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Abstract

Zeckendorf’s theorem states that every positive integer can be decomposed uniquely
into a sum of non-consecutive Fibonacci numbers. Previous works by Grabner and
Tichy (1990) and Miller and Wang (2012) have found a generalization of Zeck-
endorf’s theorem to a larger class of recurrent sequences, called Positive Linear
Recurrence Sequences (PLRS’s). We apply well-known tiling interpretations of re-
currence sequences from Benjamin and Quinn (2003) to PLRS’s. We exploit that
tiling interpretation to create a new tiling interpretation specific to PLRS’s that
captures the behavior of this generalized Zeckendorf’s theorem.

1. Introduction

In this paper, we use the combinatorial Fibonacci numbers defined by the recurrence

relation fn+1 = fn +fn−1, with initial conditions f1 = 1 and f2 = 2. This generates

the Fibonacci sequence 1, 2, 3, 5, 8, 13, 21, 34, . . .. Zeckendorf’s theorem states that

every positive integer can be decomposed uniquely into a sum of non-consecutive

Fibonacci numbers.

There are many generalizations of the Fibonacci numbers, which involve changing

three parameters: the number of terms in the recurrence relation, the coefficients in

the recurrence relation, and the initial conditions. We use a certain generalization,

called a positive linear recurrence sequence (PLRS), which has restrictions on which

parameters can be modified. The purpose of the definition of a PLRS is to allow

for a generalized version of Zeckendorf’s theorem. However, the technical definition

of a PLRS and the choices regarding what can be modified may seem arbitrary or

1Partially supported by the National Science Foundation Graduate Research Fellowship Pro-
gram under Grant No. DGE2146752.
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difficult to understand. This is why we introduce a tiling interpretation of PLRS’s

that captures the behavior of the generalized Zeckendorf’s theorem.

In this paper, the special cases of first order recurrences, the Fibonacci numbers,

L-bonacci numbers, second order recurrences, and third order recurrences with

positive coefficients are explored. The main result for all PLRS’s with positive

coefficients is Tiling Interpretation 3. The correctness of this tiling interpretation

is shown in Proposition 3. Finally, we conclude with two equivalent ways to extend

the main result to allow zero as a coefficient. A preliminary version of these results,

presented in a more expository format, appears in [8].

2. Background

2.1. Generalized Zeckendorf’s Theorem

We begin by recalling the original Zeckendorf’s theorem.

Theorem 1 ([10]). Every positive integer can be written uniquely as a sum of non-

consecutive Fibonacci numbers, when indexing from {1, 2, 3, 5, . . . }. We call this

unique decomposition the Zeckendorf decomposition.

For example, the Zeckendorf decomposition of 12 is 8 + 3 + 1. In the literature,

there exist many generalizations of Zeckendorf’s theorem to more sequences than

just the Fibonacci numbers. When generalizing this theorem, there are three main

types of changes that can be made to the underlying recurrence relation: the depth

of the recurrence can be increased, the coefficients can be changed, and the initial

conditions can be changed. However, when making a generalization of Zeckendorf’s

theorem, we must be careful to consider what properties of the original theorem

we wish to preserve. For example, in his original paper [10], Zeckendorf also had

a similar result for Lucas numbers which established existence of decompositions.

However, uniqueness of decompositions was lost–some numbers have two represen-

tations. The Lucas numbers will be discussed further in Section 3.8. For additional

generalizations of Zeckendorf’s theorem see [5, 6, 7].

Our priority is the preservation of unique decompositions. This property is what

allows these sequences to be used as bases of enumeration (see [2, 3]) and it will be

essential for our development of tiling representations. Ultimately, the generalized

Zeckendorf’s theorem that we use here is from [9]. This allows us great flexibility

with respect to the depth of the recurrence and the coefficients, while the trade off

is that we lose control over the initial conditions, which are forced to be specific

values depending on the coefficients.

The following definition establishes exactly for which sequences we have a gen-

eralized Zeckendorf’s theorem.
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Definition 1 ([9]). We say a sequence {hn}∞n=1 of positive integers is a Positive

Linear Recurrence Sequence (PLRS) if the following properties hold:

1. Recurrence relation: There are non-negative integers L, c1, . . . , cL such that

hn+1 = c1hn + · · ·+ cLhn+1−L,

with L, c1 and cL positive.

2. Initial conditions: h1 = 1, and for 1 ≤ n < L we have

hn+1 = c1hn + c2hn−1 + · · ·+ cnh1 + 1.

The coefficient c1 cannot be zero to prevent the situation where there are inde-

pendent subsequences interspersed with each other.2 The coefficient cL must be

positive to prevent the inclusion of an arbitrary number of coefficients of zero at

the end, which would cause L to not be uniquely determined. The “+1” forces the

PLRS to grow quickly enough so that there are no repeated terms. Now let us see

an example of a PLRS.

Example 1. A PLRS is defined by its coefficients. Suppose that there are L = 3

coefficients, c1 = 1, c2 = 4, and c3 = 9. Next, we determine the initial conditions.

We always have h1 = 1. Then, by the definition, h2 = c1h1 + 1 = 2, and h3 =

c1h2 + c2h1 + 1 = 7. Now, we have three initial conditions, which are sufficient to

use the recurrence relation hn+1 = c1hn + c2hn−1 + c3hn−2. Thus, h4 = c1h3 +

c2h2 +c3h1 = 24. Repeatedly applying the recurrence relation allows us to generate

the PLRS {1, 2, 7, 24, 70, 229, . . .}.

A decomposition of a positive integer N is a sum of positive integers that sum

to N . The decomposition is a formal object in the sense that which numbers are

summed together, and how many times, is essential information. (We then write

each unique summand only once, multiplied by the appropriate coefficient.) In

order to get unique decompositions, Zeckendorf’s theorem gives a decomposition

rule, which is that only nonconsecutive Fibonacci numbers can be used. Shortly, we

will define a legal decomposition, which is a decomposition that obeys certain rules

designed to create unique decompositions. The definition generalizes the rule for the

Fibonacci numbers, by making use of decomposition blocks. A decomposition block

is an ordered sequence of i coefficients ai (for 1 ≤ i ≤ L), where the coefficients

are multipliers for a subsection of the PLRS. There are ci distinct decomposition

blocks of length i. (Thus the total number of distinct decomposition blocks is

c1 + c2 + · · ·+ cL.)

2For example, if we had the recurrence relation hn+1 = 2hn−1, only every other term is related.
Initial conditions h1 and h2 generate the sequence {h1, h2, 2h1, 2h2, 4h1, 4h2, 8h1, 8h2, . . .}, which
is really just two independent sequences, {h1, 2h1, 4h1, 8h1, . . .} and {h2, 2h2, 4h2, 8h2, . . .} that
alternate.
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Definition 2 ([9]). We call a decomposition
∑m

i=1 aihm+1−i of a positive integer

N a legal decomposition if a1 > 0, the other ai ≥ 0, and one of the following two

conditions holds:

1. We have m < L and ai = ci for 1 ≤ i ≤ m.

2. There exists s ∈ {1, . . . , L} such that

a1 = c1, a2 = c2, . . . , as−1 = cs−1 and as < cs,
3

as+1, . . . , as+` = 0 for some ` ≥ 0, and the remaining decomposition∑m
i=s+`+1 aihm+1−i is legal or empty4.

At the heart of this definition is the second condition, which states that if there

are s ∈ {1, . . . , L} coefficients used in a decomposition block (the ai’s), then the

first s − 1 of those must match the first s − 1 coefficients used to generate the

PLRS (the ci’s), and for the sth coefficient, as < cs. Also, the remaining amount

left to decompose must decompose legally as well, after a gap of ` ≥ 0 terms

in the sequence. Only the second condition can be applied repeatedly within the

decomposition of one number, since it allows for the remainder of the decomposition

to be calculated recursively. If the first condition is used, the decomposition must

end. The first condition states that all the m coefficients used in the decomposition

block (the ai’s) must match the first m coefficients used to generate the PLRS (the

ci’s).

One way to think about a decomposition block is like a mold with vertical cham-

bers that we can fill up, where each position (vertical chamber) has to be filled in

order to begin filling the next position (vertical chamber). Then, once one decom-

position block is ended, a new one can begin. Let us see an example.

Notation 1. We will use the notation [c1, . . . , cL], which is the collection of all L

coefficients, to represent the PLRS hn+1 = c1hn + · · · + cLhn+1−L. We may also

use letters [a, b, c, . . .] to represent coefficients, to avoid using subscripts.

Example 2. As in Example 1, define a PLRS by the coefficients [c1, c2, c3] =

[1, 4, 9]. The PLRS is {1, 2, 7, 24, 70, 229, . . .}. Suppose we want to create a decom-

position for 21. We start a decomposition block with the largest number from the

sequence that is less than or equal to the number we wish to decompose. In the

case of 21, the largest number in the sequence less than or equal to it is 7. The

first coefficient is 1, so we can only use up to one 7 within a decomposition block.

So we move to the previous term in the sequence, 2. We can use up to four 2’s,

3Clarifying this in the case of small s, if s = 1, then the condition is a1 < c1. If s = 2, then the
condition is a1 = c1 and a2 < c2. If s ≥ 3, then the condition is a1 = c1, a2 = c2, . . . , as−1 = cs−1

and as < cs.
4That the remaining decomposition is legal or empty was originally written as {bi}m−s−`

i=1 (with
bi = as+`+i) is legal or empty.
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since the second coefficient is 4. As 21 − 7 − 4 · 2 = 6 ≥ 0, we use all four 2’s in

the decomposition. Then, we go to the third position in the decomposition block,

where we can use up to nine 1’s. To complete the decomposition, we only need to

use six of the 1’s. So we get that the decomposition of 21 is 7 + 4 · 2 + 6 · 1. See

Figure 1 for a visual interpretation of how the coefficients fit into the decomposition

block like a mold.

721

Figure 1: The figure on the left is an empty “mold” that can be used to visual-
ize a decomposition block for a PLRS generated by the coefficients [1, 4, 9]. The
figure in the middle is representing the particular coefficients 1, 4, 6 that are used
in the decomposition of the number 21. Each coefficient used in a decomposition
must be maximized in order for the next coefficient to be used. The figure on the
right shows the decomposition blocked flipped, so that the decomposition coeffi-
cients (represented by the height of the blue region) are in the correct order for the
sequence when written from left to right. Lastly, when this decomposition block’s
coefficients are applied to the first three sequence terms 1, 2, 7, we see that the
number 6 · 1 + 4 · 2 + 1 · 7 = 21 is represented.

Multiple decomposition blocks may be necessary. For 134, it has decomposition

[70 + 2 · 24] + [7 + 4 · 2 + 1]; the first decomposition block has coefficients 1, 2 which

are dominated by 1, 4 and the second decomposition block has coefficients 1, 4, 1

which are dominated by 1, 4, 9. This shows why decomposition blocks need to be

able to terminate early, because if we forced the first decomposition block to be

1, 2, 0 (which is dominated by 1, 4, 9) then we would not have been able to use any

7’s in our decomposition, which we do need.

Now, we state the generalized Zeckendorf’s theorem for PLRS’s. It is originally

due to [4] and this formulation is from [9].
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Theorem 2 ([4, 9]). Let {hn}∞n=1 be a Positive Linear Recurrence Sequence. Then

there is a unique legal decomposition for each positive integer N .

2.2. Existing Tiling Interpretations

We recall a well-known tiling interpretation of the Fibonacci numbers (see Chapter

1 in [1]). We can show that fn counts the number of ways to tile a 1×n board with

1× 1 squares and 1× 2 dominoes .

First, we check the recurrence relation is satisfied. Note that fn+1 counts the

number of ways to tile a 1 × (n + 1) board with squares and dominoes. (The

# symbol indicates the number of ways to tile the undetermined portion of the

following board.)

fn+1 = # · · ·︸ ︷︷ ︸
n+1

Note that fn counts the number of ways to tile a 1 × n board with squares and
dominoes. This is the same as the number of ways to tile a 1× (n+ 1) board with
squares and dominoes, where the final tile is required to be a square (in red).

fn = #
· · ·︸ ︷︷ ︸
n

Note that fn−1 counts the number of ways to tile a 1× (n− 1) board with squares
and dominoes. This is the same as the number of ways to tile a 1× (n+ 1) board
with squares and dominoes, where the final tile is required to be a domino (in red).

fn−1 = #
· · ·︸ ︷︷ ︸
n−1

Now, consider that for a 1×(n+1) board, any valid tiling must have either a square

or a domino as the final tile. These two possibilities partition all possible tilings. So,

we conclude that this tiling interpretation satisfies the recurrence relation fn+1 =

fn + fn−1.

Second, we verify that the initial conditions are correct. For a 1× 1 board, there

is one way to tile it, with a square , which gives f1 = 1. For a 1× 2 board, there

are two ways to tile it, with two squares or with one domino , which

gives f2 = 2.

Consider the generalization where we introduce positive coefficients ci ≥ 1

hn+1 = c1hn + c2hn−1 + · · ·+ cLhn+1−L.

To represent a coefficient of c1 = 2, we would use 2 colors for the 1 × 1 squares

, . To represent a coefficient of c1 = 3, we would use 3 colors for the 1 × 1
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squares , , . In general, to represent a coefficient of c1 = i, we would use i

colors for the 1× 1 squares , , , . . . , .

Moving on to the second coefficient, To represent a coefficient of c2 = 2, we

would use 2 colors for the 1 × 2 dominoes , . To represent a coefficient

of c2 = 3, we would use 3 colors for the 1 × 2 dominoes , , . In

general, to represent a coefficient of c2 = i, we would use i colors for the 1 × 2

dominoes , , , . . . , .

Generalizing this to all coefficients, to represent any positive integer ci, we can

use ci colors for the 1 × i tiles. To represent a coefficient of zero, ci = 0, there are

zero tiles of size 1× i to use. This appears as Combinatorial Theorem 4 in [1].

Lastly, we can use a variety of initial conditions by implementing special rules for

the first tile, called phases, as in Combinatorial Theorem 8 in [1]. We will discuss

phases in more detail as needed.

3. The Decomposition Tiling Interpretation

In this section, we introduce decomposition tilings, which are a modification of the

existing tiling interpretations we saw in Section 2.2. By designing decomposition

tilings so that they correspond to how decomposition blocks work, they capture

the behavior of the generalized Zeckendorf’s theorem. We start with first order

recurrences in Section 3.1 to introduce decompositions and our decomposition tiling

interpretation. We show how to extend this tiling interpretation to the Fibonacci

numbers in Section 3.2. We then generalize our tilings to a simple generalization of

the Fibonacci numbers, which we call L-bonacci numbers, in Section 3.3. There, we

check that our work is correct, in the sense that the tiling interpretation corresponds

to the generalized Zeckendorf’s theorem, with Proposition 2. L-bonacci numbers are

only generated by coefficients of 1. So we extend our tiling interpretation to second

order and third order recurrences with arbitrary positive coefficients in Sections 3.4

and 3.5. Then, we generalize our results to all PLRS’s with positive coefficients

in Section 3.6. We also check that our work is correct again with Proposition 3.

Finally, we discuss two ways to modify the tiling interpretation to permit coefficients

of zero in Section 3.7.

3.1. First Order Recurrences

All first order PLRS’s can be written as hn+1 = c1hn, and have the initial con-

dition of h1 = 1. Since there is only one coefficient, we can forgo the subscript

and write c = c1. Ignoring the case of the trivial sequence generated by c = 1,

we note that c = 2 generates the sequence {1, 2, 4, 8, 16, 32, . . .}, that c = 3 gen-
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erates the sequence {1, 3, 9, 27, 81, 243, . . .}, that c = 4 generates the sequence

{1, 4, 16, 64, 256, 1024, . . .}, and in general, c generates the sequence {1, c, c2, c3, c4,
c5, . . .}.

Consider the following example, where we express 248 in other bases. In base-2

(binary), it is 111110002, which has decomposition 1 · 27 + 1 · 26 + 1 · 25 + 1 · 24 + 1 ·
23 +0 ·22 +0 ·21 +0 ·20. In base-3 (ternary), it is 1000123, which has decomposition

1 · 35 + 0 · 34 + 0 · 33 + 0 · 32 + 1 · 31 + 2 · 30. In base-4 (quaternary), it is 33204,

which has decomposition 3 · 43 + 3 · 42 + 2 · 41 + 0 · 40.

A basic property of a base-c representation of a number is that for each power of

c, it can be multiplied by a coefficient in {0, 1, . . . , c−1}. A coefficient cannot be c or

higher, because then a larger power of c would be used instead. A straightforward

way to represent numbers in base-c using tilings would be to use c squares, each

with a filter, which acts as a multiplier of {×0,×1, . . . ,×(c− 1)}.5 For the purpose

of enumerating the total number of possible tilings on a board of a given length,

these filters can correspond to a color, and are counted as described in Section 2.

Example 3 (Binary Tilings). To represent the binary decomposition of a number

with tilings, we will be tiling a board that is labelled with the sequence of powers

of 2.
20 21 22 23 24 25 26 27 . . .

We saw that 24810 = 111110002 = 1·27+1·26+1·25+1·24+1·23+0·22+0·21+0·20.

To capture this on our board, we use transparent tiles to represent a coefficient of

1 and opaque tiles to represent a coefficient of 0 as follows.

20 21 22 23 24 25 26 27 . . .

Then the way to “read” this tiling is to ignore anything on the board that is covered

by an opaque tile (since the opaque tile is blocking it from being read), and then add

all of the uncovered entries. As we know that binary representations of numbers are

unique, we just need to make sure that there is a unique tiling representation of any

number. Now with this tiling interpretation, any positions that are labelled with

2n with n > 7 must be covered by an opaque tile. As a result, all of the following

tilings can be considered equivalent.

5These filters are inspired by the double letter and triple letter score spaces on a Scrabble game
board (which are blue and green respectively).
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20 21 22 23 24 25 26 27

20 21 22 23 24 25 26 27 28

20 21 22 23 24 25 26 27 28 29

· · ·

20 21 22 23 24 25 26 27 . . .

As we want a unique tiling representation, we will use the last board, which is semi-

infinite (infinite in one direction), as only this will be long enough for all numbers.

However, in practice, we can omit discussion of the length of the board (and the

ellipsis), as long as all non-opaque tiles are shown, with the understanding that any

drawings are equivalent to a semi-infinite board.

Example 4 (Ternary Tilings). To represent the ternary decomposition of a number

with tilings, we will be tiling a board that is labelled with the sequence of powers

of 3.
30 31 32 33 34 35 . . .

We saw that 24810 = 1000123 = 1 · 35 + 0 · 34 + 0 · 33 + 0 · 32 + 1 · 31 + 2 · 30.

To capture this on our board, we use transparent tiles with a light blue ×2 filter

to represent a coefficient of 2, transparent tiles to represent a coefficient of 1 and

opaque tiles to represent a coefficient of 0 as follows.

30 31 32 33 34 35 . . .

Example 5 (Quaternary Tilings). To represent the ternary decomposition of a

number with tilings, we will be tiling a board that is labelled with the sequence of

powers of 4.

40 41 42 43 . . .

We saw that 24810 = 33204 = 3 ·43 + 3 ·42 + 2 ·41 + 0 ·40. To capture this on our

board, we use transparent tiles with a light green ×3 filter to represent a coefficient

of 3, we use transparent tiles with a light blue ×2 filter to represent a coefficient

of 2, transparent tiles to represent a coefficient of 1 and opaque tiles to represent a

coefficient of 0 as follows.
40 41 42 43 . . .

We can generalize the results from this section in the following result. While

simple, it lays an important foundation for generalizing to more complicated and

interesting sequences.
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Tiling Interpretation 1 (Decomposition Tilings for First Order Sequences). Con-

sider any PLRS generated by [c], i.e., defined by hn+1 = chn, with c > 1. Construct

a semi-infinite strip and label each space by the terms of the PLRS, beginning with

h1 = 1.6 Tile the strip with 1× 1 squares

, , , , , . . . ,︸ ︷︷ ︸
c

.

We show that our tiling interpretation corresponds to the unique decompositions

given by the generalized Zeckendorf’s theorem.

Proposition 1. The unique decomposition of any positive integer guaranteed by

the generalized Zeckendorf’s theorem (Theorem 2) into a sum of terms of a PLRS,

generated by one coefficient c > 1, has a one-to-one correspondence with a decom-

position tiling representation given by Tiling Interpretation 1.

Proof. A first order PLRS is hn+1 = chn. LetN be the number we wish to represent.

Begin with a semi-infinite board and label each position as follows:

c0 c1 c2 c3 c4 c5 . . . .

Recall that every positive integerN has a unique base-c representation for all natural

numbers c > 1. So we can write N = α0 + α1c + α2c
2 + α3c

3 + α4c
4 + α5c

5 + · · ·
with a unique sequence of {αi}i. Then, when αi = 0, use an opaque square

to cover that position. When αi = 1, use a transparent square to cover that

position. When αi = 2, 3, 4, . . . , c− 1, use a transparent square with a colored filter

, , , . . . , to cover that position, where each colored filter represents a

multiplier of ×2,×3,×4, . . . ,×(c−1). As this tiling is in one-to-one correspondence

with the unique base-c representation, it is unique.

3.2. Fibonacci Numbers

In this section we combine the existing tiling interpretation of the Fibonacci num-

bers, using squares and dominoes, with Zeckendorf’s theorem.

From Section 2.2, standard tilings that correspond to Fibonacci numbers use

squares and dominoes in one color. Now, we modify the tiles by applying the

concept of transparency. Let the squares be opaque , and let the dominoes

be opaque for their first half and transparent for their second half .7 This

6We will later use boards where there is a zeroth position on the board labeled with 0 before
the positions i > 0 are labelled with hi. The board used here without a 0 is equivalent to a board
with a 0, when we require that an opaque square is used to cover to 0.

7Note that the squares have purely cosmetic diagonal black lines while all non-square tiles do
not. This is to help distinguish between spaces on boards that are covered by opaque squares and
by opaque parts of dominoes or other tiles.
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0 =
∑

∅
0 1 2 3 5 8

1 = 1 0 1 2 3 5 8

2 = 2 0 1 2 3 5 8

3 = 3 0 1 2 3 5 8

4 = 3 + 1 0 1 2 3 5 8

5 = 5 0 1 2 3 5 8

6 = 5 + 1 0 1 2 3 5 8

7 = 5 + 2 0 1 2 3 5 8

8 = 8 0 1 2 3 5 8

9 = 8 + 1 0 1 2 3 5 8

10 = 8 + 2 0 1 2 3 5 8

11 = 8 + 3 0 1 2 3 5 8

12 = 8 + 3 + 1 0 1 2 3 5 8

Figure 2: Examples of decomposition tilings for the Fibonacci numbers, i.e., the
PLRS generated by [1, 1].

modification captures the behavior of the decomposition rule, which says that no

consecutive Fibonacci numbers may be used. Since the dominoes are half-opaque

and half-transparent, this prevents any consecutive Fibonacci numbers from ever

being used.

We label the board that we are tiling with a zero, followed by the Fibonacci

numbers as follows.
0 1 2 3 5 8

For first-order recurrences, we did not use a space with a zero. However, it is

necessary now in order to allow a domino’s transparent half to be placed over the

first sequence term 1, so that it can be used in a decomposition. For examples of

decomposition tilings, see Figure 2. Note that
∑

∅ denotes the empty sum, which

is equal to the additive identity, 0.

3.3. L-bonacci Numbers

One generalization of the Fibonacci numbers is the L-bonacci numbers, defined by

hn+1 = hn + hn−1 + · · · + hn−L+1. Note that these are those PLRS’s where all
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0 =
∑

∅
0 1 2 4 7 13

1 = 1 0 1 2 4 7 13

2 = 2 0 1 2 4 7 13

3 = 2 + 1 0 1 2 4 7 13

4 = 4 0 1 2 4 7 13

5 = 4 + 1 0 1 2 4 7 13

6 = 4 + 2 0 1 2 4 7 13

7 = 7 0 1 2 4 7 13

8 = 7 + 1 0 1 2 4 7 13

9 = 7 + 2 0 1 2 4 7 13

10 = 7 + 2 + 1 0 1 2 4 7 13

11 = 7 + 4 0 1 2 4 7 13

12 = 7 + 4 + 1 0 1 2 4 7 13

Figure 3: Examples of decomposition tilings for the tribonacci numbers, i.e., the
PLRS generated by [1, 1, 1].

coefficients are 1. Again, we use the initial conditions given by the definition of a

PLRS.

First, we consider the 3-bonacci, or tribonacci, numbers defined by tn+1 = tn +

tn−1+tn−2. Again we use squares and dominoes , but we add in trominoes

with the first third opaque . This allows two (but not three or more)

consecutive tribonacci numbers to be used.

Again we use labels on the board that we are tiling:

0 1 2 4 7 13

For examples of decomposition tilings, see Figure 3.

We can extended this method to all L-bonacci numbers defined by hn+1 = hn +

· · · + hn+1−L, using tiles of the form
· · ·

. We state this precisely

in the following result, which we also prove aligns with the existing definition of

decomposition blocks.

Tiling Interpretation 2 (Decomposition Tilings for L-bonacci Sequences). Con-
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sider any PLRS generated by [1, . . . , 1︸ ︷︷ ︸
L

]. Construct a semi-infinite strip, and label

the initial 1× 1 space with a 0. Then label each subsequent space by the terms of

the PLRS, beginning with h1 = 1. Tile the strip with 1× i tiles where the leftmost

1 × 1 part of each tile is opaque, and the remaining 1 × (i − 1) part of each tile is

transparent, for all i ∈ {1, . . . , L}, i.e.,

, , , . . . ,
· · ·︸ ︷︷ ︸
L

.

We show that our tiling interpretation corresponds to the unique decompositions

given by the generalized Zeckendorf’s theorem.

Proposition 2. The unique decomposition of any positive integer guaranteed by the

generalized Zeckendorf’s theorem (Theorem 2) into a sum of terms of a PLRS, gen-

erated by L coefficients of 1, has a one-to-one correspondence with a decomposition

tiling representation given by Tiling Interpretation 2.

Proof. We draw directly on the definition of a decomposition block, to show a cor-

respondence between decomposition blocks and the tiles that can be used. Decom-

position blocks were introduced in the context of legal decompositions in Definition

2. As a decomposition block’s coefficients act as multipliers for subsections of the

PLRS, they are equivalent to using the tilings that we have defined in Tiling In-

terpretation 2 as we show here. Note that in decompositions blocks, a blue color

means that it is being used, while white is not. The first step is to consider all

possible decomposition blocks. We create all possible decomposition blocks by tak-

ing an empty mold, where the height of each position corresponds to a coefficient

used to generate the PLRS. Since we are considering only L-bonacci numbers, all

coefficients are 1, and the decomposition blocks (before any modifications) are

· · ·︸ ︷︷ ︸
L

,
· · ·︸ ︷︷ ︸
L

,
· · ·︸ ︷︷ ︸
L

, . . . ,
· · ·︸ ︷︷ ︸

L

.

However, we can end a decomposition block early. Let ai be a decomposition block

coefficient and ci be a PLRS coefficient. We model the decomposition blocks after

the second condition of Definition 2, which says that there exists s ∈ {1, . . . , L}
such that a1 = c1, a2 = c2, . . . , as−1 = cs−1, as < cs, and as+1, . . . , as+` = 0

for some ` ≥ 0. Thus, if the first s− 1 coefficients are matched, the decomposition

block cannot have a width of just s − 1, it also must have a coefficient as = 0, to

satisfy as < cs.
8 In the case of the L-bonacci numbers, there is no possibility of

coefficients being greater than 1, so there will never be a partially full location. Thus

8However, if the final portion of a decomposition mold is partially full, there is no need to add
additional empty positions following it. This does not apply here since all coefficients are 1.
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all decomposition blocks will end in an empty space. The minimized decompositions

blocks then become

, , , . . . ,
· · ·︸ ︷︷ ︸

L

.

Finally, we reverse all of the decomposition blocks, because according to the defi-

nition, the PLRS {hn}∞n=1 and the decomposition blocks (with coefficients ai) incre-

ment in opposite directions (since a decomposition is written N =
∑m

i=1 aihm+1−i).

By reversing the decomposition blocks, we can orient them correctly on the PLRS

going from left to right. The reversal is as follows.

−→

−→

−→
. . .

· · ·︸ ︷︷ ︸
L

−→ · · ·︸ ︷︷ ︸
L

Now that we have the reversed decomposition blocks, we can see that they cor-

respond to the tilings for L-bonacci numbers, by mapping empty (white) squares

to opaque (gray) squares, and mapping filled (blue) squares to transparent squares.

−→

−→

−→
. . .

· · ·︸ ︷︷ ︸
L

−→ · · ·︸ ︷︷ ︸
L

Since we are using tilings to represent decomposition blocks over the same PLRS

(with the addition of an initial zero), they are interchangeable representations. As

the decomposition of a positive integer into decomposition blocks is given uniquely

by the generalized Zeckendorf’s theorem, the tiling interpretation also faithfully

represents the decomposition tiling representation.

In the generalization to the L-bonacci numbers, we took advantage of the simple

decomposition rule. Next, we extend decomposition tilings to include coefficients

ci > 1 for second order recurrences.
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3.4. Second Order Recurrences

We consider all second order recurrences; they are those generated by coefficients

[a, b] for all positive integers a, b. First, we show how to develop [1, b]. We al-

ready saw [1, 1] which are the Fibonacci numbers. For [1, 2], we get the sequence

{1, 2, 4, 8, 16, 32, . . .}.9 We cannot use exactly the same types of tiles as for the Fi-

bonacci numbers, because legal decompositions for this sequence permit an arbitrary

number of terms to be used in a row. In addition to the squares and domi-

noes that we used for the Fibonacci numbers, we add transparent dominoes

. It is important to understand why we add transparent dominoes and not

transparent squares. If we were to include transparent squares, then we would lose

uniqueness of the decompositions, as we would be able to create tilings with either

the half-opaque and half-transparent domino or an opaque square and a transpar-

ent square. On the other hand, if we were to instead add transparent trominoes

(or longer tiles), then there would be no way to have just two transparent spaces

in a row, with opaque spaces on either side. Using these tiles, examples of the

Zeckendorf decomposition tilings are shown in Figure 4.

Observe that there are no transparent dominoes that cover the 0 on the board.

Since placing a half opaque-half transparent domino or a transparent domino as the

first tile on the board would both contribute a value of 1, we have the rule that

any part of a tile that covers a 0 must be opaque. Since 0 only occurs as the first

label on the board, this rule only restricts what the initial tile can be. This is where

we use phased tiles, where initial conditions are affected by the possibilities for the

initial tile only. After the initial tile, the recurrence relation takes over.

The boundaries between tiles in the figures may appear ambiguous at first. How-

ever, the greedy algorithm allows us to determine which tiles are used, by proceeding

from the rightmost tile which is not an opaque square, and identifying the tile that

is the longest, and with the greatest multipliers that are valid, and proceeding

recursively.

Next, consider [1, 3], which generates the sequence {1, 2, 5, 11, 26, . . .}. Again,

we will use the three tiles from the previous case (when b = 2), , , and

. However, the decomposition rule also allows for a number to be used twice

sometimes, for example, the decomposition of 4 is 2 + 1 + 1. Specifically, from

the second condition of Definition 2, within a decomposition block, a coefficient in

a subsequent position beyond the first can only be used if all previous positions’

coefficients are maximal. So within one decomposition block (and one tile), we

9We saw this sequence before; it is also used in the binary decomposition of numbers in Section
3.1. Compare the Zeckendorf tilings of the two, and while they appear very similar at first, the
sequence generated by [2] uses only opaque and transparent squares, while the sequence generated
by [1, 2] uses opaque squares and two types of dominoes.
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0 =
∑

∅
0 1 2 4 8 16

1 = 1 0 1 2 4 8 16

2 = 2 0 1 2 4 8 16

3 = 2 + 1 0 1 2 4 8 16

4 = 4 0 1 2 4 8 16

5 = 4 + 1 0 1 2 4 8 16

6 = 4 + 2 0 1 2 4 8 16

7 = 4 + 2 + 1 0 1 2 4 8 16

8 = 8 0 1 2 4 8 16

9 = 8 + 1 0 1 2 4 8 16

10 = 8 + 2 0 1 2 4 8 16

11 = 8 + 2 + 1 0 1 2 4 8 16

12 = 8 + 4 0 1 2 4 8 16

Figure 4: Examples of decomposition tilings for the PLRS generated by [1, 2].

only want a light blue ×2 filter to be used when a coefficient of one (the maximal

first coefficient from [1, 3]) was already used on the first part of the tile. Since we

approach tilings from the largest values first and work recursively, that means that

the additional tile we want is a transparent domino, with the left half with a light

blue ×2 filter, . The Zeckendorf decomposition tilings are in Figure 5.

Next, consider [1, 4], which generates the sequence {1, 2, 6, 14, 38, . . .}. Again, we

will use the four tiles from the previous case, , , , and . How-

ever, the decomposition rule also allows for a number to be used thrice sometimes.

Analogously to the previous case we add a transparent domino, with the left half

with a light green ×3 filter, . The Zeckendorf decomposition tilings are in

Figure 6.

Generalizing these examples, the decomposition tiling interpretation for any

PLRS generated by [1, b] uses tiles

, , , , , , . . . ,︸ ︷︷ ︸
b

,

where there is one square, and there are b dominoes, which have filters (if b > 2),

beginning at ×2 up to ×(b− 1).
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0 =
∑

∅
0 1 2 5 11

1 = 1 0 1 2 5 11

2 = 2 0 1 2 5 11

3 = 2 + 1 0 1 2 5 11

4 = 2 + 1 + 1 0 1 2 5 11

5 = 5 0 1 2 5 11

6 = 5 + 1 0 1 2 5 11

7 = 5 + 2 0 1 2 5 11

8 = 5 + 2 + 1 0 1 2 5 11

9 = 5 + 2 + 2 0 1 2 5 11

10 = 5 + 2 + 2 + 1 0 1 2 5 11

11 = 11 0 1 2 5 11

12 = 11 + 1 0 1 2 5 11

Figure 5: Examples of decomposition tilings for the PLRS generated by [1, 3].

Next, we consider the case of PLRS’s generated by [2, b]. Naturally, we wish to

see if we can use the tiles that were used for [1, b], with any necessary modifications.

The key part of the definition of a legal decomposition that is relevant here is

that in order to have multiple nonzero coefficients in a row that are part of the

same decomposition block (and tile), all coefficients except for the last must be

maximized. Since we only are dealing with two coefficients here, then for any

domino that has no opaque regions, the rightmost part must have a light blue ×2

filter (from the 2 in [2, b]).

First consider [2, 1], which generates the sequence {1, 3, 7, 17, 41, . . .}. We use

the squares and dominoes, where we change the rightmost part to have a ×2

filter . Now, we need to add a transparent tile with no filter to allow for

decompositions that just use sequence terms once. We use the squares , since

they can appear adjacent to each other any number of times, by repeatedly starting

new decomposition blocks. Examples of Zeckendorf decomposition tilings using the

sequence generated by [2, 1] are in Figure 7.

Next, consider [2, 2]. We just need to add another domino that is transparent,

with a light blue ×2 filter on the right half. So, we use , , , .
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0 =
∑

∅
0 1 2 6 14

1 = 1 0 1 2 6 14

2 = 2 0 1 2 6 14

3 = 2 + 1 0 1 2 6 14

4 = 2 + 1 + 1 0 1 2 6 14

5 = 2 + 1 + 1 + 1 0 1 2 6 14

6 = 6 0 1 2 6 14

7 = 6 + 1 0 1 2 6 14

8 = 6 + 2 0 1 2 6 14

9 = 6 + 2 + 1 0 1 2 6 14

10 = 6 + 2 + 2 0 1 2 6 14

11 = 6 + 2 + 2 + 1 0 1 2 6 14

12 = 6 + 2 + 2 + 2 0 1 2 6 14

Figure 6: Examples of decomposition tilings for the PLRS generated by [1, 4].

Examples of Zeckendorf decomposition tilings using the sequence generated by [2, 2]

are in Figure 8.

Next, consider [2, 3]. We just need to add another domino that is transparent,

with a light blue ×2 filter on both the left and the right halves. So, we use ,

, , , . Examples of Zeckendorf decomposition tilings using

the sequence generated by [2, 3] are in Figure 9.

Next, consider [2, 4]. We just need to add another domino that is transparent,

with a light green ×3 filter on the left half and a light blue ×2 filter on the right half.

So, the tiles are , , , , , . Examples of Zeckendorf

decomposition tilings using the sequence generated by [2, 4] are in Figure 10.

Generalizing this pattern, the decomposition tiling interpretation for any PLRS

generated by [2, b] uses tiles

, , , , , , , . . . ,︸ ︷︷ ︸
b

,

where there are two squares, and there are b dominoes, which have filters (if b > 2),

beginning at ×2 up to ×(b− 1).
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0 =
∑

∅
0 1 3 7 17

1 = 1 0 1 3 7 17

2 = 1 + 1 0 1 3 7 17

3 = 3 0 1 3 7 17

4 = 3 + 1 0 1 3 7 17

5 = 3 + 1 + 1 0 1 3 7 17

6 = 3 + 3 0 1 3 7 17

7 = 7 0 1 3 7 17

8 = 7 + 1 0 1 3 7 17

9 = 7 + 1 + 1 0 1 3 7 17

10 = 7 + 3 0 1 3 7 17

11 = 7 + 3 + 1 0 1 3 7 17

12 = 7 + 3 + 1 + 1 0 1 3 7 17

Figure 7: Examples of decomposition tilings for the PLRS generated by [2, 1].

Next, we consider the case of PLRS’s generated by [3, b]. By the decomposition

rule, for a domino, the right half must have a light green ×3 filter. So we can reuse

the tiles from the [2, b] case, where we modify the right half of all dominoes to have

a light green ×3 filter. We also need to add in a square with a light blue ×2 filter,

since we can use that in an unrestricted manner now.

First, consider [3, 1]. We use tiles , , , . Examples of Zeckendorf

decomposition tilings using the sequence generated by [3, 1] are in Figure 11.

For [3, 2], we use tiles , , , , . For [3, 3], we use tiles ,

, , , , . For [3, 4], we use tiles , , , ,

, , .

Analogously to the [2, b] case, the decomposition tiling interpretation for any

PLRS generated by [3, b] uses tiles

, , , , , , , , . . . ,︸ ︷︷ ︸
b

,

where there are three squares and there are b dominoes, which (if b > 2) have filters

on their left half, from ×2 up to ×(b− 1).
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0 =
∑

∅
0 1 3 8 22

1 = 1 0 1 3 8 22

2 = 1 + 1 0 1 3 8 22

3 = 3 0 1 3 8 22

4 = 3 + 1 0 1 3 8 22

5 = 3 + 1 + 1 0 1 3 8 22

6 = 3 + 3 0 1 3 8 22

7 = 3 + 3 + 1 0 1 3 8 22

8 = 8 0 1 3 8 22

9 = 8 + 1 0 1 3 8 22

10 = 8 + 1 + 1 0 1 3 8 22

11 = 8 + 3 0 1 3 8 22

12 = 8 + 3 + 1 0 1 3 8 22

Figure 8: Examples of decomposition tilings for the PLRS generated by [2, 2].

When comparing cases [1, b], [2, b], and [3, b], we see that as the first coefficient

increases by one, we make two changes to the set of tiles we use. First, we add an

additional transparent square tile with a ×(a − 1) filter. Second, we increase the

multiplier of the filter on the right half of all dominoes by 1. So, in general, we use

the a+ b types of tiles

, , , , , . . . ,︸ ︷︷ ︸
a

, , , , , , . . . ,︸ ︷︷ ︸
b

,

where there are a square tiles available, with multipliers from 0 (opaque) up to

×(a − 1). Additionally, there are b domino tiles available, which all have a ×a
multiplier on the right half, and multipliers ranging from 0 (opaque) up to ×(b−1).

3.5. Third Order Recurrences with Positive Coefficients

We extend the second order decomposition tiling interpretation to higher order

recurrences. Recall that by the definition of a PLRS, the coefficients it is generated

by neither start nor end in a zero. So when dealing with first and second order

recurrences, there never can be a coefficient of zero. However, when the recurrence

is of third order or higher, zero may appear as any of the middle coefficients. Such
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0 =
∑

∅
0 1 3 9 27

1 = 1 0 1 3 9 27

2 = 1 + 1 0 1 3 9 27

3 = 3 0 1 3 9 27

4 = 3 + 1 0 1 3 9 27

5 = 3 + 1 + 1 0 1 3 9 27

6 = 3 + 3 0 1 3 9 27

7 = 3 + 3 + 1 0 1 3 9 27

8 = 3 + 3 + 1 + 1 0 1 3 9 27

9 = 9 0 1 3 9 27

10 = 9 + 1 0 1 3 9 27

11 = 9 + 1 + 1 0 1 3 9 27

12 = 9 + 3 0 1 3 9 27

Figure 9: Examples of decomposition tilings for the PLRS generated by [2, 3].

a zero complicates the tiling interpretation slightly, so we first address recurrences

with only positive coefficients.

In the case of a second order recurrence [a, b], we used a square tiles and b

dominoes. So, we expect the third order case of [a, b, c] to use a square tiles, b

dominoes, and c trominoes. Regarding what transparencies and filters to use, we

want to reuse the same a squares and b dominoes as in the case of [a, b]. Recall that

in the case of [a, b], the squares have multipliers from 0 to a− 1, and the dominoes

have a right-half multiplier of a and a left-half multiplier of 0 to b − 1. So for

trominoes, we would like them to have a right-third multiplier of a, a middle-third

multiplier of b, and a left-third multiplier of 0 to c−1. This is because the definition

of a legal decomposition block requires that for a subsequent coefficient to be used

within a decomposition block, all previous coefficients have to be maximized.

For example, consider the sequence generated by [3, 4, 1], which is {1, 4, 17, 68,

276, . . .}. From the first two coefficients, we use the tiles for [3, 4], , , ,

, , , . Then, according to the idea we just proposed, we

also add in one length 3 tile, specifically, the last two positions will be maximized

with the first two coefficients, and the first position will range from a multiplier of

0 up to one less than c. In this case, c−1 and 0 are the same, so our one additional
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0 =
∑

∅
0 1 3 10 32

1 = 1 0 1 3 10 32

2 = 1 + 1 0 1 3 10 32

3 = 3 0 1 3 10 32

4 = 3 + 1 0 1 3 10 32

5 = 3 + 1 + 1 0 1 3 10 32

6 = 3 + 3 0 1 3 10 32

7 = 3 + 3 + 1 0 1 3 10 32

8 = 3 + 3 + 1 + 1 0 1 3 10 32

9 = 3 + 3 + 1 + 1 + 1 0 1 3 10 32

10 = 10 0 1 3 10 32

11 = 10 + 1 0 1 3 10 32

12 = 10 + 1 + 1 0 1 3 10 32

Figure 10: Examples of decomposition tilings for the PLRS generated by [2, 4].

tile will be . As before, we use opaque tiles to represent a coefficient of 0,

transparent tiles to represent a coefficient of 1, transparent tiles with a light blue

×2 filter to represent a coefficient of 2, transparent tiles with a light green ×3 filter

to represent a coefficient of 3, and transparent tiles with an orange ×4 filter to

represent a coefficient of 4. See examples of these tilings in Figure 12.

3.6. The General Decomposition Tiling Interpretation for Positive
Coefficients

We can generalize the decomposition tiling representation that we have explored so

far to recurrences of any order.

Tiling Interpretation 3 (Decomposition Tilings for Positive Sequences). Con-

sider any PLRS generated by positive coefficients [a, b, c, . . . , z] = [c1, c2, c3, . . . , cL].

Construct a semi-infinite strip, and label the first 1× 1 space with a 0. Then label

each subsequent space by the terms of the PLRS, beginning with 1. To tile the

strip, we use the c1 + c2 + c3 + · · ·+ cL tiles shown in Figure 13. For readability, the

tiles with filters are labeled above by their multipliers. The only restriction on tile

placement is that a tile cannot be placed such that a transparent portion (including

with a filter) covers the initial 0.
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0 =
∑

∅
0 1 4 13

1 = 1 0 1 4 13

2 = 1 + 1 0 1 4 13

3 = 1 + 1 + 1 0 1 4 13

4 = 4 0 1 4 13

5 = 4 + 1 0 1 4 13

6 = 4 + 1 + 1 0 1 4 13

7 = 4 + 1 + 1 + 1 0 1 4 13

8 = 4 + 4 0 1 4 13

9 = 4 + 4 + 1 0 1 4 13

10 = 4 + 4 + 1 + 1 0 1 4 13

11 = 4 + 4 + 1 + 1 + 1 0 1 4 13

12 = 4 + 4 + 4 0 1 4 13

Figure 11: Examples of decomposition tilings for the PLRS generated by [3, 1].

Notice that there are the same number of tiles of a particular length ci, as the

ith coefficient used to generate the PLRS. Specifically, those ci tiles will all have

the same rightmost i−1 components, which are, from the right, c1, c2, . . . , ci−1, and

then the leftmost position ranges from a multiplier of 0 up to ci − 1.

Now we state the following proposition, which establishes the correctness of the

connection between this tiling interpretation and the generalized Zeckendorf’s the-

orem.

Proposition 3. The unique decomposition of any positive integer guaranteed by the

generalized Zeckendorf’s theorem (Theorem 2) into a sum of terms of a PLRS, gen-

erated by positive coefficients, has a one-to-one correspondence with a decomposition

tiling representation given by Tiling Interpretation 3.

Proof. This proof is a generalized version of the proof of Proposition 2. It draws

directly on the definition of a decomposition block, to show a correspondence be-

tween decomposition blocks and the tiles that can be used. Decomposition blocks

were introduced in the context of legal decompositions in Definition 2. As a de-

composition block’s coefficients act as multipliers for subsections of the PLRS, they

are equivalent to using the tilings that we have defined in Tiling Interpretation 3 as

we show here. Recall that in decompositions blocks, a blue color means that it is
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1 = 1 0 1 4 17 68

2 = 1 + 1 0 1 4 17 68

3 = 1 + 1 + 1 0 1 4 17 68

4 = 4 0 1 4 17 68

5 = 4 + 1 0 1 4 17 68

6 = 4 + 1 + 1 0 1 4 17 68

7 = 4 + 1 + 1 + 1 0 1 4 17 68

8 = 4 + 4 0 1 4 17 68

9 = 4 + 4 + 1 0 1 4 17 68

10 = 4 + 4 + 1 + 1 0 1 4 17 68

11 = 4 + 4 + 1 + 1 + 1 0 1 4 17 68

12 = 4 + 4 + 4 0 1 4 17 68

13 = 4 + 4 + 4 + 1 0 1 4 17 68

14 = 4 + 4 + 4 + 1 + 1 0 1 4 17 68

15 = 4 + 4 + 4 + 1 + 1 + 1 0 1 4 17 68

16 = 4 + 4 + 4 + 1 + 1 + 1 + 1 0 1 4 17 68

17 = 17 0 1 4 17 68

18 = 17 + 1 0 1 4 17 68

19 = 17 + 1 + 1 0 1 4 17 68

20 = 17 + 1 + 1 + 1 0 1 4 17 68

Figure 12: Examples of decomposition tilings for the PLRS generated by [3, 4, 1].
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, ,

2

, . . . ,

c1−1

︸ ︷︷ ︸
c1

,

c1

,

c1

,

2 c1

, . . . ,

c2−1 c1

︸ ︷︷ ︸
c2

,

b a

,

c2 c1

,

2 c2 c1

, . . . ,

c3−1 c2 c1

︸ ︷︷ ︸
c3

,

. . . ,

· · ·
c2 c1

,
· · ·

c2 c1

,

2

· · ·
c2 c1

, . . . ,

cL−1−1

· · ·
c2 c1

︸ ︷︷ ︸
cL−1

,

cL−1

· · ·
c2 c1

,

cL−1

· · ·
c2 c1

,

2 cL−1

· · ·
c2 c1

, . . . ,

cL−1 cL−1

· · ·
c2 c1

︸ ︷︷ ︸
cL

Figure 13: The tiles needed for creating decomposition tilings, for a general PLRS
[c1, c2, c3, . . . , cL], where ci ≥ 1 for all i ∈ {1, . . . , L}.

being used, while white is not. The first step is to consider all possible decomposi-

tion blocks. We create all possible decomposition blocks by taking an empty mold,

where the height of each position corresponds to a coefficient used to generate the

PLRS. The height of the ith column is ci. The decomposition blocks (before any

modifications) are in Figure 14.

However, we can end a decomposition block early. Let ai be a decomposition

block coefficient (that is how high the blue is in a column) and ci be a PLRS coeffi-

cient. We model the decomposition blocks after the second condition of Definition 2,

which says that there exists s ∈ {1, . . . , L} such that a1 = c1, a2 = c2, . . . , as−1 =

cs−1, as < cs, and as+1, . . . , as+` = 0 for some ` ≥ 0. Thus, if the first s − 1

coefficients are matched, the decomposition block cannot have a width of just s−1,

it also must have a coefficient as = 0, to satisfy as < cs. In this general case,

whenever there is a coefficient greater than 1, there is the possibility of a partially

full location. Thus all decomposition blocks will end in partially full column, or in

an empty space. The minimized decompositions blocks are shown in Figure 15.

Finally, we reverse all of the decomposition blocks, because according to the defi-
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c1
c2

· · ·
cL−1

cL

︸ ︷︷ ︸
L

,
· · ·︸ ︷︷ ︸
L

, . . . ,
· · ·︸ ︷︷ ︸
L

,

· · ·︸ ︷︷ ︸
L

,
· · ·︸ ︷︷ ︸
L

, . . . ,
· · ·︸ ︷︷ ︸
L

,

. . . ,

· · ·︸ ︷︷ ︸
L

,
· · ·︸ ︷︷ ︸
L

, . . . ,
· · ·︸ ︷︷ ︸
L

,

· · ·︸ ︷︷ ︸
L

,
· · ·︸ ︷︷ ︸
L

, . . . ,
· · ·︸ ︷︷ ︸
L

.

Figure 14: Arbitrary decomposition blocks before any modifications. Note that the
height of each column i is ci. The width of each block is L.
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c1

, , . . . , ,

c2

, , . . . , ,

. . . ,

· · ·
cL−1

︸ ︷︷ ︸
L−1

,
· · ·︸ ︷︷ ︸

L−1

, . . . ,
· · ·︸ ︷︷ ︸

L−1

,

· · ·

cL

︸ ︷︷ ︸
L

,
· · ·︸ ︷︷ ︸
L

, . . . ,
· · ·︸ ︷︷ ︸
L

.

Figure 15: Arbitrary decomposition blocks that have had unnecessary entirely white
columns removed. An entirely white column only remains if the column preceding
it is completely full (blue).
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nition, the PLRS {hn}∞n=1 and the decomposition blocks (with coefficients ai) incre-

ment in opposite directions (since a decomposition is written N =
∑m

i=1 aihm+1−i).

By reversing the decomposition blocks, we can orient them correctly on the PLRS

going from left to right. The reversed decomposition blocks are shown in Figure 16.

Now that we have the reversed decomposition blocks, we can see that they cor-

respond to the tilings for the PLRS generated by [c1, . . . , cL], by mapping white

columns to opaque (gray) squares, and mapping blue columns (including partially

blue columns) to transparent squares, where the height of each blue column cor-

responds to the multiplier of the filter. That is, if the blue column is 1 unit high,

it becomes a transparent square with no filter, if it is 2 units high, it becomes a

transparent square with a light blue ×2 filter, if it is 3 units high, it becomes a

transparent square with a light green ×3 filter, etc. The aforementioned decompo-

sition blocks then correspond to the tiles in Figure 17. These tiles are the same as

the tiles in Figure 13, which are used in Tiling Interpretation 3.

Since we are using tilings to represent decomposition blocks over the same PLRS

(with the addition of an initial zero), they are interchangeable representations. As

the decomposition of a positive integer into decomposition blocks is given uniquely

by the generalized Zeckendorf’s theorem, the tiling interpretation also faithfully

represents the decomposition tiling representation.

3.7. Zero as a Coefficient

Now, let us consider a simple example with a zero, the PLRS generated by [1, 0, 1],

which has terms {1, 2, 3, 4, 6, 9, 13, 19, 28, 41, . . .}. We want to keep our existing

method of tiling as similar as possible. If we naively applied Tiling Interpretation

3, we would use , , since the coefficient b = 0, we would get no tiles of

size 1×2, and the board we would be tiling is 0 1 2 3 4 6 9 · · · . However,

there would be no tiling to represent the number 1, for example, because the only

tile that is non-opaque at any point is the tromino, which is of length 3, so the

lowest space it can cover is the space labeled with a 2. We now show two equivalent

workarounds: adding additional initial zeros to the beginning of the board, or using

phased tilings.

3.7.1. Additional Initial Zeros

With this tiling interpretation, we increase the number of initial zeros on the board

from 1 to 1+m, where m is the maximum number of consecutive zeros in the coeffi-

cients used to generate the PLRS. Recall that we have always had a restriction that

no tile can be placed with a transparent portion (equivalently a nonzero multiplier)

over the initial 0. Here, we extend that restriction to be that no tile can be placed

with a transparent portion (equivalently a nonzero multiplier) over any 0 on the
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Figure 16: Arbitrary decomposition blocks that have had unnecessary entirely white
columns removed, and have been reversed.
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Figure 17: Tiles that correspond to arbitrary decomposition blocks. The numbers
above the tiles are the filter multipliers.

board. This is necessary to retain uniqueness of the tilings.

Again, consider the PLRS generated by [1, 0, 1], which is {1, 2, 3, 4, 6, 9, 13, 19, . . .}.
The maximum number of consecutive zeros is 1, so we begin the boards with two

zeros instead of the usual one. Based on the coefficients, we use the tiles: and

. See Figure 18 for examples.

For a second example, consider the PLRS generated by [1, 0, 1, 0, 0, 2], which is {1,
2, 3, 5, 8, 12, 19, . . .}. The maximum number of consecutive zeros is 2, so we begin the

boards with three zeros. Based on the coefficients, we use the tiles: , ,

, and . See Figure 19 for examples.

3.7.2. Phased Tilings

One benefit of additional zeros is that all tiles can fit entirely on the board. However,

if there is a large number of consecutive zeros, this can occupy a lot of space at the

beginning of each tiling without providing much information on any decompositions,

since there must always be an opaque tile covering a 0. So, the phased tilings method

allows us to keep the tilings more compact, by not using any additional zeros. In

this case, a phased tiling is exactly the same as its equivalent additional initial zeros

tiling, with all but the final zero removed. This means that an initial tile may be
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1 = 1 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

2 = 2 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

3 = 3 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

4 = 4 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

5 = 4 + 1 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

6 = 6 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

7 = 6 + 1 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

8 = 6 + 2 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

9 = 9 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

10 = 9 + 1 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

11 = 9 + 2 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

12 = 9 + 3 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

13 = 13 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

14 = 13 + 1 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

15 = 13 + 2 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

16 = 13 + 3 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

17 = 13 + 4 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

18 = 13 + 4 + 1 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

19 = 19 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

20 = 19 + 1 0 0 1 2 3 4 6 9 13 19 ←→ 0 1 2 3 4 6 9 13 19

Figure 18: Examples of decomposition tilings for the PLRS generated by [1, 0, 1],
using the “additional zeros” interpretation on the left and the “phased tiling” in-
terpretation on the right.
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1 = 1 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

2 = 2 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

3 = 3 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

4 = 3 + 1 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

5 = 5 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

6 = 5 + 1 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

7 = 5 + 2 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

8 = 8 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

9 = 8 + 1 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

10 = 8 + 2 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

11 = 8 + 3 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

12 = 12 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

13 = 12 + 1 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

14 = 12 + 2 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

15 = 12 + 3 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

16 = 12 + 3 + 1 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

17 = 12 + 5 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

18 = 12 + 5 + 1 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

19 = 19 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

20 = 19 + 1 0 0 0 1 2 3 5 8 12 19 ←→ 0 1 2 3 5 8 12 19

Figure 19: Examples of decomposition tilings for the PLRS generated by
[1, 0, 1, 0, 0, 2], using the “additional zeros” interpretation on the left and the
“phased tiling” interpretation on the right.
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cut off in part at the beginning. The word “phased” just refers to the fact that there

are different rules for the first tile (in this case, that it can be a shortened version of

another tile). From [1], phases affect the initial conditions of a recurrence relation,

but do not cause any further affects once the recurrence relation takes over. Now,

we will see the same examples as before, and note how just all but one of the initial

zeros are removed from the beginning of the board.

Again, consider the PLRS generated by [1, 0, 1]. Based on the coefficients, we

use the tiles: and in any position. As the tile could be

placed such that the transparent portion is over the 1 on the board (but it would

not fit), we cut off the leftmost part, and create a phased tile that can only

be used in the first position. See Figure 18 for examples.

Again, consider the PLRS generated by [1, 0, 1, 0, 0, 2]. Based on the coefficients,

we use the tiles: , , , and in

any position. We can also use the following phased tiles in the first position only,

that we calculate by just removing one unit from the leftmost portion at a time,

as long as there remains a transparent portion that will cover a nonzero integer

(and no transparent portion will cover a zero either): , , and

.10 See Figure 19 for examples.

3.8. What Goes Wrong with the Lucas Numbers

As discussed in Section 2.1, in order for our tiling interpretation to be unique, we

accept the restrictive initial conditions given by the definition of a PLRS. For each

recurrence relation, there is only one set of initial conditions we use. If we consider

the PLRS generated by [1, 1], we saw in Section 3.2 that the initial conditions must

be those for the combinatorial Fibonacci numbers. However, these initial conditions

are not the only interesting ones. Consider the Lucas numbers with shifted indices,

denoted by `n = `n−1 + `n−2 with initial conditions `1 = 2 and `2 = 1. This

gives the sequence {2, 1, 3, 4, 7, 11, 18, . . .}. As the Lucas numbers have the same

recurrence relation as the Fibonacci numbers, they satisfy the recurrence relation

but not the initial conditions in the definition of a PLRS.

We can tile a board that is labelled with 0 and then the sequence of Lucas num-

bers 0 `1 `2 `3 `4 · · · with the tiles and , like with the Fibonacci

numbers, to represent decompositions of positive integers, due to the following the-

orem of Zeckendorf.

10Note that a phased tile for the first position may arise during the cropping process from
multiple of the original tiles.
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0 =
∑

∅
0 `1 `2 `3 `4 `5 `6

1 = `2
0 `1 `2 `3 `4 `5 `6

2 = `1
0 `1 `2 `3 `4 `5 `6

3 = `3
0 `1 `2 `3 `4 `5 `6

4 = `4
0 `1 `2 `3 `4 `5 `6

5 = `4 + `2
0 `1 `2 `3 `4 `5 `6

= `3 + `1
0 `1 `2 `3 `4 `5 `6

6 = `4 + `1
0 `1 `2 `3 `4 `5 `6

7 = `5
0 `1 `2 `3 `4 `5 `6

8 = `5 + `2
0 `1 `2 `3 `4 `5 `6

9 = `5 + `1
0 `1 `2 `3 `4 `5 `6

10 = `5 + `3
0 `1 `2 `3 `4 `5 `6

11 = `6
0 `1 `2 `3 `4 `5 `6

12 = `6 + `2
0 `1 `2 `3 `4 `5 `6

= `5 + `3 + `1
0 `1 `2 `3 `4 `5 `6

Figure 20: Examples of non-unique decomposition tilings for the Lucas numbers.

Theorem 3 ([10]). Every natural number can be represented by a sum of distinct,

nonconsecutive Lucas numbers. The representation is unique, except for the num-

bers `2v + 1 for v = 2, 3, . . ..

Now, let us look at examples for the integers 0 through 12, shown in Figure 20.

The first two numbers that have non-unique decompositions are 5 and 12 (which

occur when v = 2, 3 in Theorem 3), which are written in red.

The Lucas numbers have a well-known combinatorial interpretation, as the num-

ber of ways to tile a circular n-board with dominoes, which can be in-phase or

out-of-phase at a certain location, and squares (see Chapter 2 of [1]). It was not

clear to us how to modify this tiling interpretation to allow for decomposition tilings

of Lucas numbers. Perhaps instances of non-uniqueness relate to out-of-phase domi-

noes, since that behavior has no analogue in tilings of n-boards. So we leave the

reader with the following question.

Question 1. Can decomposition tilings of PLRS’s be modified to allow for other

initial conditions, such as those for the Lucas numbers?
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