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A proof of the optimal leapfrogging conjecture
Sam K. Miller and Arthur T. Benjamin

(Communicated by Glenn Hurlbert)

Consider a collection of checkers that move on the integer lattice by shifting or
jumping. It has been shown that a configuration of pieces can translate itself at a
speed of at most 1, and this can only be achieved with a collection of 1, 2 or 4
checkers. We prove the conjecture that with any other number of checkers, the
fastest obtainable speed is 2

3 .

1. Introduction

Suppose we have some checkers placed in the lower left corner of a Go board, and
we wish to move them to the upper right corner in as few moves as possible. There
are no opponent pieces present, and the pieces move as they would in the game of
Chinese Checkers, where for one move, a piece may either shift one unit in any
direction, or repeatedly leapfrog over other pieces.

Let us consider the Go board as a subset of the nonnegative integer lattice Z2.
As an example, suppose we have four pieces placed at the coordinates (0, 0), (1, 0),
(0, 1), and (1, 1), and wish to move them to the squares (9, 9), (10, 9), (9, 10), and
(10, 10). For the pieces to complete the task in as few moves as possible, the pieces
must first be moved into a configuration such that they may jump over each other
in an optimal way.

We may intuitively attempt lining the checkers up diagonally in what we will call
a snake configuration, that is, moving the pieces to coordinates (0, 0), (1, 1), (2, 2),
and (3, 3). By repeating the three-move process of shifting the backmost piece to
the right [(0, 0) → (1, 0)], leapfrogging that piece to the front [(1, 0) → (3, 4)],
then shifting it right again [(3, 4) → (4, 4)], we can reach our destination in
4 + 4 + (3 × 7) = 29 moves. We say that the snake configuration has a speed of 2

3
since in 3 moves, it makes a forward progress of 2. (Every piece is shifted in the
direction (1, 1).)

However a faster method exists. We first move the pieces into what we call a
serpent configuration, with the pieces on coordinates (0, 0), (1, 0), (1, 1), and (2, 1).
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102 SAM K. MILLER AND ARTHUR T. BENJAMIN

Figure 1. An example of the serpent’s two-move trajectory, consisting
of two jumps. The placements in the leftmost and rightmost diagrams are
translates, and represented by the same configuration, the serpent. These
two placements have displacement 2, and require two moves to reach one
from the other. Hence, the serpent is a speed of light configuration, i.e., it
has speed 1.

Then we repeat the two-move process of leapfrogging the backmost piece to the
front [(0, 0) → (2, 2)] then leapfrogging the new backmost piece to the front again
[(1, 0) → (3, 2)], we may reach our destination in 1+1+ (2×8) = 18 moves. This
is indeed the fastest way of moving the checkers from the bottom left to the upper
right. See Figure 1. Note that the serpent configuration has a speed of 1, since it
requires only two moves to give it a forward progress of 2.

It was proved in [Benjamin 1990] that in a wide class of optimization problems
on lattice structures (such as Zn), the optimal way to move objects from one location
to another far away location, is to spend most of the time repeatedly translating
very efficient configurations. It was shown by Auslander, Benjamin, and Wilkerson
[Auslander et al. 1993] that the maximum speed of any configuration is 1, there
are essentially only three configurations that achieve this speed, and they have at
most four pieces. It was conjectured that with five or more pieces, the maximum
attainable speed is 2

3 . In this paper, we prove that conjecture.

2. Abstracting the game

Suppose we have p indistinguishable pieces and wish to move them in the positive
direction over the integer lattice Zn . If a piece is located at coordinate l ∈ Zn , and
some other coordinate l + ei is not occupied by a piece (for unit vector ei ), then
the piece may shift there. Alternatively if l + ei is occupied but l + 2ei is not, the
piece may hop over the occupant of l + ei to land at l + 2ei , where it may remain
or continue hopping over other adjacent pieces. One legal move consists of either a
shift or a jump, a sequence of one or more hops by a single piece.

Define a placement of size p as a finite subset of Zn , denoted by X ={x⃗1, . . . , x⃗ p}.
Define the centroid of placement X to be

c(X) =
1
p

p∑
u=1

x⃗u .

PROOFS - PAGE NUMBERS ARE TEMPORARY

1
11/2

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
201/2

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39
391/2

40



A PROOF OF THE OPTIMAL LEAPFROGGING CONJECTURE 103

For placements X, Y , define their displacement as

d(X, Y ) =

n∑
i=1

|ci (X) − ci (Y )|.

For m ≥ 1, an m-move trajectory X0, X1, . . . , Xm is a sequence of placements
where Xu+1 is reachable from Xu in a single legal move. The speed of an m-move
trajectory from X0 to Xm is

s =
d(X0, Xm)

m
.

We say that placements X, Y are translates if there exists a⃗ ∈ Zn such that
X +a⃗ =Y . We say that translates X and Y are represented by the same configuration
of pieces, and define the speed of a configuration C to be the maximum speed
attained by any trajectory between two translates represented by C .

Auslander, Benjamin, and Wilkerson proved in 1993 the following: the maximum
speed of any configuration C is 1, and that only three configurations (called speed
of light configurations) attain this speed in Zn for n ≥ 1 [Auslander et al. 1993].
These configurations are:

• The atom {x} (if p = 1).

• The frog {x , x + ei }, 1 ≤ i ≤ n (if p = 2).

• The serpent {x , x + ei , x + ei + e j , x + 2ei + e j } 1 ≤ i ̸= j ≤ n (if p = 4 and
n > 1).

It was conjectured that the maximum attainable speed for any configuration on
p ̸= 1, 2, 4 is 2

3 , which we may observe is attained by the snake configuration with
any number of pieces [Auslander et al. 1993]. We will show that in Z2, aside from
these speed of light configurations, the maximum achievable speed is 2

3 .

3. Definitions and properties

Let m ∈ Z and placement X ∈ Zn . Then border lm is defined by

lm = {x ∈ X : ∥x∥ = m}.

For a placement X , we may define the tail (respectively, head) of X , by t (X) =

minu |lu|≥0 (respectively, h(X)=maxu |lu|≥0). Define the width of a placement X
as w(X) = h(X) − t (X) + 1. Define the back border (respectively, front border)
of X as T (X) := lt (X) (respectively, H(X) := lh(X)). For example, if in the first
diagram in Figure 1, the lower left piece is at (0, 0), then its configuration has a tail
of 0 and a head of 3.

We now define an underlying configuration which reoccurs in optimal play. A
ladder of length k > 0 is subset of a placement X : L = {p0, p1, . . . , pk} ⊆ X such
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104 SAM K. MILLER AND ARTHUR T. BENJAMIN

p0 p1

p2

p3

p4

p5

Figure 2. An example of a placement X which contains a ladder. The
ladder is {p0, p1, p2, p3, p4}, with p0 is the base of the ladder, and pieces
p1, p2, p3, p4 are the rungs. Here {p0} = T (X) and {p4} = H(X), so the
ladder is a true ladder of X . X has width 8.

that p0 is able to hop over p1, . . . , pk successively. If {p0} = T (X) and pk ∈ H(X),
then we say L is a true ladder of X . We call the move consisting of p0 jumping
over the rest of the ladder pieces a climb, call p0 the base of the ladder, and the
other pieces the rungs.

Proposition 3.1. If a configuration X contains a true ladder L , X has even width.

Proof. Observe that when a piece p hops over another piece p′, then p either
increases or decreases its border by 2. Therefore since l0 jumps from Bt (X) to
Bh(X)+1, this implies h(X) + 1 − t (X) is even. □

Proposition 3.2. A placement X with more than one piece can perform a move that
simultaneously increases t (X) and h(X) if and only if it has a true ladder.

Proof. (⇐) Performing a ladder climb increases both t (X) and h(X), as l0 moves
from T (X), leaving that border empty, and jumps in front of lk ∈ H(X), thus
advancing the front border.

(⇒) If a move on X exists that advances the front and back borders forward, since
only one piece can change positions, the back border must only have one piece,
and it must be the piece which moves. Call this piece p. Since X has more than
one piece, w(X) > 1, so p must jump from T (X) to in front of H(X). Denote
the sequence of pieces hopped over by p by p1, p2, . . . , pk . Since pk ∈ H(X),
{p0, p1, . . . , pk} is a true ladder. □

We may classify possible moves into seven categories.

• Ascent: A move that increases h(X) and t (X). This is necessarily a ladder climb.

• Front push: A move that increases h(X) but not t (X).

• Back push: A move that increases t (X) but not h(X).

• Dead move: A move that changes neither the tail nor head of X .

• Front retreat: A move that decreases the head of X .
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A PROOF OF THE OPTIMAL LEAPFROGGING CONJECTURE 105

• Back retreat: A move that decreases the tail of X .

• Reverse ascent: A move that decreases both the head and the tail of X .

For example, in the placement in Figure 2, p0 climbing the ladder would be an
ascent. p4 shifting to the right would be a front push. p0 jumping over p1 and p2

only would be a back push. p5 shifting in any direction would be a dead move.
An ascent is necessarily a ladder climb for nontrivial placements. For a legal

m-move trajectory M = {X0, X1, . . . , Xm}, where X0 is a translate of X M , define
the moveset of M as a collection of moves m(M) = {x0 → x ′

0, . . . , xm−1 → x ′

m−1},
where xi is the location of the piece that moves in X i , and x ′

i is the location of the
moved piece in X i+1.

Proposition 3.3. In any moveset, the total number of front pushes, back pushes,
front retreats and back retreats which occur between two ascents must be even.

Proof. Since ascents can only occur when a configuration has even width, the
configurations immediately before and after any ascents must have even width.
Therefore, the number of moves between two ascents which change the width parity
must be even. The four listed move types are the only move types which change
the parity of the width of a configuration, so the result follows. □

For a move trajectory M , let A(M) represent the number of ascents in m(M),
FP(M) represent the number of front pushes, BP(M) the number of back pushes,
DM(M) the number of dead moves, FR(M) the number of front retreats, BR(M)

the number of back retreats, and RA(M) the number of reverse ascents.
Now, define the weight ω(M) of a trajectory M or its corresponding moveset

m(M) as follows:

ω(M) := A(M) −
( 1

2

)
· (FP(M) + BP(M)) − 2 · DM(M)

−
( 7

2

)
· (FR(M) + BR(M)) − 5 · RA(M).

This definition rewards (with higher weight) trajectories that make many efficient
moves (e.g., ascents) and penalizes trajectories that use moves that make little
forward progress or worse. For example, consider the trajectory where we begin
with a snake with five pieces, located at points {(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)},
and in three moves (consisting of one back push, one ascent, and one front push),
translate it to the points {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}. Such a trajectory, with
speed 2

3 , would have weight 1 −
( 1

2

)
(1 + 1) = 0. Additionally, call the coefficient

corresponding to each move type the move weight. If a sequence of moves are
performed, then the weight of the sequence is the sum of all the move weights. If we
partition a trajectory M = M1⊕M2⊕· · ·⊕Mk , then ω(M)=ω(M1)+· · ·+ω(Mk).

Lemma 3.4. A m-move trajectory M of a configuration C has speed greater than 2
3

if and only if ω(M) > 0.
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106 SAM K. MILLER AND ARTHUR T. BENJAMIN

Proof. Since the move types are mutually exclusive, A(M) + FP(M) + BP(M) +

DM(M) + FR(M) + BR(M) + RA(M) = m. Additionally, the displacement of M
can be characterized by

A(M) − RA(M) +
( 1

2

)
× (FP(M) − FR(M) + BP(M) − BR(M)).

Therefore the speed of M is

A(M) − RA(M) + FP(M)/2 − FR(M)/2 + BP(M)/2 − BR(M)/2
A(M) + FP(M) + BP(M) + DM(M) + FR(M) + BR(M) + RA(M)

.

It is straightforward to check

2
3

<
A(M)−RA(M)+FP(M)/2−FR(M)/2+BP(M)/2−BR(M)/2
A(M)+FP(M)+BP(M)+DM(M)+FR(M)+BR(M)+RA(M)

⇐⇒ 0 < ω(M). □

We next introduce an important theorem which, as a corollary, demonstrates that
most movesets do not have speed greater than 2

3 .

Theorem 3.5. For any trajectory M with no two ascents occurring in a row and
not both beginning and ending with an ascent, ω(M) ≤ 0.

Proof. After an ascent, if a front push, back push, front retreat, or back retreat
occurs, this changes the width of the placement, and since prior to the first move
the placement had even parity, for another ascent to occur, another one of the listed
moves must occur.

Without loss of generality let us assume M begins with an ascent, therefore
it cannot end with one. Let us partition the moveset m(M) into separate blocks
B1, . . . , Bk where each block begins with an ascent and contains no other ascents.
Since no two ascents can occur in a row, each block must consist of at least two
moves. Additionally since each new block must begin with an ascent, a block must
end with a placement with even width.

Bi contains one ascent and at least one other move a. If a is any type of move
besides a front or back push, ω(Bi ) is negative. Otherwise, if a is a front push or
back push the resulting placement has odd width and another front push, back push,
front retreat, or back retreat must occur. This implies ω(Bi ) ≤ 0, with equality
holding only when Bi is of the form {A, FP / BP, FP / BP}. Since Bi ≤ 0 for all
1 ≤ i ≤ k, ω(M) ≤ 0, as desired. □

Since we know that the maximum speed of a configuration is 1, and we are
looking at nonmaximal configurations, every moveset has at least one nonascent
move. Therefore, we will assume for the remainder of this paper that the last move
in any moveset is not an ascent.
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A PROOF OF THE OPTIMAL LEAPFROGGING CONJECTURE 107

Figure 3. In the case of p = 4, we cannot place p3 without a contradiction.

4. p = 1, 2, 4

For a configuration which is not speed of light, observe that it may reach speed
arbitrarily close to speed 1 by first shifting into a speed-of-light configuration,
repeating its set of moves sufficiently long, then moving back to the original
configuration. We will consider only trajectories which do not use this strategy. Rig-
orously, if a trajectory between translates does not perform any moves corresponding
to any “speed-of-light” configuration’s optimal moveset, call the corresponding
configuration nonspeed-of-light.

Theorem 4.1. A nonspeed-of-light configuration C with 1, 2, or 4 pieces cannot
have speed greater than 2

3 .

Proof. When p = 1, this is immediately true, since there is only one configuration,
and it can translate itself with speed 1 or −1.

For p = 2, any trajectory containing a jump (which must be an ascent) must
contain the frog’s optimal trajectory (a jump), therefore any nonspeed-of-light
configuration is limited to only shifts. Therefore, the optimal trajectory of C cannot
contain any ascents, thus C cannot have speed greater than 2

3 .
For p = 4, if C has optimal trajectory without two ascents in a row, C has speed at

most 2
3 . Suppose then that C has two ascents in a row, without loss of generality let

us assume its trajectory begins with two ascents. C must have even width, and every
border must contain a piece due to the parity of the ends of each successive ladder.
Since C can perform two ascents in a row, it has width 4. C = {p1, p2, p3, p4}

with pi on li . Say p1 has jump p1 :
p2

−→ a1
p4

−→ a2 for open locations a1, a2.
d(p1, p2) = 1, d(a1, p2) = 1, and d(a1, p4) = 1. Similarly, write the next move by
p2 as p2 :

p3
−→ b1

p1=a2
−−−→ b2. d(p2, p3) = 1 d(p3, b1) = 1, and d(a2, b1) = 1.

Suppose p1, p2, and p4 are collinear (p1 on x , p2 on x + ui , p4 on x + 3ui ),
a2 = x + 4ui and a1 = x + 2ui . However for p2 to jump over p3 and p1, p3 must
occupy a1, contradicting the assumption that a1 is open. Say p1 starts on x , p2 on
x +ui , then a1 is x +2ui , p4 starts on x +2ui +u j , and a2 is x +2ui +2u j . There
are only two locations both adjacent to p2 and 2 away from a2, a1 and x + ui + u j .
However if p3 is on x +ui +u j and we perform the two ascents, we have performed
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108 SAM K. MILLER AND ARTHUR T. BENJAMIN

the serpent configuration’s trajectory, a contradiction. These cases are visualized
in Figure 3. Thus it is impossible for a nonspeed-of-light configuration C to have
two ascents in a row, so C must have speed at most 2

3 . □

5. p = 3

Theorem 5.1. No configuration of three pieces C exists with speed greater than 2
3 .

Proof. To show this, we will demonstrate that no placement X exists for p = 3 such
that two successive ascents are possible. If X has two or three pieces occupying
the same border, then the back or front border has two pieces, rendering successive
ascents impossible. Otherwise assume X has pieces occupying all different borders.
The only possible way for X to be able to perform a ladder climb is if it has width 4,
since a piece jumping over two other pieces can travel distance at most 4. Let us
consider the four borders passing through X , without loss of generality say l1 − l4.
l1 and l4 must contain one piece each, p1 and p3 respectively, implying the last
piece, p2 can either lay on l2 or l3. If p2 lies on l3, p1 cannot jump. Otherwise, p2

lays on l2. If p1 can perform an ascent, the pieces now lay on l2, l4, and l5, which
implies p2 cannot jump, as in Figure 4.

Therefore no placement X with p = 3 pieces exists such that two consecutive
ascents can be performed, as desired. No such configuration of Zn exists with speed
greater than 2

3 . □

6. p > 4 for Z2

We provide a proof that no configuration of greater than four pieces has a speed
greater than 2

3 in the 2-dimensional case. We are confident that the approach taken
here will produce the same sort of result in Zn , but we shall not pursue that here.
Recall that if a moveset has no consecutive ascents, by Theorem 3.5, the moveset
has speed at most 2

3 , so our focus will be on movesets that have consecutive ascents.

Lemma 6.1. For p > 4, there does not exist a configuration with a moveset con-
taining four or more consecutive ascents.

→

Figure 4. After a jump, p is isolated and cannot jump.
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A PROOF OF THE OPTIMAL LEAPFROGGING CONJECTURE 109

p1 p2

p3 p4

×

× ×

×

. . .

× ×

×

×

×

×

×

Figure 5. The back borders of C before any moves on the left, and after
the first three ascents on the right. An × indicates a location a piece
cannot be located in that board state.

Proof. Suppose for contradiction that there exists a configuration C with moveset
containing more than three consecutive ascents. Then there can only be one piece
on each of the four backmost borders. Additionally, the width of C prior to moving
must be at least 6. It follows that without loss of generality, we can assume the
first four pieces which ascend are located at (0, 0), (1, 0), (1, 1), and (2, 1), as in
Figure 5.

However, after the first three ascents, the piece at (2, 1) p4 is not adjacent to any
pieces and therefore cannot ascend, a contradiction. □

Define a piece’s measure by taking its location modulo 2, (x, y)2. For example,
p4 in the above diagram has measure (0, 1). Note that when a piece jumps, its
measure stays constant. This restricts the number of locations in Z2 a piece can
jump to, given its starting position.

We assume without loss of generality that a moveset M begins with the maximum
number of ascents. Note that this implies M ends in a nonascent. Define an isolating
partition of M as follows. First, partition m(M) sequentially into blocks A1, . . . , Ak

such that each block begins with two or more consecutive ascents, but does not have
consecutive ascents anywhere else and does not end with an ascent. So each new
block begins at every occurrence of a sequence of two or more consecutive ascents,
and ends with a nonascent. This partition of M is unique. For example, if a con-
figuration had moveset of type {A, A, A, FP, DM, BP, A, A, DM, DM, A, FP, BP},
then the moveset would be partitioned into blocks A1 = {A, A, A, FP, DM, BP},
A2 = {A, A, DM, DM, A, FP, BP}.

Let L(Ai ) be the number of ascents Ai begins with. In our example, L(A1) = 3
and L(A2) = 2. By Lemma 6.1, L(Ai ) ≤ 3. Since Ai ends with a nonascent,
ω(Ai ) < L(Ai ). We wish to show ω(Ai ) ≤ 0 for all i , since ω(M) = ω

(∑
Ai

)
=∑

ω(Ai ). Hence if ω(Ai ) ≤ 0 for all i , then ω(M) ≤ 0. So it suffices to only
consider blocks rather than entire movesets. Since Ai can only begin with two or
three ladder climbs, we only have these two cases to consider.
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110 SAM K. MILLER AND ARTHUR T. BENJAMIN

Call a block Ai for which ω(Ai ) ≤ 0 suboptimal. Recall that:

Lemma 6.2. If a consecutive sequence of moves S ⊂ Ai satisfies ω(S)+ L(Ai ) ≤ 0,
then necessarily, ω(Ai ) ≤ 0, and thus Ai is suboptimal.

Proof. We may assume without loss of generality that S does not begin with
an ascent, since if it does, then removing the initial ascents produces another
consecutive sequence of moves satisfying the same condition. We may also assume
that the move following S is an ascent or the end of the block, since otherwise, we
may extend S until the move following it is an ascent.

Now, partition Ai into smaller blocks in the following way: let the first block
contain all consecutive initial ascents. Then, until the beginning of S is reached,
partition the moves so each block begins with a nonascent and continues until
an ascent is reached, and let the block end with an ascent. Each of these blocks
will contain exactly one ascent and contain at least one nonascent, since Ai only
contains one sequence of consecutive ascents. By assumption, the last move before
S begins is an ascent, so this partitioning continues until S is reached. Let S be
the next block. Then, partition the remaining moves of Ai in the same way as in
the proof of Theorem 3.5, that is, by letting each block begin with an ascent and
continuing until another ascent is reached. These blocks will also contain only one
ascent.

By the same arguments used in the proof of Theorem 3.5, all blocks B which are
not the first block and S satisfy ω(B) ≤ 0. Since the only blocks remaining are S
and the first one, which has weight L(Ai ), by summing the weights of each block,
we conclude that ω(Ai ) ≤ 0. □

Call S a suboptimal sequence of moves, and call any consecutive sequence of
moves S that is not suboptimal optimal. For example, if two ascents were followed
by four front pushes, the four front pushes would be a suboptimal sequence of
moves, and the block Ai would therefore be suboptimal. Our strategy is to show
that any block Ai must contain a suboptimal sequence of moves.

Lemma 6.3. If a block Ai begins with exactly three ascents, ω(Ai ) ≤ 0.

Proof. Observe that if Ai begins with exactly three consecutive ascents, the initial
placement is forced to have a serpent configuration at the back, and after the three
ascents, the resulting configuration is forced to have a serpent configuration in the
front, as demonstrated in Figure 6.

By considering move weights, it suffices to demonstrate that a consecutive
sequence of moves in Ai occurs with weight −3, that is, a suboptimal sequence of
moves must occur. Since each nonascent has weight at most −

1
2 if six nonascents oc-

cur between two ascents, then the condition is satisfied. Note that if five nonascents
occur between two ascents, a sixth must occur by Proposition 3.1. Alternatively,
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p1 p2

p3 p4

p

p1 p2

p3

×

. . .

×

×

×

×

×

Figure 6. The borders before and after the first three ascents. The red
borders denote forced placements. An × indicates a location a piece
cannot be located in that board state.

if two dead moves occur or one dead move and one front/back push occurs, the
condition is also satisfied for the same reasoning. Finally, any front retreat, back
retreat, or reverse ascent is immediately suboptimal.

Call the border containing the backmost piece prior to moving l1. We first
consider two cases, if l4 has exactly one piece or if l4 has two or more pieces.

If l4 has two or more pieces, first suppose the next ascent occurs from l4. This
implies that one of the pieces on l4 must front push or dead move from l4 first.
Observe that a ladder climb to the front from l4 cannot be performed unless p or p2

moves, since the pieces from l4 can only hop over p1 and p3 by parity. If a piece
from l4 dead moves, then since an ascent can still not occur, another move must be
made before an ascent is possible, so since a dead move and one more nonascent
has been performed, there is a suboptimal sequence of moves.

Therefore, a possibly optimal sequence of moves must have a piece from l4 make
a front push before the other performs the ascent. A front push consists of a ladder
climb from l4 to beyond the front border, but one of p or p2 must move before that
is possible. If p or p2 performs a dead move, then after the ladder climb from l4, a
suboptimal sequence of moves will be forced to occur before the next ascent.

If p or p2 ladder climbs to perform a front push, a ladder climb from l4 still
cannot be performed, so necessarily, a front push must occur by the piece that
previously moved. After this, it may be possible for a piece, call it p′ from l4 to
front push. The only optimal move afterwards is another front push, and since the
remaining piece on l4 can only hop over p1 and p3 in the front borders, for an
ascent to be possible, p′ must front push. If an ascent is not possible, then since
four front pushes have occurred and another nonascent must occur, a suboptimal
sequence of moves must happen. Otherwise, suppose an ascent from l4 happens.
The sequence of moves performed is A, A, A, FP, FP, FP, FP, A, and the sequence
of moves after the consecutive ascents has weight −1. Now, if a new sequence of
moves of weight −2 occurs, the total sequence will be suboptimal.
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p1 p2

p3 p4

p5

×

× ×

×

. . .

× ×

×

×

×

×

×

Figure 7. The left diagram is the initial configuration, and the right dia-
gram is the configuration after the three consecutive ascents.

From the initial configuration, Figure 6, it is necessary that the pieces on l4 were
either farther than distance 2 away, or were distance 2 away, but must have hopped
over separate pieces. Thus, there are two pieces on l5. If the next ascent occurs
from l5, the border beyond p3 is empty and requires a piece there to build a ladder.
This border cannot be filled by a back push since l5 has two pieces, and thus, a
dead move must occur before the ascent, forcing a suboptimal sequence of moves.
Otherwise, if the next ascent occurs from beyond l5, since a ladder climb from l5

to the front is impossible, a dead move must occur when bringing the pieces on
l5 forward, again, forcing suboptimality. We conclude that if l4 began with two or
more pieces, and the first ascent after the three initial ones occurred from l4, there
is a suboptimal sequence of moves.

Otherwise, suppose l4 contains at least two pieces, and the first ascent after the
initial three happens beyond l4. In this case l4 must be cleared, but neither piece
can front push (a ladder climb to in front of p3). If one piece dead moves forward
and the other front pushes, then a suboptimal sequence of moves occurs. Otherwise,
if no dead move occurs, then necessarily, one of p or p2 front pushes twice to
open the ladder, then a piece front pushes from l4, and another back pushes to
clear l4. However by a previous argument, there must be at least two pieces on l5,
so another move must occur before an ascent can. Since five moves have occurred,
suboptimality is forced. Thus, if l4 began with at least two pieces, a suboptimal
sequence of moves must occur.

Now, suppose l4 has one piece, and let p be the original front border piece. The
back of the initial configuration must necessarily must be in the situation in Figure 7.

If the next ascent occurs on l4, then again, p is forced to dead move, and since p4

is isolated, another piece must move to be adjacent to it. If these are separate moves,
then two dead moves have been performed, a sequence of moves with weight −4.
Otherwise, suppose these are the same move, so p4 ascends right after. Then there
is a new serpent configuration at the front, and two pieces on l5, namely p5 and the
piece p4 hopped over to ascend (which is necessarily p as in Figure 6), as pictured
in Figure 8.
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p?

p?

p5

p4

p1 p2

p3

. . .

×

×

××

Figure 8. The configuration after p4 ascends, in the case where l4 has
one piece and the next ascent follows from l4. There are necessarily two
pieces on l5 and a serpent configuration in the front preventing an ascent
from occurring.

Since the previous two moves have weight −1, it is enough to show the next
sequence of moves must have weight −2. Thus it suffices to assume no dead move
can occur. Note that the parity is correct for an ascent to occur, as the pieces on l5

can hop over p2 and p4, but given the front of the configuration, no ascent can occur.
At least two front pushes (or a dead move) must occur in the front borders before
one of the pieces on l5 can climb to the front. However, this is three front pushes,
implying a fourth front or back push must occur before an ascent can occur, so there
must be a sequence of moves with weight −2 if the next ascent is to occur from l5.

Otherwise, if the next ascent happens beyond l5, it is straightforward to see that
a sequence of moves must first occur with weight −3, and we conclude that in any
case, ω(Ai ) ≤ 0. □

Lemma 6.4. If a block Ai begins with exactly two ascents, ω(Ai ) ≤ 0.

Proof. By considering move weights, it suffices to demonstrate that a sequence
of moves in Ai after the two ascents occurs with weight −2, that is, a suboptimal
sequence of moves must occur. In particular, it suffices to show either a dead
move occurs or four front or back pushes occur between ascents. However, by
Proposition 3.1, it suffices to show only three front or back pushes occur rather than
four. First observe that the starting and ending configurations after the two ascents
must be as follows at the front and back borders respectively, pictured in Figure 9.

Call the border containing the piece p1 which is farthest back l1. We begin by
considering two cases, if l3 has exactly 1 piece, p3, or if it has multiple pieces
p3 and p′

3. Then, we consider subcases and determine that any trajectory must
eventually become suboptimal.

First, suppose l3 has at least two pieces initially, p3 and p′

3. Let us consider
the next two moves following the ascents. If either is a dead move or worse, the
trajectory is suboptimal, so suppose the next two moves are front or back pushes.
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p1 p2

p

p1 p2

. . .

×

××

×

Figure 9. The borders before/after the ones indicated by red in the above
diagrams are forced placements. A × indicates a location a piece cannot
be.

p′

4

p4

p

p1 p2

p3 p′

3

. . .

Figure 10. Right: the only possibly optimal trajectory if two pieces
started on l3, five moves in. Left: a corresponding possible placement on
l4 five moves in.

Since l3 has at least two pieces, the first move must be a front push. If the front
push is not performed by p3 or p′

3, then the next move must also be a front push,
but since the width of the configuration is odd after the first front push, p3 or p′

3
could not have performed the front push. Since l3 contains two pieces still, the next
move is not an ascent, so the sequence of moves is suboptimal.

Otherwise, suppose the first front push was a ladder climb from l3 to the front.
Without loss of generality suppose p3 makes the climb. If the second move is a
back push from l3, since there is a serpent configuration consisting of p, p1, p2, p3,
a ladder climb is not possible afterwards, and thus the trajectory is suboptimal.

Instead, suppose the second move is a front push. Since there is a serpent in
the front, the only move which allows for a ladder climb (necessarily by p′

3) is p3

shifting forward. Then, a ladder climb by p′

3 must finish by hopping to where p3 was
prior to shifting, then hopping over p3. This implies p3 and p′

3 originally had the
same measure, so they were distance at least 4 away. Therefore, there must be at least
two pieces on l4 which p3 and p′

3 hopped over, p4 and p′

4, as pictured in Figure 10.
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p1 p2

p3 p4

p5 p

p1 p2

. . .

×

××

×

Figure 11. On the left, part of the necessary configuration if l4 contains
one piece, prior to the first two ascents. On the right, the front borders
after the first two ascents.

By a parity argument, p4 and p′

4 cannot hop over p, p2, or p3, as they are on an
even-numbered border. If the next ladder climb occurs from beyond l4, then p4, p′

4,
and p′

3 all must move first, which is necessarily a sequence of moves with weight
at maximum −2. Otherwise, if the next ladder climb occurs on l4, the pieces in
front of p which can be used in the ladder are p1 and p′

3. However, a piece needs
to move to the border between the ones containing p2 and p3, and by parity, this
piece cannot come from l4. Hence, this must be a dead move, and we conclude that
if l3 began with 2 or more pieces, then ω(Ai ) ≤ 0.

Otherwise, suppose l3 began with exactly one piece on it. We consider subcases
based on where the next ascent in the trajectory occurs from and the number of
pieces on the following borders. First, suppose the next ascent comes from l4 or
beyond. If l4 contains more than one piece, then in order for the trajectory to be
optimal, the next two moves must be a back push from l3, then a front push from l4.
However, this is impossible, since a back push from l4 must be a ladder climb,
but by a parity argument of where the frontmost border is, a ladder climb from l4

cannot advance the front border.
Otherwise, suppose the next ascent comes from l4 or beyond and that l4 contains

exactly one piece. The necessary starting configuration is pictured in Figure 11.
Then for an optimal trajectory, the next two moves following the two ascents

must be a back push from l3 and a front push elsewhere (by assumption an ascent
is not allowed). Assume the same piece does not perform the two moves, since
otherwise, an ascent would be a faster trajectory, which would reduce to the previous
lemma. Note that the front push cannot occur from l4 by parity. Moreover, the back
push from l3 must hop over the sole piece on l4, because otherwise, after the two
moves there would be two pieces on l4.

Finally, note that the front push must necessarily come from p2 if an ascent is
possible afterwards, since it is clear that a front push from p1 prevent ascents, and
front pushes from any other piece result in a serpent configuration at the front which
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p?

p5 p

p1 p2? p4?

. . .

Figure 12. The configuration after p4 ascends. The question marks
denote where piece locations are not forced.

p

p′

p2p1

p

p1

p2

Figure 13. Note that the location of p′ on the left or p1 on the right are
not uniquely determined.

prevents an ascent. Hence, after the front and back push, if an ascent is possible,
there must be two pieces on l5: the piece which p2 hopped over in its ascent, and
the piece l4 is to hop over first in its ascent (this may be p3). After p4 ascends, we
now are in the configuration pictured in Figure 12.

Now, for the trajectory to stay optimal, the next ascent must occur from l5, since
otherwise it would take two moves to clear l5 and at least one to alter the front
borders so that an ascent is possible. Pieces from l5 may only hop over p and p4 in
the front borders, so they must be in the next ladder. This implies that in the next
two moves before the ascent, a piece must move to the border between p1 and p2.
However, this must be a dead move or worse, since l5 contains at least two pieces
and thus cannot initiate a back push. Thus, all movesets for which the next ascent
comes from l4 or beyond are suboptimal.

Finally, we consider the case where the next ascent comes from l3, and l3 contains
only one piece. Since an ascent cannot immediately occur, the next two moves
if they are to be optimal must be front pushes. It is quick to see that the only
possibilities are either p1 pushing twice or another unlabeled piece coming from
an odd-numbered border pushing twice, as pictured in Figure 13.
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p1 p2

p3 p4

p5 p

p5

p2p1

p3

. . .

×

×

×

×

×

Figure 14. On the left, the necessary setup if l4 and l5 only have one
piece, and on the right, in the lone scenario where l5 front pushed before
p3 ascended.

If p3 cannot ascend, the sequence of moves must be suboptimal, so assume p3

can ascend, the third ascent so far in the moveset. We now consider cases based
on which border the fourth ascent occurs from. If the fourth ascent occurs from
l4 or any even numbered border, these pieces cannot hop over p, p2, or p′(p1) in
the left-hand (resp. right-hand) cases.

In the left-hand case from Figure 13, before the next ascent, a piece must move
to the border between p2 and p′, p2 must move for p1 to be free to be hopped
over, and p′ must move so the frontmost piece can be hopped over. These must
necessarily be performed as front or back pushes for optimality, however if these
are performed as front or back pushes, this is at least three separate moves, making
the sequence suboptimal.

In the right-hand case from Figure 13, pieces must move to the border between
p and p2 and the border between p2 and p1, and p1 must move so the frontmost
piece can be hopped over. Again, these must be performed as front or back pushes
for optimality, but as front or back pushes, this is at least three separate moves,
making the sequence suboptimal.

Finally, suppose the fourth ascent occurs from l5 or beyond. There is necessarily
at least one piece on l4 which must front push, and p3 must move to open the ladder
it climbed. If there are two pieces on l4, then there are three moves that must occur
which is suboptimal, so suppose there is only one piece on l4, p4, which both p3

and p1 hopped over. By similar arguments to earlier, p4 cannot hop forward, it
must shift to l5. Now, if there are two or more pieces on l5, then suboptimality is
forced, as one must move before the ascent, which totals three moves before the
ascent. However, it is possible that l5 contains only one piece, p4, as p5 as shown
in Figure 14 could have been the piece to front push prior to the ascent of p3.

In this case, then p4 can ascend and optimality is still preserved. However, there
must be two different pieces on l6, the piece p5 hops over when it front pushes,
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118 SAM K. MILLER AND ARTHUR T. BENJAMIN

and the piece p3 hops over after hopping over p4 when it ascends. By a similar
argument as earlier, the next ascent occurring from l6 forces suboptimality, and it
is straightforward to see that at least three unique moves must occur for the next
ascent to occur from l7 or beyond. Thus, if after the initial two ascents, the next
ascent occurs from l3, and l3 only contained one piece, suboptimality is forced. We
have exhausted all cases, and conclude that ω(Ai ) ≤ 0. □

Theorem 6.5. If C is a configuration with five or more pieces, then C has speed
less than or equal to 2

3 .

Proof. Consider any m-move trajectory M of C . If M has no consecutive ascents,
then Theorem 3.5 implies M has speed at most 2

3 . Otherwise, perform an isolating
partition of M =

∑n
i=1 Ai . By the two previous lemmas, ω(M) = ω

(∑
Ai

)
=∑

ω(Ai ) ≤ 0, as desired. □
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