0 :SSAJIBOJd Zp<----ZE
00°L :3yBtam | :3s0) (O 0 :ssaJsboud 2E<—==m1|
00°9 00°'v s|enba epquwe| uaym

€ uUOj3IwJe}| JO} 8 POIBAOIS|(
(WY J8qunu 8| d3A)

[00°9 ‘00°v] = epquwe| :uot3inios (eng
(000 ‘00"t] = x tuopinios Jiseg
00°v :3s0) uojinjos oL 6 isyseg MmeN

Ot :3s0) (®3oL | | i$s9J4604d (w30}
00°t- :3uyBiem w30}

00°Z- f3uBiam Zz :3s0) (O | :ssedbBoud 1Z<=-—==61
00°t- :3yBiem 9 :3s0) | Q0 :ssd4B04d 6l<----GZ
00°Z :3yBem Z :3s0) O O :ss8JBoJd GZ<----IZ

00°¢ 00°v s|enbe epque| uaum

£ UO}3}BUB}| JB} € pBJIBAODSLIQ
ot Jequnu 8| 24)

(002 ‘'00°v] = epquwey :uoi3inios teng
[00°0 ‘00°t] = x :uopinios Ddjseg

00°'y :3S0) uopinios S 6 ispseg mMeN
00" :3s0) uop3inios 9 6 isyseg MeN

4 t3s0) (e3ol 0 :ss04B04d |©3}0Q
00°9- :3iyBiem (8310}

00°6- :3yBiem | :3s0) 0 | :ssedsBoud I <----GE
00°Z :3ybyem Z :3s0) 0 0 :ssesBoud GE<----ZE
00°L *3yBitam | :3S0) (0O O :ssauboud ZE<----|

00°€ 00°0t s|enbe epqwe| uaym

| uojjeJO}} JO}jJEB PBIBAODISIQ
6 Jaqunu 3| 24)

[00°€ ‘00°0L] = epquwe| :uoi3ini|os (eng
[00°0 ‘00"t] = x :uopin|os diseg
00°0L :3S0) uotinjos 9 8 isyseg MaN

s 5<

(——
o) o | —

-
(&

00°G :3ubiam
00°Z- :3ubBiam
00 ¥- :3ybBiom

0ol
00l

*suoj3jedal} g

ool
ool

w < V\JW bk)

/

-
d
Vs

*suojjedalr} g

00°tL :3s0) uopinjos ZlL Ll :siseg MmeN

9 13s0) (e301 L O :ssduboudq (e3oy
00°L- *3yBiam |e3ro}

Z 3s0) 0 L :ssaubougd lZ<----61
{ $1380) (0 |- :ssausbougd 6l<—---91
€ :3s0) | 0 :ss@auboud 9l<—===12
00°L 00" €- s|enbe epquwe| uaym

Z uUOjjeu®}| J8}je pesenodsiqg
Zt J8qunu 3| 24A)

[00°L ‘00°€-] = epquwe| :uojinios eng
[00°0 ‘00"t] = x iuopynios Jjiseg
00°1Ll :3so) uot3injos S LI :ispseg maN
00°LL #3S0) uoynyos € Ll :siseg MmeN

$3S0) L 0 :ssaJsBoud ¢ Jeqwnu 8| 24A)
13s0) 0 1 tssauboud | Jequnu 3| 24)
ispseq |84J4443J48 |@yIUT

z l epts puey-3iubiy maN

LR AR SRR R R AR R R R R R R R R R AR R R R R A2 XS

*{ew}3}do S} UOLIN|OS IA0QE 8YY

J83}4e uoileULWIB] (Pe3}I3}ap S8|2Ad anijeBau ON

0S'€E 00°'¢v sienbe epquwe| uaym

[0S'€ ‘00°¢] = epquwe| :uoiinios |eng

[0S0 ‘0SS0] = x :uoyiInios 2Jyiseg
0S°L :3S0) uojynios 1L 6 isyseg maN
0S°SS $3S0) uopinios Lt isyseg MaN

$1380) 1 0 numOLmOLQ [4 J8quwnu O_U>U
$3s0) 0 [} nmeLDOL& [} Jequnu 0-0)0
isyseq |eydtji3de (epIiul

1 1 :8pts puey-3yBiy manN

IR R R R R RS ERE R R R R RS R R R R SRR R R R R R 2

‘lewi3do st uoLiIn|O0sS 8aAoqe ayjy

J83}4e uojjeuiwie) fpajyde}ep se8|d24Ad aanjjebau ON

0S°€ 00t slenba epque| uaym

[0G6°€ ‘00°t] = epque| :uot3inioS |EBNQ
[o0°0 ‘00"t] = x fuojp3n|0S Dyseg

& M
o

Tl' T A 00 v~ :3iybiam

2 | . 00°G- :3uBiam

‘ ‘ 00 - :3yBiem
0 00"t :3iyBiem

00"t :3yBiem

IR E R E SRR RS R SRR RS R R R SRR ERE AR R R 2L

‘|ew;3do S§ UOLIN|OS 8BAOQE 3YL

‘SUOL3}EBUd}} [/ JB3je uojjeULWIB] Pa3IeBIaP S8(IAD 8ALIeBBU ON

0Z'S 09°0 s|enbe epquwe| ueym
[0Z2°S ‘09°0] = epquwe| :uoL3intos |eng
[00°0 ‘00"t] = x :uopinios Jyseg

00°Gl :3s0) uojinios L €t
00°SL :3s0) uoj3injos € €l

isyseg MeN
:syseg MeN

00l ¢3so0) s 0 tsseuboud ¢ Jequnu 3 (34)
001t $3s0) 0 |- issauBouyg 2 J48qunu 3 (24)
ispseq |e(ot413Je (@I pU]

€ L= :epys puey-31ydiy meN

IR E RS RS S R E RS RERR RS RS R E RSS2 AR AR 2R 2R 2

‘jewi 3do S} UOLIN|OS 8aaoqQw ayj

‘SUOL3}BUBY} [/ JB}JB UOLIBULWIB] PB3IDBIBP SB|DAD 8AjjeBeu ON

0Z°'S 09°0 s|enbe epque| uauym
[0z°S ‘09°0] = epque| :uoi3inios (eng
[00°0 ‘00°t] = x :uo}3In|OS DJiseg

00°LL :3s0) uotinios eL Lt :sipseg meN

GL :3s0) |®30) € |- :sseuboud (w3IOL
00°tv- :3uBjiem (e3o0)

00°€ :3yBi®m € :3s0) O Q0 :ssesBoud G <----1Z
00°€ :3yBiem Z :3s0) QO | :sseubBoud 1Z<----61
00°0 :3uBiam | :3s0) (O |- :sseuboud 6l<====91
Z $3s0) (S tssaubougd 9l<-=--=-p¢€
L $3s0) | Q0 :ssaubouyd PE<----2¥
Z :3s0) | 0 :ss3auboud Zy<----9¢v
L :3s0) (0 0 :ssauboud Qp<—----¢p
Z 3803 0 L- :sseubouyg Ep<-~---21
00"t :3yBtam | :3s0) (0 Q0 :ssadJboud Zl<=-=-=G
00°9 00"t~ s|enba epque| uaym

€ uUOj3lBUu8}| J8}je PBJIBAOIS}(Q

@ el Jaqunu 3| 24A)
(00°9 ‘00°1-] = epqwe| :uoi3n(os (eng

[o0'0 ‘'00°t] = x :uopinios Jyseg

-~

[e€°Z ‘00°8-) = epquwe| :u0}3IN|O0S (eng
[EE'0 ‘L9°0] = x :uop3In|oS diseg
00.0— $3s0) CO_.uJ—Ow m_. Gl "m*mmm MON
0G°Zl $3S0) uOL3IN(OS €L 91 :siseg maN

ol $3s0) (e30)] - L~ :ssasBoud (e3o)
00°6€- :3iubiam (e30]

0G6'Z- *3uBidm 9 :3s0) |-0 :ssesboud GZ<----61
05°8€- :3ubpem z :3s0) QO |- :ssddsboud 6l<=-=-=-12
00°Z :3uyByem Zz :3s0) (0 0 :ssausboud 1Z<--~--GZ

0S°8- 0S OV~ s|enba epquwe| uaum

Z uUojjedsdy} J83je paseAnodsiq

9t J8qunu 3| 2A)

8 t3s0) |e30) (O - :ssausbBoug (e3jo}

0G°Z€- :3uBieam Lejoy

06°8E- :3uBiam Z :3s0) (O L- :ssadJboud Ep<----2Z1
00°9 :3ubtem 9 :3s0) 0 O :ssadubBoud Zi<----€p

05" 8- 0S°0v-~ sienbe epquwe| uaum

Z uUoj3IRu8)} |} JOI 4V POJIBAOIS|Q
-1} J8qwnu 8 24)

[0G°'8- ‘0S°'0p-] = epQwe| :U0L3IN|OS (eng
(00"t ‘00"t] = x :uop3INn|OS Jjseg
00°ZE :380) uoi3inios €L ¢l isjseg MaN

L1 $3s0) (ejyol ZzZ- 0 :ssaJ60uqd (®}0])
L9°6€- *3iyBiam |eroy

00°L :3uyBgam | :3s0) 0 Q0 :ssaJboud 8 <----6
€€°0Z- 3yBiem g :3s0) -0 :ss®uBoud 6 <----T
€€°0Z- :IubBiLam B8 :3s0) |-0 :sseubBoud Z <----8

£€€°8Z- 00°00L- sS|enbs epque| uaum

| uOjjeudly Je}je pPaudA0ISLQ
vi Jequnu 8| 24)

(e€’82-°00°001-] = epque| :uoiinios Leng
[e€°0 ‘£9°0) = x :uojpinios diseg
L9°1L $3S0) UOLIN|OS €L Z ispseg MaN

0G°GGl :3s0) uojpinjos (S a4 isyseg MeN

001 13s0) t 0 :ssauboud ¢ Jequnu 3|24)
00l 13S0) 0 1 - tssauboud g J8qunu 8|24)
istseq (edtjiide |epILul

l L= iapts puey-1y6iy manN

“e 9¢ z9

00°L :3uBiam
00°€ :3ubiam
00°Z :3ubjem
00°L :3yBiem
00°€- :3yBiem
L9°1- :3ybiem
1L9°Z- :3ybiam
L9° L~ :3ybiem
00°L :3uyBiem
00°Z- :3uBjem
00°L :3yBiem
00°€ :3ubiam
00°€- :3uBiem

00°L- :3yBiam
00°9 :3ybiam

00°L :3y6iem
00°Z :3ybiem
00°L- :3yBiem

—-M N~ N~Nr——~NM~—

L
9

L
4
1

(o0°v
(oo°0
00°L

1z :3s0)

0
0
0
0
i
0
0
0
0
l
0
0
3

-
w
o
(&)
~
© 00000 ~—~—-0OO0OO0OO0OO

™

13507 UOLIN|OS

‘00°€-] = epque| :uoy3n|oS |eng

‘€E°0] = X uo43INn|0S Jiseg
€L 61 :siseg MaN

t(e3oy € €- :ssaubBouq (@310}
00°Z- :3ubjam (ejoy

:ssayboud { €===-=Z¢

issaabBoud 2€<=--=--9¢
:ssaubBoud 9€<----/€
tssaubBoud LE<-=~--61
:sseubougd 6l<----91
tssausbouyd 9l <~=-~-pE
tssausbBouy YE<—--==2ZV
:ssadb604d Ly<----9v
isseub60ud Qpy<~~--E¥
isseubouy Ep<—==-=21
:ssaJBoud Zl<-=-=-=G

tssausBoud G <==-==12
tssaJboud 12<====1|

00°'v- s|enba epquwe| usym

L uojjleud}| JO}je PAJIBAOISLIQ
61 Jeqwnu 8(24)

[L9'E ‘00°'v-] = epque| :uoyinios (eng
[e€"0 ‘29°0] = x tuopinios Jiseg
L9°L 1380) uvoyinios el Ll isyseg MmeN
L9°6 :3$0) uotinios €L 8L ispsug maN
L $3s0) (®w30g O l=- tss8u60u4d (e300}
00" L- :3yBiam @30}
$3s0) (Q L- :ssauboud 6l<c-==-=91
t13s0) (0 0 :ssausBoud 9l<---=61
€€’ 00° 8- s|enba epquwe| uaym
Z uoj3jedue3l| J93yje paseanodsiq
8t Jaqunu 8| 24)
14 £3s0) (@301 (O |- :ss8auboud |e3o0}
00°v- :3iybBiam (e3joy
$3s0) Q0 0 :ssoubouyg | <=----2¢
$3s0) 0 O tssausBoud Z€<~-~-=GE
13$0) 0 |- :ssadbouy GE<-=--~1
€E°2 00°'8- s|enba epquwe| uaym

Z uotjedadyly Jayje Uw;c>ouw¢o
L Jequnu 8|34)

—

ool
0ot

*suot}elayl 8

0ot
00t

‘suojjedely g

ool
0ol

*suoijedal} g

:ssaJuBoud ¢ Jaqunu 8| 24)
:ssauboud ¢ Jequnu 8(24)
isyseq (epdtjpide (epIpul
:apys puey-3ybiy maN

$3s0) I1- 0
$3s0) 0 L=

[L=

I R R R R R R R R R R R R R R R R S R R R R R R R A R R A L 2 0

‘lew}3do S} UOL3IN|OS 3AoQe 8yl

J49}4E UOL}BULWIB) pa}DvIap S$8|JAD 8Ap3eBau ON

00°'€ 00°'Y- Sienbe epquwe| uaym

[o0‘E ‘00°'v-] = epquwe| :uoj3in(os (eng
[00°0 °‘00°t] = x :uop3inios Jiseg

00°t :3S0) uOL3IN|OS 6L LI :sjseg maN
00°00l :3s0) uoiinios 6L Z :spseg MmanN
00°001 :3S0) uoiinios €1 2 ispseg maN

$3s0) 1 0 :ssauBoud ¢ Jequnu 8|234)
:13s0) 0 [issaJBoud 2 Jequnu 8| 24)
isyseq (epdtjride (epytug

0 1- tepys puey-3uyBiy MeN

I EEEE RS SRR R RS ERRR LR SRNRRR ER2E RRRRRRRR]]

‘lewi3do S} UOLIN|OS @A0Qe 3yl

4834 uUOjjeulwid] (pe3deai}ap sa|dAd 8AijeBau ON

00°‘'t O00°€- Slenbs epquwe| usym

[00°'y ‘00°€-] = epquwe| :uoj3in|os eng

[00°0 ‘€€°0] = x :uo}3IN0S Dyseg

00°L :380) uoiinjos €L 61 isyseg MaN
L9°1L 23S0) uot3n|os [>3 Sy 4 isyseg MaN

13s0) 1 0 :ssedsboud € J8qunu 8| 24)
$3s0) 0 1= tssauboud ¢ Jaqunu 3| 24)
isgseq (egdpjtiJe (epul

l L= :apts puey-3ybBiy maN

IR R R R RS R R R R R R R RS R R R R R R RS R R RS R R R R0

*lew}3ydo sy UOL3IN|OS 3aAoqe auyj

483} je UOjleUjwIB] ‘pe3deIep s9|2AD aajieBau oON

00't 00°€- slenbe epque| uaum

{o0°0 ‘00°t] = x fuop3in|os djseq
00°0L :3s0) uot3nios ZZ 91 :sjseg MaN

9 :3s0) (301 |- 0 :ssauboud (e3}o]
00" L- :3ybiam |e3ol

00°'v :3ybBtam | :3s0) Q0 | issdasboud 9l<----61
00°L- f3ybdm Z :3s0) -0 L- :ssauboud Bl<——==12
00°p- :3yBtam € :3s0) |-0 :ssauboud 1Z2<=--==01

00" L- 00°€- s|enbe epque| uaym

£ uOjp3jeud3)| J9@}je pBJudA0IS|Q
YA A J8qunu 8| 24)

(00°LZ- ‘00°€-] = Bpqwe| :uojintos (eng
(00°0 '00°L] = x fuoyinios 2dyseg
00°0l :3s0) uo3In|oS 1z 9t :syseg MoN

L $3s0) (®¥0L -0 :$s94604gd |®IO0YQ
0G°L- :3yBiam (e3yo)

00°'S :3uBiam G :3S0) Q0 0 :SS384B0Jd v <----§
05°9- :3iybBLam g 13S0) 1-0 :5S84604d G <----v

0s 8- oS L~ s|enbe epquwe| usum

Z uotileJe}} JB3}je pPaJuenodsig
(4 Jequnu 3| 24)

8z :3s0) (®830)1 - 0 t1ssauboud (@10}
00°9- :3ybBiram |e3joy

00°L :3yByem (L :3s0) (0 O ‘isseuBoud | <====2

0S°0- :3uBiam @8 :3s0) -0 :ssadJboud Z <----8

0S°G :3yBiem ¢ :3s0) QO | :ssauboud g <----9v
0G°9- :*3yBiem Z :3s0) |-0 :ssadsbBoud Op<—---2t
0G°L- :3yBiam | :3so) |-0 :ssadboud Zy<—=—-bE
05°9- :3ybiam Zz :3so) -0 :ssd@Jboud pE<—=-~--91
06°Z :3ubtam L :3s0) (O | :ssauboud 9l<----61
0S°0 :3y6idam z :3so0) (O |- :ssasboud 6l<—===12Z
06°0- :3uyBiam | :3s0) QO L- :ssadsboud 1Z<mmm1

0S° 8- o] =T s|enbe epque| uaum

Z uoj3jeu83}} 403138 PBIBAOIS|Q
0z J8qunu 8124)

[0S°8- ‘0G°t-] = epque| :uoj3inios |eng
[00°0 '00°L] = x iuopin|ioS Jiseg

00°0t :3s0) uoiinjos L 9L :siseg MaN
00°01l :3s50) uoj3in|os 91 :siseg MeN
00 0L :3so0) uotinios v Ll isiseg MmeN

*|ewi3do 8|, UOL3IN|0S 8AOQe By

“SUOL3}EJBIL § J93je uojleujwis] Pe3de3ep s8|IAD @A 3eB3u ON

0G°'€- 00°v- s(enbe epque| uauym

[0G°€~ ‘00°v-] = epquwe| :uoj3inios (8ng
[0S0 ‘0S°0] = x :uoj3inios Jiseg

0G'L #3s0) uotinios €Z LI ispseg MaN
00°0t :3sS0) uopinios €Z 91 :siseg maeN

1t :3s0) (e3op Z- |- :ss8Jboud (®}O0}
00°S- :3uyByem (e30]

00°L :3yByam | :3s0) Q0 O :Ss@uBoud | <===-Z¢
00°€ :3yByem g :3so) 0 Q0 :sseubBoud 2E<—===2¥
00°G- :3ybtem | :3s0) | -0 :ssadsboud Zv<----vE
00°v- :3uyBiam g :3s0) |-0 :sseuboud pE<----91
00°G :3uBtem | :3s0) QO | :ssauboud 9l<----61
00°Z- *3ubyam Z :3S0) (0 L- :SS8J460J4d 6l<----1Z
00°'€- *3ybBtam | :3s0) QO |- :ssduBoud 1Z<—===1
00°9- 00°v- s|enbe epque| usym

£ uUOj3jeJ8}} J83}je PaJBAOIS|Q
[5%4 Jaqunu B8|24)

[00°9- ‘00°v-] = epquwe| :uoijinios (eng

% 0k ok ok R
LR EEE LR L]
* X * %
EER *a
EEE R] *x

*%
*x
* % * %
EEE RS ES R R]
LEEEE R L]

LR E R 2
EEEE RS R 2]

*x
* %
*x
x%
* %
_ ok
x%
L

*¥

QYVANVYLS

INIT WY

SWANHP

€E: 0S¥l 68/8L/¥0

Svd N39700

* % * % * * (R E X R R D) LR LR] AR LR X
* % *h ke kR LA 2R LR 2 ok ok ok ko LEEEE RS S S]
% * % LE I X X IS § 1 * % * % * % LR
EEEE R E R L2 LR * e * 8
EEEEEE RS X *x LR] *h LR EE R EE X]
* % % * % LR] * % EEEE R R E X
% % *% L E) * % * %
* % ok >k x% * % *x * *

EEE X2] x N x% LA EEEE L S] LA XS EEE 2]

EE L * % % LR EELE 2] A LR R 2

:300W
TYILNIN™d
INILSAS
TIWIL
13714
xR * %
*x * %
x % x %
* % LR
* % * * K
*kk kEkk Kk
XERK KEKX
LE 2 * ok
.k * %
* »

(#iPBPUNOQUN 47 ST &) tueaoog :pspunoquf

(%x40329A @|QBLJBA |BUWLJd) tadAiepque| :x

(&« ®SJ8AUL Siseg) fxlJjewg :asuaAuLg

(» SUWN(0D 8piSpueHIYBLY) tJo3ideauw tSHY

(% SUWN|0D DOLseg 340 Aeuuy) tadAisiseg :stseg

(% suotie|NO|ed xd|dwis JOj SO |QBLJIBA DLSBG-UOU JO 3ISLT %) £43d|0) :3}Si]OLSEeBqUON

(% suotie|nd|ed xa8|dwis UL Pasn 3aQq 03} POIIVIBP SO |JAD MBU 4O 3ISLT &) tu3dio) : 3sL|8|d2AoMaAN
(% S4@3un02 824D pue Ssan|BA AJLULJUT) tueBajul :d8qwnua|dA) ‘3sag ‘A3jrutjur ‘wbig

‘taweud | L4 Bweud|L4INQ ‘sweusd|Ljuft
t3xal : 9LIIN0 ‘dLLIUI
‘tdey) :Je8msuy

(x I @pou BuiABS®| SJJE 4O 3}SiL| pPafuL| © st [I]V =) tAeudydid ¢ v
tues|oog :auop
(x J03109A 8|qeLJBA |BND) tadAjepque| : epque|
(% ydeubB-) 8ay3 UL SIPOU JO #) tadAk38poN : N
(% SOJe ssauboud JO UOLSUBWLD x) txeww* *Q : w JBA

tyey)d 40 [ZL°"l]Aeauy pexded = sweua|id

tieay Jo [g- 1€ " L]Aeduy = xiJieug
tu3dio) jo0 [g°°1]Aeduy = adAisiseg

tpug
tu43d|0D :3xaN
tageBajutL :3s0)
t403d09Aw :ssadbBougd
tuaBajui :aweN
pJ0238y = uwn|od
(%« SuoLilE|ND|BD X8| |dwLs UL SUWN|[0D sjusdsaJudad) fuwn|od_ = J43d|o0D

ta3d jo [xewN* |]Aeduy = Aeddydid

tpu3z
(% 1242 8anL3eBeu ay3} U0 JueB IXBU 4) td3d a|2A)juoixenN
(%« 3SL| Adusdefpe uo JJe 3IXOU) td3d TIXON
(% (ssedBoud) | _(epquel) - 3S0D = 3jyBLam) tieay :3ybiLam

tueb8jul :3s0)
tJ03d09Aw :ssaJubodd
tadA3apoN :peaH
‘adA38poN :itey
pPJ4023y = 24y
touy_ = J3d

ftuee|oog j0 [xewu- " |]Aeddy = J03I8A|00Q
tleay 40 [xewu-" ‘|]Aeddy = JO3d8A|edd
tu8bo3jul 3Jo [xewu' ' |]Aeddy = JO3}DdAU
tleay 30 [xeww' ‘|]Aeduy =adAiepque|
tu9Ba3jul J0 [xeww:**|]Aeduy = J03ID9AW
fxeww: *Q = adAjw

txewN' 'Q = adAj3epoN 8dA}

(#S4044@ j40punod uo peseq N BuiAoadw| PLOAB 03} PasNy) («-_0l%) fL000°0 = uo|isd3
(#SUO 30094 P PJBPUEBLS JO # XBlUy) tQzZ = sdJiguelsxel
(#SUOLSUBWLP 40 # XBuly) ‘e = xeup

(#S3POU 4O # XBuwy) {10G = XBWN 3}SuU0)

(%% 3UBWNOOP 8Y3 40 pus ayj 3e Jeadde suoi3dnJisut 3ndul -uoiinios

lewi3ido ue aAney am jutod yoiLym 3e (8@sodund SLy3l J04 POILNS J49833}8Q 8Qg ABW SYd HJVN¥D) weuboud 8yl ‘A||BuUudix® suoiieindwod xa|dwis

8y3} Op 3IsSNW J3sn 8yl ‘g€ < W UdYM) punoy aJe sa| A dAiLleBau ou |Ljun pajesadas si. ssadsoud 8yl pue ‘epquwe| Mau B Buidonpoud ‘47

8y} SOA|0S-84 wedBoud 8ay3y ‘g 40 Z =w uaym ‘S| QBLJIBA dT] MU BwWO029Qg YILUM ‘S8 24D aAi3eBau (3Six® Aay3 4i) sajedsusb pue ‘ydeun-)
8yl 40 soJe 3ay3 03 s3ybBLaM (3S0D pPaINPaJ) subBisse JAIDINLIILIQ 94npaddodd 8yl ‘4 8y3z 03 uoLin|os ((eLdtitide sdeyusad) a|qiseay e

40 BpqWE| J03}28A [BNP 8y} UdALY ‘wedBoud seaui| B 03 uoiinios |ewi3do JLseq B S} SiY} ‘| < W uaym ‘oL3ed ssauBoud/3sod wnwiuiw

Y3tm 3(2AD0 B SL Siy} ‘|=w uaym ‘-weuboud 3|qeI{NS 340w B 3 PLNOM SV¥Yd IAIHDIN wedsbBoud ay} pue jyBLam anLieBau yitm 8[(24Ad Aue sL 3L
‘O=w usym uoL}BULQWOD 3| J2AD |eBwl3ido 8y} SPULJ PUB ‘U03IIBA SHY B puB (B|}JuUl S|l wouy pesd) ydeub-) e saxel wedbodd SLYL xx)

t(attdIn0aLtsurtindingindur)usblo) wedboud

ypeay
A]lv
3 J0d
tpu3g
t(dLtdur)upesy
(% uOL3D8JLQ PJEBPUBIS Y3IT 943 st [I]A =) *([rll1]la ‘'@tt4ur)peay
og w 03} | =:r 404
uLbag
0Q sJtQuels 03 | =:1 Jod
(# & SUOL3D8JLP pJepuels Aueuw MOH) t(sJ4irQueis ‘atjur)uipeay

CLEN =

»A,_mh.m,fmcﬁ
og N 03 | =:

tpu3z
t(wBtg)upesy
t(A3jtuLjur)pesy
uLBag 8s|3

pu3
‘0oL =:wW6.g
t00L =:A3iuLjul
uLBeg
usyy) sdJdaqunubig 41
(% iSOnien WBiLg ‘A3 LULJul paepueis i) t((,S, = J4amsuy) dJo0 (,S, = JOMSUY)) =:sdaqunub.g
t(demMsuy ‘a8 tjur)upesy
(x & | 3S00 @Aey sdde | |B 0Q) t((,n, = g48Msuy) JO (,N, = JBMSUY)) =:S3sS003}iun
f(J4eMsSuUy ‘@ Ljul)u|peady
(% ¢ @latsdenad ydedB ay3 SI «) f((,4, = JOaMsuy) JO (,Y, = J48MSUY)) =:9(QLSJINBY
t(489MsSuUyY ‘@ LJuI)u|peay
(« U pedJ) t(N ‘*8itiur)upesy
(% 49QunNud | 2AD BZL|BLILUT &) fWeZ =:J8QWNUB | DA)
(& W pedJ &) : t(w ‘ajtjur)upesy

t0 =:(r]epqueq
og w 03 | =:if J04
tas|a4 =:8uoqQ

uBeg
tuzd :D‘d
tadA31apoN :pesH ‘(iel ‘Y
(% UOL3ID@JULP pJePUBIS YIT 9y} st [I]A =) tJ403209AW 40 [sdJigueisxen’ |]Aeday :q
fxeww: "Q :p
(% SUOL3}D®U|P pJePUB]IS JO JBQWNU BY3J St SJLQuels x) tsapquelsxew” "0 JaqunNJLg ‘sdJiquels ‘I

tues|oog : sJaqunuBig ‘S3S023tun ‘8|qLSuaney
taey) ‘aamsuy JeA

f(48683ul W6ig ‘A3 LUl Ul ‘d8qWNUB (IA) JeAp

(x ‘8t INduL 8yl wodj s3siL| Aouedelpe) tadAjepquwe] :epque J8BA fuBad|00g :3u0Qg JBeA
(% @4} sS83eedd pur SO |gERIJBA SBZL|BLILUL B1EPIdY) tAuuydid v Jep 8dA38poN :N JBA fadAjw tw JepA)eIRQI®8YH d4NP8d0.d
(R n kR Rk AR AR R AR RN R R R AR R Rk AR KRR R R R AR R KRR Rk Rk R AR RN R AR RN k)

tpul

_ *(®1t4InQ)@3timey

t(sweus| 43N0 =:aweN ®(|L4 ‘@|}43InQ)uadQ
f(sweud(t4InQ)upeey

t(, *8lt4 INdINo B8Y3} 40 BweU 3Y3 JBIUI,)3ILJM

uibBag

(®lt4 3INdINO 8Y3} JO BweU 8y} SPeaJ 3|l jJjINOPeEay 4) f(Bweud | L4 aWeUd| | 43N0 JBA)S|LIIN0OPRAY BJNPEIOId
e R R R AR R R AR R R R R R R R AR R AR R R R R AR KRR R R AR R AR RN AR AR R RN R RN E)

tpuz

_ ‘(elt4ur)3lasay

t(PLO =:AJO3SLH ‘Bweud|L4uUl =:dweN 9|t4 ‘@|Ljul)uadg
‘t(sweud| L 4ur)u|pedy

(, *81t4 3InduiL 8yl 40 Bweu BY} JBIUJ,)BILJM
utBag

(s« ®Lt3 3INdup 8Y3 40 BawsU By} SPEBAY B LJuipedy x) {(BWeUB | L4 (BWRUB|LJU] JBA)D||JULPRBY 83J4NPad0Jd
ﬁ6!**&*’*i**l*&****i*************iii**i*********************i**&**l*i&*}i**v

(& ix@dwis uL Jnd20 Bui|2A) 83evJBUBBAQ S80Q) tues|oog :Bui|dA)a3eaauabeg

(x I ®pou Joj 3st|

(» ®1t3 3Indino ay3z ojut

ISt

tpug
‘tpug
t1x8N° _d=:d

t(ZpeaH” d‘,<—-——-—- , ‘911 43N0)BILIM

(% ‘BWL} B 1B S8POU g 3ISOW 1Y 4)

Adjuadelpe ay3y 3juidd)

t(sweus | L4ur’

Aduedefpe 3yl S33LJM BIEPBILIM x)
t(sweud | L J:aweud || jultadAispoN

.

N

uLBag

LN <> d 41
uLBeg
0@ 9ZLSU89UIS 0} | =iy JOo4

(#21tUMs) uLbBag
0Q LIN <> D 8(tum
f(81L43NO)ULBILIM UBYY [N
t

usyyL

(.3, Z51@L L3N

0Q N 03 | =:1 dJO4
£(31L4INOYULBILIM
woJ4 BIEQ JO4 3ISLT ADUSDE[PVY, ‘3(L4IN0O)U(BILIM

fULDILJIM
uiBeg
td3d D ‘d
HE P AR-1VT-T- Wi TNuR s TS|
tadAjw :p
tadA3epoN 1 J8A

{g = 9ZLSU88JIIS ISUO0)

tadAjw:w (Aeudedid v JepA)eIEPAILJM 94NPBI0Ud

AiI*.i*&**&*&&&***&***l*******i*li***li***i**&*{b*i**Qi***!i#&lhl’i'*ii’*iiv

tpu3z
(% @LtUum «) *pu3l
(+ 0 B Y3im spud 3ndul) t(Ltel ‘atjur)pesy
tpu3l
tD =:[peeH]lv
t[peaH]v =:3x3aN"_D
£3$02° _d =:3S00° D
t[r]ssedb6oud- _d- =:[r]ssedbo4d°_ D
og w 03 | =:p 404
flLiel =:peeH" D
‘peeH =:(tel" D
* (D)mMeN
(% Ss®uJboud j0 junowe anLieBau (403}J8A) 8yl PUB ‘3SO0D BWES 38U} YILM 3ISL|) ¢ vc_.mcm
(% Adudde(pe U0 |[LBj<-———- peaH JJ4e 3jJ8sSUl Udyl ‘@|qLSdd8A8J S ydeub 41 &) uayj) a|qLsJdaney 31
‘d =:[1tel]v
(% 3St| Aduedelpe jo BuLuuiLbaq 3e Jd4e JU8SUTI) tfitel]y =:3IX8N" _d
(% 3S0D pead ‘asLMJayl0 =) t(3s02° _d ‘@|tjgur)uipesy as|3
pu3
t(alLtyur)u|peay
t1=:3802° _d
uiBeg
(%« ®@3etudoudde jL 3S0D 3LuUN UBLSSY &) uayl (d(LJUI)INIOI 40 S3ISODILuUN 3FI
t([r)sseuboud’ d4 ‘®|tjur)peay
og w 03} | =:rf 404
(% PO3}EOLPUL SL UOL3}IIBULP PJEPUBIS-UOU B | ‘ssauBoud peay) usayl (0 = Jaquwnuaiqg) 40 (0 = sJiLQuelsS) 41
‘pug
t[48qunuuig]g =:ssadBoud" 4 uayy 0 < J8qunudiqg 41
t(dequnuatqg ‘9 tjur)peay
(% PO®3EILPUL SL UOLIDBJLP pPJeEPUB}S B 4L ‘ssadboud peay i) u|Bag
ueyyl 0 < sJiquels 41
tl=ta8qunuutLqg
‘peay =:pBaH" _d
(% Peay peay) t(peaH ‘siijur)pesy
(x LiB} pedy «) tLiel =:1tel” d
t (d)MBN
(% PBOH<— === ltel JJe 8y} WOJj UOLIBWIOJUL BY} PJIOI3Y) (« 2LtYym ») uLBeg
0gd (0 <> 1tBL) d@LtUM

jeyy Buiuanp paaocaduwt
‘N Jo03d8A B8yl Butiiepdn

,,"suoL3iea93L

jy6Leam wnwiuLtw e 40 uBram auyjl
(% UOL3}BUBIL U3I-T 8Y} JBI4y°(Bwi3ise]aduLspanosdw] BLA) pauueds)
9y} 8ouLs panodsdwi BaAByYy)
Ydtym 8SOy3} Se | |9M Se ‘(BwL]SLYy]paAoJdw] BLA) UOLIBRIDIL) tJo3ydan|oog
aAey N Jo s3jusuodwod ydiym BuLiediLput)
‘wyitJdoble yied 3S831J0US 4)
(% PJO4-ueW| |8 8y} JO UOL3IBUDI| BUO SBOP PJIOJUBW| |B8F BJNPBI0Ud) t403d3anead

Adu®defpe JLay} awL} 3se|

I 4934 punoy sa|2AD

(*

‘puoguew| (8g 30 «)

t(40328A (009

rawt)styjpenoadur Jep
tawy] 3seaouLspanoadur Jeap
PN JBA
tjuaweanoJddw] JBA
tpeaJd‘y JBA)PJOJuUBW] |89g 94NPOI0Jd

A**#i*****i**{{******i**{*&*i**{***i&*i****Q*Q,'*{&iii**&!&**&&{*i**.**}liﬁiv

t(, suotieuayt

t(,"suotzedadyt ,‘z:i1‘,

sjuiLJud abessawe|J2AJ0N
f(adAjw :w

)
tadAiepque|

‘pug

48348 UOLIBULWIB] ¢pPa3}Ia33}8p S3a|DAD anijeBau ON,

‘Bl L43IN0)UBILIM

J931je uoLjBULWIG] p83D831I8p S8|J3AD 3AL3IEBBU ON,)U(8FtJIM

fugeltdm
HIVER-FRR])
tpug
t(Z:9:[rlepque|)eliim
op w 03} | =:f J4O04

s|enbe epque| uaum,)93iiJm

fULBILIM
‘tulaitim
(B LJ43IN0O)ULBYILIM
f(®Lt4INO)UBILIM

t(z:9:[rlepque| ‘81143N0)83ILIM

op w 03} | =:p JO4

slenbea epque| UBUM, ‘9| LJIN0)IILJM

uiBag

uayy 0 < w 31
(81L43INO)UIBILIM
(dLtJINO)uidzim
uLbeg

tadAjw :p JeAa

tadA109pON: I)9BeSSaNO | DADON Bunped0oud

(R MR RN R R AR R AR R R R AR R RN R AR R AR R R RN KRR RN AR AR R RN AR R AR R S)

€ 40 Z=w uU3yMm pasn 3ION i)

(&« BPQWE| ‘J03}28A |BNP 3y} SpeaJ epque|pesy i)
(R AR AR R R AR R KRR A AR R AR R RN R AR E B RN R AR R E R RN RN RNR RN)

(% @43 @seI YILym UL ‘Q = w ssa|un

tadAjepque |

tpu3l
t(91L43IN0)ULOILIM
fU(@ILJIM
tu|pesy
t([rlepque|)peay
ogq w 03} | =:f 404

repquwe| 483Ul 8sead|d,)83} LJIM

uiBeg

tadAjw :p JeA

:epque| JeA)epque|peay aJunpedodd

tpu3

(# doo| I Jog &) tpu3l

(x LLUM ») tpug
$(9114IN0)ULBILIM
t(81L4IN0O)UBFLIM

(# doo| % dJo0d4 4) *fpu3z

fpuz

tIX8N" _D=:D
t(,(.,*1:3502° D‘aLIIno)e@3tim 3s|(3

(1:3s02° D°,(,‘1:[w]ssedb0ud" D‘@1+43N0)BILJdM UBYL 0 < W 41

tpug

(', '11[r)ssaJB0ougd - DO L43IN0)BILIM

‘pazisayjuaded SiL 3IS0D)

‘sisayjuaded uL st ssaduboud 8yl 4)

*sdJe 8AL3}D8adsed JiL8Y} yleaudapun 3s0I pue ssadBoud 8yy BuLISL| i)

og L-w 03 |

u|Bag

=:p 404
,‘91+43N0)B3ILIM

ui6eg

LN <> D 41
uiBag

0 @Z|SU88J43S 0} | =:) 404

t(@1L43IN0)ULBILIM

£(43d|0) :3sL|8|2AoMau Jep fadb83jul :aaqunuad |dAD !adAiepque| :epque|
tadA38poN :8(2A)4034e3S ‘N ‘ud3] ‘SpoNpanocJsdw] !adAjw:iw fAeUuydid:ipadd)a|dA)BaNIuLId 84NPBI0Id
T nnnnnInInImIm ImMmmmmMmImnImnmnmmmImnnnImnmnInInmnmnnnnI o™

tpug
tpug
(% P3J4d BLA D248 8JOow 3uU0 »¥IBQ 3dJBJ] &) t(Ltel” _dlpead =:d
(% *d@y3ldny ou 340|dx® uUdY}) tand) =:pujpesqg
(s LLlB3 snotAadd e UL pauilwexsd uaaqg Sey D248 JNO 3JO (LB} dY} 41) usyy B8poN <> [Ltel" _d]Agpeuiwex3 I
(* ‘3L duULWEXd) tapoN =:[|te]l" _dlAgpauiwex3
(* usyi ‘pautwexs uUasg 30U SBY Odue JNO JO | LBI BUI JI #) usyp 0 = [Liel’ _dlAgpeutwex3 4I
tpuz
(% "8(2A)4034e3S 8pou yiiM BuiLidels) tptel’ d =:9|24A)jo03ue3sS
tand] =:punog4dA)manN
uLBeg
(+ ‘l1ed Sty3y BuLJNP pauLwexe® us8adQg SBY OJJB JNO JO |8} BU} 4I «x) usyyl 8poN = [liel' _d]Agpeutiwexl] 4]
uLBag

0Q (puzpeag 310N Puy (PUNO4DAJIMAN 3ION) PUV (LIN <> d)) dltum
t[epoN]pedd =:d

tas|e4 =:pujpeag

t3pON =:[8poN]AgpouLwex]

uiBag
tuea|oog :puzpeag
tu3d g4 JepA
(x(®12A)340314€1S) 8pOU pajeadad a8yl e BuLisels ‘924D aniiebau)
(» B punoj 3ABY 9M ‘8sed Jd33e| 8y} Ul " 4|9S3| S3eadsd apou)
(% BWOS J0 (LU YyOoesad 8aM JBYILd |[LIUN ‘U0 0SS pue ‘apou dayjoue)
(x 0} 8pPOU 3IXBU SLY3} 40 paud SMO| |04 UBY]Y ‘BPOU 3IXBU BYI 0} 4)
(+ [9PON]P®J4d SMO| {04 UBY] pue BPON 9POU YILM SIJBIS Moeqgdded)] i) t(ue@|00g :pPUNO4IAIMEN JBA

tJ03108AN :Agpautwexy Jep
tAeudydld :p9Jdd 8dA3IapoON :9(2A)j03JdelS Jep
tadA318poN :N ‘SpON)XMOEg8dEBJI] 84NP8IO0Jd
T nInIInImnm I mMmMmMmMm M I InnmMmmnTI I Imm Iy

tpu3
tpulz
(91 tUMs) tpuU3
(% "3SL| Adusdefpe-3no s,|LE] UO JJB 3IXdU 3y} BuLwexl) t3IXON"_d =:d
tpuz
tanu) =:[peOH" _d]ewListylipeaoadu]
tand] =:[pedH " _d]owi3seaduispanoddur
‘d =:[peeH" _d]pe.d
t3ybream 4 + [LteL]n =:[pedn’ _d]n
tand) =:jusawanoJudwi
(% °"s8|getJen juswanoJddwi Ay}) uiBag
(* pue [pesH]padd ‘[pe8aHd]n 8jepdn usay) °‘deis 31se| S}| SE)
(% (PEB8H'ILBL) UI{M pEBH 8pPOU O} |BM J3IJO0YS B PULJ UBD M JT &) uayjy (uoiirsde - [peaH’'_d]n > 3yBLam* 4 + [Lier]n) ww
uiBag
04 [N <> d 3LIUMm
‘[1yer]vy =:d
tas|eg4 =:[(lel]owl]}sSeI9dULSPaAOIdu]
uiBeg
(% ‘PBuULWEXd 8J49M SOJE 8S3Y3} BWL} 3ISE| 3JULS pPaAoJdw| BABY 3IBUI) ueyl [(tel]awi)isetaduispeanodsdur 41
(% """ LteLl [tB3 U3tM soue ||e ybBnodyy 6BuLon) Op N 03 | =:|i(BL JOod
tas|ed =:[1]awtistyipenoadur
OpPp N 03} | =:1 404
‘tas|ed =:3juawanoudwi
uiLbeg
td3d *d
tadA38poON I ‘(itBl JeA
(* ‘M 9pOU 03} 8UO BPOU WOJS H|BeM)
(% JyBLam wNWLULW YdNS BWOS UL [3POU sapadaJdd ydLym Jue 8yl)
(% St [r]podd "dJemay 40 SAd31IS I 8¥EI YIJLYym [3POU 03} BUO BPOU)
(% woJj syiem (e (A{J8doud) suLeluUOD SSB|D y3-I 8yl °~SSB|D)

(% U3-I 8yl UL Sy|em ||B Buowe ‘r 8pPOU 03} BUO BPOU WOJJ Y [BM)

t[r]ssed60ud _d + [r]ssedb6oud|e3lo) =:[r]sseuboud|eio]
op w 03} | =:f JO04

t(Ze:3uBeam- 4 ‘, 3IyBiLam |, *Z:3s0)° _d‘, :3SO0) , ‘SLFINO)U|BFILIM

t(Z:[r]sseJ4Bodd" d‘®1+43N0)8ILIM OQ W O3 | =:f JOH

t(, :ssauboud ,'ZiPeBH”" [d*',<----,‘ltBLl" d‘d|L43Nn0)83LIm

t(z:esIyBLam- d ‘', 3ubBLam |, ‘Z:3sS0D° _d‘, 3S0D ,)U|BILIM

t(Z:[r]sseJboudd _d)9@3LJm 0q W 03 | =:p JO4

t(, tssauboud ,‘ETpedy” d',<----, ‘| LeL’ d)31tim
(* ‘uoL3jBWIOjuUL JUBAB|9J By} Buirjuidad 4) jeadey
(x pue Buiindwod ‘uspdo Jadodd ay3l ul seBP8 }40 dod «) ‘0 =:3ybBLam|eio)
‘0 =:!3s0d(|e30])

‘0 =:[r]sseaJboad|e3ioy
op w 03 | =:r J0O4

$yoe3sduy =:d
tpu3z
‘iitel” [epoN]pedd =:8poN
t[@pPON]POJd =:XDOB}SOUyY
{¥0BISOJY =:8|d2AJuoixeN" _[3pON]padd
(# J3pJ0O 8SJUBA3J UL HWOB3ISIJE U0 B|D2AD 340 sabpa iINnd i) uBag
0Q ®12A)3403JE3}S <> BPON 3| LUM
titer- [®1dA)3j03u835]pBud =:3PON
CLLN =:9[2AJUO3IX8N" XOe3sdduy
t[812AD34034B3S]PBId =:X%DE3ISIJY

fULBILIM
tUOILIM
tpu3z
t(z:g:[rlepque)aiiim
op w 03} | =:f J4O4
t(, stenbs epqwe| uaym,)d3iJm
fULBILIM
tULBILIM
t(3LE43IN0)U(dILum
f(dLL4INO)U(BILIM
t(Z:8:[rlepque| ‘a(143Nn0)83LIM
op w 03} | =:pf JO4
t(, sienbs epque| usym, ‘®(}43N0)BILIM
(» BPQWE JULJd #) uiBeg
uayy g < w 41

f(91143IN0)ULBILIM

f(8LLFIN0O)ULBILIM

$(Z:4931°¢, UOLIBUBI| JBIJEB POIBAOISLJ,))ULBILIM
t(p:a8qunua |DA) ¢, d8qunu 3 DA),)Ud3JIM

tULeILIM

tULeILIM

t(Zid4831°, UOL3IBUB}L JBIJB PBUBAOISLO, ‘D LIINO)ULBILIM
f(pidaqunua [2A) ¢, Jaqunu 8(2A), ‘8L 4INO)U[BILIM
t(9ttiIN0O)uULaILIM

(% P83D93}8P SemM 3L uOL3}BUBIL BY} puUB JBQWNU SB|IAD 3JULJId ») t(a1tIIN0)UBILIM
u|Bag

tleay :otjeu ‘3ybiram|ezol

tuaBajul :3sod|e3o0]

tJdojdoaAw :ssadboud|e3io]

tadAw :r

ta3dion :p

tu3d :xoe3sodv ‘d
tadA19pON :89pON JBA

(* *3ISL9 | 2A)MEN 03 B[2AD MOU Byl 4)
(+ sppe 3t ‘A||eutd "31sL8|2ADMBN 3y} saiepdn pue ‘jubBiam)
(*+ PuUe 3S02 ‘ssadboud |B1O03} S,9|2AD 8ay3 pue epque| sjutdd)
(* os|e 3I °98|2A)j034e3S 8pou 1e BuiL3iseis ‘2A)BBN3IIBIAQ)
(% UL pa3da}ap 8|2A0 8AL3eBau 8yl 3n0 sjuLJdd 3|2A)BBNIULIG «)

(% s8b6pa 03} s3jyBiLam ubBissy

(% TIUSLOL 448 8Jow aunpadoud xoegeded) a8y} sexyew Agpauiwexy
(% ‘pJojuew| |ag JO | |ed juesedd ay:
(x BuiLJunp penoJddwy sey [t]n 3L anuy St [t]awtyisiyipanoudwr
(* ‘PBULwexs sem 3st| Ajusdefpe 3no s, 8poN
(* Swtil 3se] 8dupS paAoJdW]I sBY L 8POU 4t BNJ3 St [L]1SI

(s°uUtebe pa| (B3 SL pJog4-uBw||9g uayjl ‘uoriedayt jeyi peidersp
(% 8J48M s3|24AD 8nL3e6AU OU 3Ng ‘juswenoJdwi SeM aJuayj} 41
(* ‘3ISLI82ADMEN U0 A|Lueuodwey paJol}s pue ‘3no pajuidd sy
(» 3}t pue ‘aAi3jefau 8qg 3isnw 3t ‘punoy SL 9|2A0 e 4T ‘yoeq
(* p8deJ} aJe apou paAoJdwi 3Se| 3yl O3juL BuLpes| SJJE B8y}
(* ‘anoudwi s8op n uaym S8 |2AD aAi3eBau ou sey ydeuB ayjy
(% uayy ‘3jusuodwod Aue ui pasoudw, 3jou St N ‘L1ed yons Aue
(* 4834e 41 "SewL3} N 3}SOw e pJojuew||d8g S||ed 3] “IyBLam
(x 3ntie6au 40 8|24 ® suiB3lUOD ydedb Bay3 Ji SauULWIIIAP pue
(% (epque| eLA) soue 8yl 03 sjyBiam subBisse 8| 2A)6aN3Dd@38Qg
t(48683u]

t9dA3apoN:N ‘adAjw:w

*)

tJ40328AN :Agpautiwex3

t40308An(00g :8wijsityipanosdwr ‘jISI

tAeddedid :padd

tuea|oog :puNO4dADMaN ‘puno4a(dA)BeN ‘jusweasodduw]
ft4o03o9A|BBY : N

tadAjw

td3d

tadA3apoN :9|dA)jo034B3S ‘ud}]

r
d
‘I dea

J9quNNe | 0A) JepA fu3d(0D :3SLT8[JADJMBN JEA

‘tadAjepque| :epque| ‘{ABauydid:y Jep)dA)6aN3d938Qg aJunpalodd

A***i******ii**.***l&***b*&!&*iii***li*{i****li**i**i{l&l****l**&****&lii&*v

(+ OL3eds ss8uBoud/3s0D juidad ‘[=w uaym *)

(x 3St7912AQMBN 03 8(24AD MBU PPY #)

tpug
tpu3z
‘(grg:ot3ea’, St oL3ed sSs8uB0Jd/3S0)), ‘LLFINO)UBILIM
t(e:g:oL3ea’, S| OL3BJI SS8J4B0UH/3ISOD,)U(BILJIM
‘[1]ssauBoud|®301/3S0)|B3I0] =:0(3@Y
uiBeg
usyz | = w 31

‘D =:3sL82A)MeN

f3SL9|0AQMBN =:1XON" _D
‘[r]ssadboudleio] =:[r]ssadBoud- D
oq w 03} | =:p Jod4

‘3soj|e3oy =:3sS0)3° D

tdequnue | dA) =:3weN" _D

t(D)meN

f(dLLdINO)ULBILIM

CIEFELIDIVIR-FRNT)

f(9tt4IN0)ULBILIM

‘(€:3s0)1B301‘, :3SO0) [BIO] ,‘@|}43INQ)ULBILIM

‘(e [r]ssauboud|e3101°a(143N0)OILIM

op w 03} | =:f JOg4

t(, *SS94604d (B3IOL, ‘@[}143IN0)BILIM

f(z:g:3ybBroamieioL, :3UBL8M (B30L , ‘8| L43IN0)U(BILIM

CIRFELTDIVIE-RYNY

LRVER- R RS}

tULBYLIM

t(g:3s0)1B30L', :3S0) [BIOL ,L)U|BFILJM

t(g:[r]ssaJb0ud|B101)a31uM

op W 03} | =:r 404

t(, :ssaubBoud|elo),)83Lim

t3yBLam |B30L ,)ulB3tam

tuieltum

YLIN = d Lt3un
t9|2AJUOIXBN" _d =:d
‘3ubLtam .d + 3uBLamie3iol =:3yBLam(B3IO|
13s0)° _d + 3s0)|e3jo)l =:3so)|e3jo]

‘(z:g:3ybiamieyoyl”,

(% “l=w usaym A|uo pasn i)
(#3SL1l 9y} U0 824D OL}BJ ULW B 4O BWEBU 3U} 03 3s8Qq subLssead)
(» pue ‘oL3ied ssS8u604d/3S0D ULW MBU B8Y3 B9Q 0} BPQUE| 4)

(% suBisseads aunpadoudd siLy3l ‘3siL|8|d2AIMaN uo S8 | 242 ayl} Buouwy *)

‘totiey =:[|]epque’
uLb6ag
uayyl [Llepque > oi3iey 41
t[1]ssadb60ud" D/3S0)°_D =:0L3eY
uiLBeg
00 LIN <> D 3 Lum
t3stL|@|d2AomaN =:0
uiBeag

‘leey :oijey
t43diod :p dasA

t(J486@3uUl :3sag JeA fu3d(0) :3si|®|d2ADMaN ‘adAjepquen :epque JEA)BPQWBTIMBN3}IS8Y) 34NP830Jd
T I I IImNmIIIIn TN I T T T T T T T T T I mmMmT T TMT T T T T T T T T T T T T ™ ™M

tpul
t(w ‘epque| ‘| - J43}I)96eSSOW8|IAJON UBY] 3IuBWEAOJdW] ION 41
tpu3z
tL + 483l =:d@3]
tpuz

t(3sL 191 2AomMau ‘uagqunua | dAD ‘epque| ‘8|2A)403dB3IS ‘' N ‘J483IT ‘I

.

(% "PUNO4 S8|2AD @ani3eb68U ||B® 3N0 juilsd pue 4)

tpuz
tpu3z
‘w ‘pauad)adA)68NIuULId

fL + J9qunud | 2A) =:aaqunua|dKk)

tonu)] =:punoda|dA)BeN
uiBag
uayyl PuUNo4dAJMaN 4I

t(Puno4oAgmaN ‘Agpautwex3 ‘peadd ‘@|24A)j403483IS ‘N ‘I)3Oegaded)

tas|B4 =:puno4dA)mapN
uib6eg

usyl ((0 = [I1l4Agpeuiwex3) puy [I]Bwi)isiyipenoddwr) 4I

(% Ss8pou panoudwi ||e ybnouyi XHoeq aded] 4)
(* UBY} ‘@AouduiL sapou Aue 4TI)
f(ewiystyipesoddwr ‘1ISI ‘N

(% PJO4-UBW(|8g 40 UOL3IBUB}| BUO OQ) 0Q ((Punoje|24A368N 3ON)

(# S®|QEBLJBA PUOJ-UBW| (8F BZL|BLILUL %)

(# L7SI PUB N 8zt |@LILUTI)

t[r]ssadboud’ 4 &« [r]lepque| - 3jyBLem' 4 =

Op N 03} | =31 J04
‘0 =:[1]Agpauiwex3
Op N 03} | =:1 404
u|Bag
uay) 3jusweanoddwy 41
‘juswenodudw] ‘n ‘pedd ‘v)pJogjuew||ag
uLBeg
puy (N => J483I) PUY (IUBWBAOJCWT)) 3| LUM

YLEN =:[1]p@dd
OQ N 03 | =:1 404
L =:ia@31
CLLN =338t (8 2A)mMaN
tas|e4 =:puno4a|dA)BaN
tand)] =:3juswenodduwr

tpu3
tasied =:[I]L7SI
tA3pupguy =:[1]n

uLb6eg
Op N 03} Z =:1 404
tenuy =:(1]1SI
o =:[L]n
tpug
‘pul
tIXBNT _d =°d
3ybBream- _d
oq wWw 03} | =:pf 404
£3S800° 4 =:3yBiLam- _d
uLBag

0g LN <> d 3Ltum

(s SLSEQ [BLILUL 3ULJd x) $(, !SLSeq |eLdL4L3de |BLILUL,)U[3ILIM

tpug

»O H"_”H“_m_.mmm

““H*N unWEmZ.(O 9s (3

L - IxZ =:8weu" D usuy 0 =< [IISHY I

tl- =:[r]sseubBoud° b ®s|3

L=:[r]ssadJ604d " D ueyL (0 =< [I]SHY) 41 @s|3

0 =:[r]ssadbouadq- - D uayl (I <> r) 31
oqQ w 03 | =:f JO4g

PLIN =:3x8u° D
‘twBig =:3s02° D
t(D)MeN
(% UWN{0D sStseq |BIIL4LIJE YI-] 3IINJISUOD) uibeg

0ogq w 03} | =:1 JO4

tpu3z
tpug
t[1]siseg =:3x8uU°_3S|[DLSEqUON
f3x8U° _3Si|OtsSequoN =:3}x8u- _[I]siseg
uiBag
uayl (wsZ < BsweN-" _[1I]stseg) 31
(#¥3SL|D2tSBqQUOU U0 "S|0D |BLIOL4L3JB-UOU 3INdy) og w 03 | =:1 4Jo4
uiLBeg
(% usy3 ‘Ajdwe-uou st s(seq 3I) ueyl LN <> [L]siseg 31

uLBeg

tadAjw :p*p

(* ‘Wzt ‘| SBWeU 8ABY SUWN (0D |BLOLJILIIY 4) £43d|0) D JeA
(% UOL3IN|OS 3|QISEOS DLSEq (BLDL4L3IJB |[BLILUL UB S3IINJISUOD B8unpadodd SiyL)
t(49Ba3juL:wbig fadAjw :w
t40309AW :SHY txiLJdjewg :8Su8AuULg JBA

tadAjepque| :epque| ‘x Jep ‘adAisiseg :siseg JeA ‘J3d|[0) :3}S|{|D|SBQUON JBA)3|QLSBI43}8YH 3.NPBI0Id
T I I mn I T T I nTnnnIInnmnnnmTmTmaIIInmnmaOaOaOaInmMmmTmTTIIInnmmnnaOIooOoooOm)
tpu3l

f(eLtdIn0luULeILIM

C([IISHY ‘@L1t43n0)e3tdm

op w 03} | =31 404

t(,:40308A SHY LBULBLJIQ, ‘B(143N0)OILIM

t(OLL4INOIULAILIM

0 § 03 | =:1 JOd

tu(e3Lam

tuipeay

t([11SHY)PEAY

op w 03} | =:1 404

$(, *@UL| SLYy3l uUO IpPLS puey-IYBLJL BY] J9IUB B8SEBO|(d,)OI LJIM

PLIN =:[I]siseg

op w 03} | =:1 Jog

‘D =:3St0rsequoN

SLEU =:3x8uUT D

(s« J9peaY Awwnp) t0 =:aweu- D
t(D)MaN
uiBeg

tu3dioo :p
tadAjw 1 Jepa
(* “S3Stl Jisequou pue JLsSBQ 3y} x)
(# S8ZL|BLILUL pUR JO3}J8A 3PS puey 3IybBLd 8yl spead 8unpadodd sLyl %) .
t(edAjw:w fJ0309AW SHY Jea fadAisiseg :siseg JeBA f43d(0) :3SL|DLSBQUON JBA)dI9ZL|BLILU] 94NPad0Jd
A*****»»»*********af***********************«**»§§*********»**;**»*****»q*ncﬁfﬁuuu*u»»u»;a*cnﬁo*iuaunungiua.ﬁ»..».p.;«;»wnfv
s pu3
tpug
‘3IX8N" D =:0
tpug
‘3weN" D =:3seg

(*
(=

‘epque |
(»x s®@iepdn pue (ssaupapunoqun S8pN|Ju0d J0) 3d|geLJen BuiAed |

‘X ‘Siseq 8yl)

B S3S00yd 4)

pue

tlead :3s

84npadoJd siy3i ‘@|qgelueA BULJIBIUS 8Y} PUB SLSBg IUBJIIND AU UBALY x)

‘(J@b83Uu]

(»3St1dLsequou wouy panowdd S| 9(geiJepBuiielul 4)

(% 9sJdAuLg pue epque|

X Ld
tadAjepque |

oJuoL3Nn(0S ‘jueuUiLwiB®}Ia(g

tadAiw :a|qeLuepABULAR
isjontduaebeg Jep ‘ues|oog :papunoqun JepA fuaBajuy :WBLg
‘40309Aw :SHY ‘adAiepque| :epque|‘x JeBA
t43d|00 :@|qeiJeABULJBIUT !XLJjewg i3sd9AULg Jep
tadA3siseg :siseg JeA !u3d[0D :3}SL|JLSBQUON JBA ‘adAjw:w)sseganosdu

jewg :g
eydy
‘oLiey

81 ‘r‘1 Jen

I @Jnpeadoud

ﬁ#***Qi**i&l*i*il***{*i**i*{**&{&i&*ll{*i&*{*#i&*&*&&*&}***&*&*&*ﬁ&*****ll&.iv

f3xaur
fIxau-

f3xau” _zD =:3xdu
tZ0 =:9|geiJepButd
tas|B4 =:9|QqeLIBAYD

usy] uo|isd3- > 3so)pa8d

tpugz
tpu3z
zb =:2Z0
10 =210
tpuz
.10
ajul
NSON
uiBag
npeay 41

t([1]sse4604d’' .z » [I]epquel) - 3so)pednpey =:3so)pednpay

0Q 9|geiJeAYINSON

(= TanJ] =:9|geLJEBAYDINSON UBY]Y ‘3SsO0D
(= P®2NpaJ aAL3jebBau-uou B8ABY SUWN|O0D (|e 4]
("3SL| Jdisequou ay3y wody 3¢
(# sS8A0OwWeJ pue ‘s|qeirdeABULIBIUS YIiM It 03
(» s3juiod “31s0D pednpad 3aAi3eB8U Yiim uwn|o0d

(% dtseg-uou 3sJui4 3By} Savel aunpsedodd siyj

t(9dAjw:w tuee|oog
tuyydioo
tadAyepque| :epque |

oq w oy |
t3s03° _zD=:31%0)

puy (LiN <>

£33 X
t3st|Oys
tanu)=:9qe
*)
*)
*)
*) :
*) t1eay :3so0d
*) tJ3dio)

19| gBLJIBAYINSON JEBA
f9|qetdaepaBuLaaiul JepA
t43d|02:3sLTo1SeqUON)@|gRJBABULI9IUIESO00Y) 8JNP3I0Jd

=] JO4
pasnpay
uLBag
Z0) dltum
8u- _1D=:Z0
equoN =:|D
t4BAYONSON
utLBeg

adAjw:
peonpay
:Z01LD dJep

A*ll&**Q**ln*&*&&{i***I!&ll&’*llil&ii*.liQi**&.i&il{{ll’*&*il*i&&**ii*&&v

tpu3z

t[1]ssedBoud- _[r]siseg =:[r‘1]esdaautg

og w o3 |
oq w o3 |

‘WBtg » [I]ss@uBoud” [I]stseg =:[1I]

‘x 83ndwo) 4)

t(g:3s02° [1]siseg’,

oq w o3y |
*[I]SHY- =:[1I]lx @

ogq w o3 |

I 404
=:p 404
epque |
=:1 404
si3

[IISHY =:[I1x ueyl 0 =< [I]SHY 4I

=:1 404

C(OLEFINO)ULBILIM

t3so) . ‘®Lt33no)uy

‘pug
CRYNTY

‘(p:[r]ssadBoud- _[I]siseg ‘®|1343N0)93um

*(, :ssauBouq , ‘proweN"_[1]siseg’,

t(, :siseq

t(Si3s00° [1]stiseg’,

letatitide

oq w 03 | =:
Jaquwnu 3 (24D, ‘a(L33ino)

0q w o3 |
let3tur,

13503 ,)ul

r J4o4

831tdm
uLBag
=:1 404

‘@lLiINO)uBILIM

‘{pug
83 14M

t(pi[r]ssedBoud- _[1]Ssitseg)a3iIm

:ssaduboud ,

t(,

‘pioweN’ [I]siseg’,

oq w o3 |
Jaqunu 824),)

og w o3 |

r 404

93 tdMm
uibBeg
=!] JO4

L =i 404

:[1]epquen
uLbag

(% J403J33A 350D OLseq ayj SL O 8J8YM ‘BdSUBAULG & O = eBpguwe] 33ndwod A[328JL(Qx) 0oq w 03 | =:1 Jo4

03
0 =

‘tjueuiwaaiaqg/[rr]asJdanutg =:[r‘rlesdan
oq w o3 | :

tpu3

ffi*zlaxlz*tlae-[2'2 =:ijueutLwdaiag
: [L°z]8sdJanuLg
[z*1]@sdanuLg
[z'Z]asdJanuLg
[L*1]esJanuLg

uLBag
ueuy Z = w 41

tpul
‘[e‘elaslt‘z]laslz1]a - [Z2'clasle‘Z]lax(L L]~
[L'elas(Z 218+ 1]g - [Z°clan[L‘Z]ge[E L]a+
[L*elaslc‘Z]aslz* 118 + [€'clax[z Z]82[1l ‘1]Q=:3uBULWIBYBQ
[z*1]as[1°2])a - [Z2°C]las[L L] =:[E€°E]osaanuLg

ffzeelaslLt]a - [Z2L]ax[L€Ela =:[Z2°E]OSIB8AULG
t[zzlas[Lcla - [2'clax[1‘Z]9 =:[1l 'E]osdaAuLg
tlezlasltL]a - [e'1]8x[1Z]8 =:[g‘Z]@sSunAuULg
tle‘i]asli‘ela - [e‘elaw(LL]g =:[Z°Z]8SJ0AULG
t{e‘elaxl1'2]a - [e'Z]lgax(l‘€lg =:[1‘Z]assdnuLg
‘fetlaxfz‘z]a - [e‘zlas[Z°1]8 =:[g L]as408AuULg
‘le‘elas(z*L]g - [e‘1]ax[Z'€lg =:[Z 1]8suaAuLg
(» AL3D94ip xidjBWw 8ssaAuLg 83ndwo) &) ‘t[e‘zlax(z‘elg - [e‘clagx[Z°2]Q =:[L‘L]®s4dnuULg
uib6eg
usylp € = w 41
(« XtJd3jew g 83eau) 4) t[1]ssedboud" _[r]lstseg =:[r‘1]g
og w 03 | =:p 404
ogq w 03 | =:1 J04
(x Adessa@d3u A||B8J 30U SL BUL| SLYL) SLEN =:3x8u- _[®8|qeLsepnBuiaee]siseg
‘a|qetJsepBuiLauaiul =:[a|qeiiBABULABE] S| SBY

![e|1qeiiepBuinAeeT]SSBEG =:31X8U° _3}S|[D}{SEqUON
f3IX8U” _3SLOLSBQUON =:3Xx8N"_[®(qeLiepBuiAesi]siseg
(x°"4eABULIBIU] YIiM B(QqRLIBABULABET 8BUBYDJBIUT) uiBeg
uayyl papunoqun 3ION 41

‘pugy
tl =:a|qeiJdepBuiLnAead
tas|e4 =:pepunoqun
‘0 =:S30ALduabag 8s|3
L+ s3jonidqueBeg =:s3jonLduebeqg uayl 0 = oL3iey 41
t[1]eudiv/[1]x =:0i3ey

uiBag
uayyl (uoitsdy - ([1]Buydiy » Ot3BY) > [I]x) puy (uoiisd3 < [I]eudiv) 4I
og w 03 | =:] 404
(= ‘uwn (03 BuitAe8| 8y} BULWJIBIBP 03 31S8) OLIBJ-ULW 0Q x) ‘WBig « WBLG =:0L3EY
tpugz

‘[r]sssJboud- a|gejsepbBuiaaiul 4 [r‘1]esdsautg + [I]leydiy =:[I]eydly
. og w 03 | =:p J404
(% *403J38A UWN| 0D BULJBIUS BYF SL B 8J48UM ‘B 4 3SJBAULg = BUD|Y 4) ‘0 =:[I]eudy
u|Beg
op w 03 | =:] 404
tandg) =:papunoqun

uiBeg

W]X‘B[L4INO)U|BFLIM
I]X*81143N0)93LIM

oQ |-w 03} | =:1 JO4
JLseg, ‘9| t43N0)33LUM

——

9:[w]lepque|)u|dajtim
9:[I]epque|)a3itLim

0Q L-w 03} | =:] JoO4
(uoLIN|O0S |Bng,)3d3tim
(o0 tzrgr[wlx)uiedLam
(0,029 [1]x)e3Lum

og L-w 03 | =1 404

P4

t(,] = epque|

t(,] = x :uoL3IN|oS diseg,)altdm
(% "UOLIN|OS |ew(3do JUBIIND INOIULJIG %) uiBeg
(% UBY3l ‘SAL3BB8U-UOU BJEe S3}SO0D PBINPBJ | |8 JI &) uayyl a(qgeLJeAydINSoON 41

‘(w'a|geLJBAYDINSON ‘9 |qeLIBABULIBIUT ‘epPqUE | ‘3SL]OLSBQUON)
9|getLJeABuLJ9lUTgOSOOY)
yeaday

‘0 =:si10ALduebag

tas|eq =:68ui |d2A)e3euluaBag
tas|e4 =:papunoqun
uibag

tyabejur :s3jonrduabag

tadAjw T

tuea|oo0g :9|QeLJBAYINSON
tu3d|od :a|qeiLJeABuLJIBIUT JEA

[‘pPajuiud ade)
(% suoiLin|os |enp pue |ewidd 8y} " (P33D938P SL BuUL| 24D B83RIUIBAP JO)
(* Ssaupsapunoqun ssS8|un) punoy st siseq (ewtido ue [Ljun A paiwedad 4)
(* sitseganoudw] pue 8(geLJBABULIB3IUZASO0Y) S| |eD 3unped0oJd Siy})
(* ‘sS8|geLJBA JLSBQUOU 40 3}SL| B puB SLSBq 3(qISEea) JUBJIND B UBALYH 4) t0S = s3onLduabBagxey 3ISuo)

t(9dAw w fJuo03d8AW :SHY ‘adAjepque| :epque| ‘X Jea
£43d|0D :3SL|3(D2AOMABU ‘3S| |DLSBqUON JBA
‘xtJjewg :asdenuig Jep ‘adAisiseg :siseg JeA
fuge |oog :6utl|DA)@3iBIBUdBAQg ‘pepunoqun Jea)xa|dwiS aJunpadoJd
S e s e e I nnnnmmmmImmmI T T T T TTNITI ™MD

tpu3z
tpu3l
t(Z:G:3S02U0L3INIOS*, :3S0) uoL3INn|oS SfBLE4IN0O)UBILUM
t(graweN" [I]stseg‘a|143n0)e3tim
oq w 03} | =:1 J404
t(, :siseg MaN,‘@a|}43IN0)83LuM
t(Z:g:3s00uU0L3in|OS‘, :3S0) uUOL3INn|OS SJULBILIM

t(g:oweN’ _[I]stseg)oliJm
og w 03 | =:] Jog4
(# 3SOJUOL3IN|OS puUB S |QBLJIBA D|SBQ JO SBWBU JUldd &) t(, :siseg MaN,)d3LIM

‘[I]SHY » [I]epquwe| + 3}SOJUOL}IN|OS =:3S0JUO0L3}IN|OS
(» 9 » BPQWEB| = 3}SO0JUOLIN|0S 33INAWOD A|3D284L(Qx) oq w 03} | =:1 Jod
t0 =:3sodouoiinios

tpugz
*[rISHY # [r‘1]asdenutg + [I]x =:[I]x
og w 03 | =:f 404
uO HumHux
uLBag
(% J0328A 8pis puey 3Y6iJd 3y3 SL Q 8JAYM ‘g 4 8sSJdAULE = X 33NdwWODd A[32841(Q%) og w 03} | =:1 JO04
tpugz

‘[1'rlesJsnurg 4 3s0)° [r]lsiseg + [I]epqwe’ =:[I]epque’

ﬁ*{*****l*****i****i*******h*****************{*&i***********l**i***********v

‘pu3
t(31LIINOIULBILIM
op € 03 | =:1 JO4
([IISHY ‘31tdin0)a3tim
op w 03 | =:1 J4o4
t(, :9pLs puey-3ybLy MON, ‘@1 LIIN0)OILIM
(@LE43INO)ULBILIM
op G 03 | =:1 J04
L R R R AR R R AR R AR R R AR Rk Rk kak, DL LIIN0)ULBILIM
f(®1L43IN0)ULOILIM
tugeltim
tu|peey
‘([1]SHY)peay oq w 03 | =:1 Jog
t(, fautl SIYy3l uo apLs puey-3ybLJ Sy} J93IUS I9SEO(d,)83I|IM
(#SHY Meu Ju3a3july) uiLBag

tadAjw :1 Jep

f(adAjw :w 'J03128AW :SHY JBA)SHYMONJIIUJ 84NnpadoJd
E I I T I oIooToTOmm)

tpu3

(% Z 3SL| uo Juapesay Awwnp Jaquawey x) $13ISLL =:3xeu’ _Z3istT

(x3UBWd |® (48pedY-UOU) 3ISJL4 OY) 03 SLU} IULOd «) f3xX8UT _Z3Si| =:3x8u° D
(% L3SL| UO juBWa|® 3}Se| O} JULOd x) fixau- D =:0

0Q LtU <> 3IX8U" D 3[LUM

f13sL =0

uiBag

tua3diod ::p dJBA
(x *3ISLTOLSBQUON 3y} 03 3SLT8(JA)QMBN BY3} &)
(% puadde 03} p8sn SL 3}l " (Joapeay Awwnp 3yl)
(« <4®34e) Z3isi| jJo Buiruui68q 8yl 03 [3ISL| #)
(+ 40 sS3jusjuod ay3 spuadde aunped0.d Syl &)
£(43d100 :Z3siL| ‘L3Si| Jep)puaddy aunpedo.ud
S I I I mnmIImnmnmMI I oIomnIIIoOIoosTm
tpu3z

tpu3l
tanuy] =:B6ulL|2A)e@3vu8uabag
$(,BuL|2AD 831B@J8UB69P 03 ONP UOLIBULWID]L, ‘B LJINO)U|BFILIM
CIEFELTDIVIE-R YT
t(, BuL|2AD a3jeJs8usbap 03 8NP UOLIBULWIBY,)U|3FLJIM
uiBag
usy] sjonrdueBegxepn = S3}OoALduebag 41

tpu3z
t(,°stseq ay3} ojuL, ‘Bsweu’ a|qeiJeABuiLadlIuUT ‘,uwN|[0D, ‘S| }4IN0)U|DILIM
f(, BULJBIUD B LYM PB3IIBIBP UOLIN|OS papuUNOquUN, ‘d|LJIN0)BILJIM
(, Siseq 8ay)} ojuL, ‘aweu’ _d|qeLJBABULJIIIUT ‘,UWN|0D,)U|BIJIM
f(, Buird9lus B LYM POIDBIAP UOLIN|OS pepuNoqun,)83 LJM
u|Beg
uayj pepunoqun 31

tpepunoqun JO0 8|geLJBAYINSON |i3IuUn
‘(s3ontdquabag‘papunoqun‘wbig‘SHY ‘Bpque| ‘x‘a|getJieABuLiBjul ‘asa8AuULg‘SLSBg‘ 31SL1OLSBRQUON‘W
)sitsegaroadu]
(% "Stseg 9y} 3A0JdW] ‘BSLMI3YID %) as |3

pu3
[w]epquwe| ‘a|Lj3no)u(d3iLim
[Ilepque|‘®|L43N0)83tIM
0Q L-w 03 | =:I Jog4
t(,] = epquwe| :uoL3in|oS (BNQ, ‘9[L43IN0)BILIM

t(.0.%'2:9
t(,'.,'2%9

(% "XITWIS Butsn ‘47 8yl 8A|0S-8J4 PUB ‘3ISL| SUWN[0D) uLb6ag
(» pP®3EaJsuab ayj 03 (S8|24AD) SuWN|0I MAU BY} PPEB ‘8SiMUay1Q %) 8s (3
pu3z
‘(. lewiido sL uOLIN|OS BA0Qe BYL, ‘B(L43IN0)U|AILIM
f(@(L4IN0)uBdILUM
f(9LLiINnO)ULBILIM

t(,"|ewi3do St UOLIN|OS 8nOge By,)U|dILdIm
uLBeg
(x "lewt3do sL UOL3IN|OS SNOLAJUD By} UBYY ‘SISLXd BUOU 4T) Usyjl (LN = 3ISL|9|D2AOMaBN 41
(% "3ISLX® A8yl 4L &) t(48qunua|dA)‘3st @ dAomaN‘u‘w‘epque| ‘y)dAd6auidajag
(» ‘sS®|2A2 aAr3jebau puiy pue ‘sijybiam ydeun-) ubisse(-ay) i) jesday

usy] (Buti|24A)e3resduabeg JO peapunoqun) 3ION 4I
(x d7 @y3 an|os ‘suwn|0d pajeuauab Buis(%)
uAE.mIm.munEm_.x.um*_m_o>uzwc.umm_ufmmncoc.mmgm>cfm.m*mun.m:*_u>uw«wLoc0mwo.Dmuc30nca

)xe|dwis
(» Adess®d8u JL ‘siseq [BLOL4L3Je ue 331edJ)) t(wBiq ‘w ‘SHY ‘®8sdeAutg ‘vBpgue| ‘x ‘siseg ‘3S||IJLSBqUON)d|QLSBD43}99
yeadey
(% *40328A SHY 9y} pedJ 3M ‘3ISJULd 4) ‘(w ‘SHY ‘siseq ‘3s||J|SBqUON)dI®ZL|eLI Ul
uLbeg
(ssuoiie|nd|ed xa|dwis ay3 swuojuad weubBoud ayjl ‘€ JO0 Z =W UdUM &) uayy (e=w) Jo (zZ=w) 41I
tpu3z
fauog (i3un
tanJ)| =:auoQ uayy (,u, = J8MSUY) 40 (,N, = JIMSUY) I
t(JamMsuy)u|peay
(% "PeJisep 4L ‘epqeuwe| i) *(, *(N/A) iepque| 40 an|eAn mMau B ,L)83iJMm
(% 40 8anjen Mau e Jd3ud ued NOA ‘uoLjewJOojuL x8(dwis BuiLsn) f(,43Itm weabBoud 8YI uUNJ 03 3)L| NOA PINOM,)33 tim
(% "S3ISLX® 3u0O 4L ‘@240 BAL31EBOU B PULY 4) t(Jaqunua | 2A) ‘1S 9| JADMaN‘U‘wBpque | ‘v)dA)BaN}De3ag
(* pue ‘s3iybiem ydeun-) ubBisse ‘epque| BuLsn 4) ‘(w'epque |)epque |peay
jBadey
(x Oput Buisn sdeyusad i) t(,"Al|BUJBIX® pBA|OS 8g 3sSNw suoije|nNd|ed dl,)uiayiam
uiBag
(% SVd 'HdVY9-) wedboud 3y} 8sn os|e pP(NO)) usylr € < w 41
tpu3z
t(pi3isag ‘, Jaqunu 8|JAD 3B pauULBlIR SL PUB ‘OL3IBJ 3}SOD ‘ULW BY3I S| LG]epquen ‘9 L4IN0)UdILIM

‘t(vi3sag ‘', Jaqunu 8|2AD 1B pauLel}R S| pue ‘OL}BJL 3}SO0D "ULW By} St ,‘e:g:[l]epque)u(aliim

(x '9UOP 3Je B8M ‘S3ISLXd 8[JAD 8ALIEBE3U OU UBUM &) CLLN = 3SL[3®|2AOMBN (L3un
t(3s8q ‘3si|3|2AdMaU ‘vpque|)epqueIMEN}IBD UYL [IN <> 3SITI8|JdADMEN 4I
t(J48qunua|dA) ‘1S |8 JAoMBN‘U‘wBpquE| ‘¥)DA)BBN3IDJB31aQ

(+ "(S3¥Stx® 8uo ji) 9240 anL3ebau e puiy pue siyBLam ydeub-) ubLSsSy) }gadey
(+ BpQwWe | |BLILUL JB3UT 4) ‘{(w'epgque|)epque | peey
‘0 =:3seg
t0 =:id8qunue | 2dA)
uLBag
(# Oi3led SS2.604d/3S0D ULW Y3IiM 824D BY} PULS UBYY ‘|=w JI) uayyl | = w 41
tpu3

t(J48qunue | 2A)‘1sLT@ | 2AMaN ‘U ‘w‘epque | ‘y)dA)BeN3 D83 8Qg
t(,Sed"s8(24A) weuBoud 8ay3 ®sSn 03 u8jeud ABW NOA,)U|dILJIM

ftULBILIM
uLBag
(x "®12A2 antr3ebau B puij 3IsNf uayl ‘O=w I o) ueayy Q0 = w 41

t(eweBuUB | LJUI‘N‘W'y)BIBpOILIM

‘(sweus || 3inQ)aijinopeay

t(aLt4ur)esoyd

f(wBig ‘AjpuLjur ‘aequnue dA)‘epque| ‘BuUopP‘y‘N‘w)B3IBQI8H

(» sJ93j8weded wa|qoud Joy3zo pue ydeun-) peay i) ‘(sweuB | L JUI)O| | Juipeey
uiBeg

I nInmmnmnmmmM ImMmMmm MMM I I I I
(rsxxanxnsrnnnnosmmnnnhrrnnnhrsnss JUNAIIOUd NIVIN saansssnaukhsansnnsnnsns)

10N 3¥NS 39

(» (1<>1S0J ¥0 SL1SOJLINN ON 4I)1S0D (0

(%

SYIANVLS ¥0 O

"3INIT 3NWVS
NV 3IdALl 43sn 38 OL 3¥v (00L = WOIE *00L = ALINISANI) S3INIVA ALINISNI Q¥VANVLIS 3IHL 41 #)
‘L 1S0J 3IAVH SOV 1V 41 #)
*(3S73 ONIHLANV A8 A3MOT170d4 ATIVNOILHO) 3I¥3IH .8, NV 3IdAL NIHL ‘3I18ISHIAIY SI 9 4I «)
(Hdv¥d9 3JHL NI 3QON Q3¥IEWNN LSIHOIH IHL “ATIVNLIV) HAVY¥D 3IHL NI SIAON 40 H3IEGWNN IHL---- N =)

(+ "Y3ILOVHVHD ¥3IHLO ANV 3IdAL ISIMYIHLO

‘L 40 LS0D 3HL NI 3dAL Ol LON 3SOOHD NOA 4I NIHL ‘L SI J¥V IWOS 40 LSOD 3IHL ANV LS0D LINN LON SI Hdv¥9D 3HL d4I 310N

z <------ € <------ 'y
Z(1='0) 1(0*1=) 1(Z*L)
...... Z <=====-t <-—---=ig
L1(o0‘0) L(o*t) e(L L)
|||||| € <—==-=-t <------:Z

1(o‘0) z(L'0)
z <------ € <—-—--- il

}ep-°apouJnoy} wouy BlEg 404 3SLT Aduadlelpy
SHAVY9-0 ONIMOTT70d4 3IHL SIN3IS3UdIY SIHL

~NMOO
O-—oNMOT T
MO0~~~ NNMO

00z ‘o0l

SaN|BA 83U} JUl pJEpURIS 3ION

$3S0) 3}tun 3ION
39ISYIAIY
14

4

:1vQ°300NYN0d NI dV3ddV VLiVA ONIMOTT0d IHL --3TdWNVXI »)
e T P R Ty
1NdNI 3IHL 40 AN3 3HL SILVIIANI---- 0 =»)

= YIAWNNNYIQ JI)SSIYO0Ud (0 < SUIANVLS dI)H3IENNNYIA avaH TIVL)

:SMOTT04 SV ‘3IWIL V LV MOY 3INO ‘SOUV 3IHL LSIT)

YIGNVLS SS3TINN) 3IWIL Vv LV MOY INO °‘SNOILI3YIA QHVANVLIS 3IHL LSIT #)

SNOILO3YIA QUVANVYLS J0 H¥IEGWNN IHL---- HIANVLS =)
IHL NO S3INTVA 3IHL ¥3UINI ‘3INIT 3IA08VY IHL NO Q3dAL LON SVM S NV JI #)

w "3¥3IH N, V 3dAL N3IHL

SINIVHLISNOD SS3490dd 3HL 40 NOISNIWIQ IFHL---- W =*)

$SMO1104 SY QII4ILSNM 1437 3¥V vivad 3IHL " (1va"30ONdNO4 *°9°3) 37Id4 LNdINI 3WOS VIA G3IYILINI 3IYV Vivd 3HL »)

Ai*&****i***&********&.****ii****i&&*&{***!i****{{&__.:'**i****{***{Q*&_w**iﬁ.l&{Q{ﬂ*‘*QO_'*l&lf&Q&*_'l**i&ii*'***i**#i{&l*&li’iiu

(exexxes

SNOILONYLSNI LNdNI

RERRAR)

Ab_.._._****&**********ii**********_.:Q**&****&i*****Q*!***bi*i*i*li}i**l**&****#&i**&iii*iibi**&&*&{ii‘&.**!‘li..&b*i&i&i&l*{!&w

(% P9JLS3P 4t ‘8PLS PuUBY-3IUBLJI Mau B

‘pug
t(31+43N0)8S01()
tpul
tauog |t3un

t(w ‘SHY)SHYM3NJ®3u3 ueyyl 8auog 3ION 41

(N/A) i®PLS pueH 3yBiy JOYIOUEB 3sN 03 ax}|

t6uL |DA)@3eaBUBBag JO pepunoqun 40 (LN

*) tanuy =:8uoQg usyy (,uU, = JBMSuy) JO (,N, = JOMSUY) 4I

t (4emMsuy)u|peey
NOA PINOM,)U(B3LJMm

1siT8(2ADMBN) (t3Iun

‘pugz

t(w'sHYy‘epque| ‘x ‘1St |®|DAOMBU IS | DL Sequou
‘asdanutg‘siseq‘But |dA)ajeaauebeqg ‘ pepunoqun)xe duts
t(3St1OLSBQUON3ISL | 8| 2AomaN)puaddy

(»
0

1S02 av3aH 1Ivl

1S0D 4av3aH TIvl

OZXXwo

iSM0T1704 SV SI LNdNI 3IHL ‘(SHOLIIA SS3IYO04d ON) O = W 40 3ISVYD VIDIdS IHL NI

"SYWWOD A8 S3II¥LINI 31v¥Vd3S LON 00 ‘0OSIV “AM¥INI SNOIA3¥d 3HL ¥3Ld4Vv IIVdS ANV 3IAVI] OL

100

Appendix C
Turnpikes with Inequalities

C.1 Inequality Version of Theorem 2.2

Here we provide the necessary technical details for modifying Theorem 2.2
of Chapter 2, when our problem requires us to maneuver from (0,0) to
(D,A) at near minimum cost, where A = (A, Ay, A3)T € Z™ is un-
specified, but must satisfy A; > dby, A; = dby, A3z < db;. We define
b = (b1, by, by)T.

Here, we solve the linear program mincTx subject to A'x > db,,
A’x = db,, and A%x < dbj, x > 0, where the matrix 4 is partitioned
into submatrices A!, A%, and 4® in the obvious way.

As before, we let X" = (21,...,&,,) denote the basic part of an optimal
basic solution to the linear program With db* = 2.7, z;aj, our turnpike
trajectory is now

mco+z;'_'__l o [z,J m .
(O’Om) - Z Ja] (D, [db])

it performs m + 1 brute forces and goes around m cycles (fewer, if the
solution is degenerate), in the usual way. Note that [db*] satisfies our
destination requirement, since db* does and db € Z™.

To prove near-optimality, the only non-obvious detail to be shown is
that ||6]| is bounded above by a constant that does not depend on d or b.
This is accomplished after observing that

5 = [db7] - (étm a;)
=)= (L msm) + (Do — L))
= [db*] —db* + f:fjaj, (where 0 < f; < 1)

i=1

< (L1,)T+ Jayl.
j=1

101

C.2 Inequality Version of Theorem 2.3

Here we consider the same problem as in the last section, but with the addi-
tional assumption that b > 0 and the additional restriction that brute forc-
ing with progress é can only be assured when § > r, wherer = (ry,r;,r;3)T €
Z7" is our prescribed radius-of-maneuver vector. As in Chapter 2, we define
M = maz;-;. .|a, and e = (e1,€z2,e3) to be the vector with m ones.

Our turnpike trajectory is based on the linear program min ¢T'x subject
to A'x > by, A%x = b,, and 4% < b3, x > 0, where b = (51,52,53) =
(db, + mMe;,db, — (m + 1)r; — mMe,,dbs — (m + l)r; — mMe;) > 0,,
for d sufficiently large. Let x* = (zy,...,2,,) denote the basic part of an
optimal basic solution to the above linear program. (Such a solution is
guaranteed to exist for the usual reasons.) Define b* = Ax*.

Our turnpike trajectory, constructed in the usual way, goes as follows:

mcr+ ;'_f__,cj[‘”jJ e c -
o (g et 32y 8y) < (Dymr 4+ 3 o 4 6),

j=1 j=1

(0,0,)
where § = (61,6,,6,)7, with 6, = ry, §, = db, — (mr, + X7, |z;]a?), and
83 = r3. It remains to prove the following:

l.r<é6<r+2mMe.
2. mr+ 37, |¢;]a; + 6 is a feasible destination.
3. The trajectory is almost optimal.

For the first item, note that §; = r, and §; = r3, while

b2 = dby—(mry+) |z:a?)
= dbg — Mry +Z(ID, — l_:l},_l) 3 — Z.’D,‘&?
= dby — mr, + Z(m, — |])aZ — b;.
Letting f; = =; — |z;|, and recalling b; = Bz, we obtain

b2

dby — mr, + Zf,-a? —db; + (m + 1)r, + mMe,
r, + Zf,vaf +mMe,.

102

Since |} fia?| < ¥ fila}| < mMe,, we haver, < §, < r, + 2mMe,, as

desired.

For the second item, we see first that

mry + Z[z,] a} + 6

= (m+ 1)+) |z;]a]
(m+1)ry = 3 (z; — |2;])a) + 3 z;al
(m+1)r; -)" fia; + b}

]

l

> (m+1)r; —mMe, + b,

= (m+1)r; — mMe, 4+ db, + mMe,
= db;+(m+ 1)ry

> db,.

Next, by definition, mr, + 3 |z;| a? 4 6, = db,.

And furthermore,

mrs + ZI_IIBJJ&? + 63 =

VAN

(m+ 1)rz + Zl_:cjja?

(m+1)rs = 3 (2; - |z;])a} + Y z;a2
(m+1)r; — Zf,-a? + b;

(m + 1)rs + mMe; + by

(m +1)r3 + mMe; + dby — (m+1)r3 — mMe,
dbg,

completing the proof of the second item.
To prove near optimality, we first note that by the first item, ¢s < ¢ =
max{c, : r < p < r + 2mMe}, where ¢ does not depend on d or b.

Whence,

TPCOST = mec, + Z c’[:vJJ + ¢

j=1

m
< mc,.—f—z:c’:cj—l—é

i=1
= mcy +u” +5,

where u* is the optimal value of the linear program introduced above.

103

Now suppose that (O,0,,) = (D, A) is an optimal trajectory. Con-
tinue it to create the usual closed walk to (O, A + r), with total cost
¢” + cr, and with total progress A + r which compares properly to the vec-
tor b = db +r. Replacing the previous linear program’s right hand side by
b, and denoting its optimal value as z*, we can write c* + cr > 2*

Whence, 2* — ¢, < ¢* < TPCOST S mer + € + u”, ie.,

TPCOST —¢* < (m+4+1)er+c+u* -2~
< (m+1)er +c+kallb— b
by the theorem of f Mangasarian and Shiau (which is valid for the inequality
case, t00). Since b — b is independent of d and b, we have established near
optimality.

Note that if all of the destination constraints are of the < variety, then
our turnpike trajectory is pure brute force, since the associated LP has 0,
as an optimal solution.

REFERENCES 104

References

[1]

[2]

(3]

(4]

[5]

[6]

[7]

8]

(9]

[10]
[11]

AHuJA, R.K., J.L. BATRA, AND S.K. GUPTA. 1983. Combinatorial
Optimization with Rational Objective Functions: A Communication.
Mathematics of Operations Research 8, p. 314.

AUSLANDER, J., A.T. BENJAMIN, AND D. WILKERSON. 1988. Speed
of Light Configurations in n-Dimensional Jumping Games. Unpub-
lished Manuscript.

BELUR, A. AND A.J. GOLDMAN. 1985. Solitaire Chinese Checkers. In-
dependent Research Report, Mathematical Sciences Department, The
Johns Hopkins University. '

Brooks, R. 1983. Solving the Find-Path Problem by Good Repre-
sentation of Free-Space. IEEE Transactions on Systems, Man, and
Cybernetics 13, 190-197.

Cass, D. 1966. Optimum Growth in an Aggregative Model of Capital
Accumulation: A Turnpike Theorem. Econometrica 34, 833-850.

CasTELLS, C., AND A.J. GOLDMAN. 1983. Analysis of Some Jumping
Games. Independent Research Report, Mathematical Sciences Depart-
ment, The Johns Hopkins University.

CHEN, I. 1975. A Node Elimination Method for Finding Negative Cy-
cles in a Directed Graph. INFOR 13, 147-158.

CHEN, S., AND R. SAIGAL. 1977. A Primal Algorithm for Solving
a Capacitated Network Flow Problem with Additional Linear Con-
straints. Networks 7, 59-79.

CHRETIENNE, P. 1984. Chemins Extrémaux d’un Graphe Doublement
Valué. R.A.LLR.O. Recherche opérationelle 18, 221-245.

CHVATAL, V. 1983. Linear Programming. W.H. Freeman & Co.

DANTZIG, G.B., W. BLATTNER, AND M.R. RAO. Finding a Cycle
in a Graph with Minimum Cost to Time Ratio with Application to

REFERENCES 105

a Ship Routing Problem in Theory of Graphs, P.Rosenstiehl, editor,
Dunod, Paris, and Gordon and Breach, New York, 77-84.

[12] DESROCHERS, M. 1987. A Note on the Partitioning Shortest Path
Algorithm. O.R. Letters 6, 183-187.

[13] FLORIAN, M. AND P. ROBERT. 1971. A Direct Search Method to
Locate Negative Cycles. Mgmt. Sci. 17, 307-310.

[14] FLORIAN, M. AND P. ROBERT. 1972. Rejoinder: Direct Search
Method for Finding Negative Cycles. Mgmt. Sci. 19 335-336.

[15] Forp, L.R., AND D.R. FULKERSON. 1958. A Suggested Computation
for Maximal Multi-Commodity Network Flows. Mgt. Sci. 5 97-101.

[16] FucHs, L. 1960. Abelian Groups. Pergamon Press.

(17] GAREY, M.R., AND D.S. JOHNSON. 1978. Computers and Intractabil-
ity. W.H. Freeman and Co., New York.

[18] GiBBONS, A. 1985. Algorithmic Graph Theory. Cambridge University
Press.

[19] GILMORE, P.C., AND R.E. GOMORY. 1966. The Theory and Compu-
tation of Knapsack Functions. Opns. Res. 14, 1045-1074.

[20] GLOVER, F. AND D. KLINGMAN. 1987. New Sharpness Properties,
Algorithms and Complexity Bounds for Partitioning Shortest Path
Procedures, Management Science/Information Science Report 87-3,

Graduate School of Business Administration, University of Colorado,
Boulder, CO.

[21] HowaARD, R.A. 1960. Dynamic Programming and Markov Processes,
The M.I.T. Press.

[22] IBA, G.A. 1985. Learning by Discovering Macros in Puzzle Solving.
9th IJCAI 640-642.

(23] IwaNoO, K., AND K. STEIGLITZ. 1987. Testing for Cycles in Infinite
Graphs with Periodic Structure. Proc. of 19th ACM STOC 46-55

REFERENCES 106

[24]
[25]

[26]

[27]

28]

[29]

[30]

[32]

[33]

34]

JAcoBsON, N. 1974. Basic Algebra I. W.H. Freeman and Company.

KaArP, R.M. 1978. A Characterization of the Minimum Cycle Mean
in a Digraph. Discrete Math. 23, 309-311.

KLEIN, M. AND R.K. TIBREWALA. Finding Negative Cycles. INFOR
11, 59-65.

KosArAJU, R. AND G. SULLIVAN. 1988. Detecting Cycles in Dy-
namic Graphs in Polynomial Time. Proceedings of the Twentieth An-
nual ACM Symposium on Theory of Computing 398-406.

LAWLER, E.L. 1967. Optimal Cycles in Doubly Weighted Directed
Linear Graphs in Theory of Graphs, P.Rosenstiehl, editor, Dunod,
Paris, and Gordon and Breach, New York, 209-214.

LAWLER, E.L. 1976. Combinatorial Optimization: Networks and Ma-
troids. Holt, Rinehart and Winston, New York.

MANGASARIAN, O.L. AND T.-H. SHiAv. 1987. Lipschitz Continuity
of Solutions of Linear Inequalities, Programs and Complementarity

Problems, SIAM J. Control and Optimization 25, 583-595.

MCKENZIE, L. 1986. Optimal Economic Growth, Turnpike Theorems
and Comparative Dynamics, in Handbook of Mathematical Economics,
v. III, K.J. Arrow and M.D. Intrilligator, eds. Elsevier Science Pub-
lishers, 1281-1355.

MEGIDDO, N. 1979. Combinatorial Optimization with Rational Ob-
jective Functions. Math. Opns. Res. 4, 414-424.

MITCHELL J. 1987. Shortest Rectilinear Paths Among Obstacles,
School of Operations Research and Industrial Engineering, Cornell
University, Ithaca, NY.

NETTER, J.P. 1971. An Algorithm to Find Elementary Negative-Cost
Circuits with a Given Number of Arcs—The Travelling Salesman Prob-
lem. Opns. Res 19, 234-237.

REFERENCES 107

(35] O’NEILL, R.P. 1977. Column Dropping in the Dantzig-Wolfe Convex
Programming Algorithm: Computational Experience. Opns. Res. 25,
148-155.

[36] O’NEILL, R.P. AND W.B. WIDHELM. 1976. Acceleration of La-
grangian Column-Generation Algorithms. Mgmt. Sci. 28, 50-58.

[37] ORLIN, J. 1984. Some Problems on Dynamic/Periodic Graphs, in
Progress in Combinatorial Optimization. W.R. Pulleyblank, editor.
Academic Press, 279-293.

[38] SHAPIRO, J.F. 1968. Turnpike Planning Horizons for a Markovian
Decision Model. Mgmt. Sci. 14, 319-341.

[39] SHAPIRO, J.F., AND H.M. WAGNER. 1967. A Finite Renewal Algo-
rithm for the Knapsack and Turnpike Models. Opns. Res. 15, 319-341.

[40] YEN, J.Y. 1970. An Algorithm for Finding Shortest Routes from all
Source Nodes to a Given Destination in General Networks. Quart.

Appl. Math 27 526-530.

[41] YEN, J.Y. 1972. On the Efficiency of a Directed Search Method to
Locate Negative Cycles in a Network. Mgmt. Sci 19, 333-335.

108

VITA

Arthur Todd Benjamin was born in Cleveland, Ohio on March 19, 1961.
In 1983, he graduated with the B.S. with University Honors in Applied
Mathematics from Carnegie-Mellon University, and in 1985 he received
the M.S.E. in Mathematical Sciences from The Johns Hopkins Univer-
sity. While attending Hopkins, he was awarded a Rufus P. Isaacs Fellow-
ship and a National Science Foundation Graduate Fellowship. His paper
“Graphs, Maneuvers and Turnpikes”, based on this dissertation research,
was awarded the 1988 George E. Nicholson Prize from the Operations Re-
search Society of America. He will be joining the Department of Mathe-
matics at Harvey Mudd College in Claremont, California as an Assistant
Professor in August, 1989.

