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Congruence computations in principal
arithmetical varieties
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Abstract. This paper is a continuation of the earlier paper by the same
authors in which a primary result was that every arithmetical affine com-
plete variety of finite type is a principal arithmetical variety with respect
to an appropriately chosen Pixley term. The paper begins by presenting
an extension of this result to all finitely generated congruences and, as an
example, constructs a closed form solution formula for any finitely pre-
sented system of pairwise compatible congruences (the Chinese remainder
theorem). It is also shown that in all such varieties the meet of principal
congruences is also principal, and finally, if a minimal generating algebra
of the variety is regular, it is shown that the variety is also regular and
the join of principal congruences is again principal.
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1. Introduction

The present paper is a continuation of the paper [12] in which a primary result
was:

Theorem 1.1. If V is an arithmetical affine complete variety of finite type,
a Pixley term p(x, y, z) may be selected so that V is a principal arithmetical
variety with respect to p(x, y, z), i.e.: for all algebras A in V,

(z, w) ∈ CgA(x, y) ⇐⇒ p(x, y, z) = p(x, y, w).
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Theorem 1.1 applied to the free algebra of the variety in a countable
number of generators establishes a significant connection between arithmeti-
cal affine complete varieties of finite type and algebraic logic as developed
primarily by W. J. Blok and D. L. Pigozzi. (See [4] for a systematic treat-
ment of recent work in this field.) In particular Theorem 1.1 is an algebraic
version of the deduction theorem for the equational logic associated with such
a variety. Algebraically, it relates congruence generation to the truth of an
equation in the variety. In terms of the corresponding equational logic with
the majority term m(x, y, z) = p(x, p(x, y, z), z), it asserts that an equation
s ≈ t is derivable from an equation u ≈ v and the defining equations of the
variety iff the equation p(u, v, s) ≈ p(u, v, t) is derivable from the equations
of the variety. In this light, Theorem 3.1 may be construed to assert that an
equation is derivable from each of two equations s ≈ t and u ≈ v individually
iff it is derivable from m(s, t, u) ≈ m(s, t, v). Likewise, if the variety is regular,
Theorem 3.2 describes derivability of an equation from two equations jointly.

In Section 2 we shall show how in a principal arithmetical variety the
description of principal congruences can be extended to arbitrary finitely gen-
erated, i.e.: compact, congruences. We will use this to obtain a closed form
solution for any finitely presented system of congruences which are pairwise
compatible, i.e.: an implementation of the Chinese remainder theorem.

In Section 3 we shall show that every arithmetical affine complete variety
of finite type also has the property that the meet of principal congruences is
principal. Under the additional assumption of regularity, a similar result is
obtained for joins of principal congruences. The proofs of these results will
follow the same method which was used in [12] to prove Theorem 1.1.

In the remainder of this Introduction the necessary background, in partic-
ular terminology, is provided. The reader can find most of the same information
in [11].

For a set A, we denote by Eq(A) the lattice of all equivalence relations
on A. All sublattices L ≤ Eq(A) are equivalences lattices on A and those
which contain 0 and 1 (the smallest and the largest equivalence relations on
A) are called (0, 1)-equivalence lattices on A. An equivalence lattice on A is
called complete if it is a complete sublattice of Eq(A). Thus, every complete
equivalence lattice on A is a (0, 1)-equivalence lattice on A and in the case of
finite A, complete equivalence lattices are precisely (0, 1)-equivalence lattices.
If L is a complete equivalence lattice on A and a, b ∈ A, the principal equiv-
alence generated by (a, b), denoted EgL(a, b), is the meet (intersection) of all
equivalences θ ∈ L which contain the pair (a, b). We omit the superscript L
when the context is clear. An equivalence lattice on A is called arithmetical if
it is distributive and permutable, i.e.: the join operation is relation product.

Recall that a Pixley function on a set A is a ternary function f on A such
that

f(x, y, y) = f(x, y, x) = f(y, y, x) = x, (P)

for all x, y ∈ A. It is well known that an equivalence lattice L on A is arithmeti-
cal whenever there exists an L-compatible Pixley function on A. Moreover, in
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case of finite A the converse is true: for every arithmetical equivalence lattice
on A there exists an L-compatible Pixley function on A ([11]).

Now let L be a complete equivalence lattice on A and f be an L-compatible
Pixley function on A. It is easy to see that, given any a, b, c, d ∈ A, we have

f(a, b, c) = f(a, b, d) =⇒ (c, d) ∈ Eg(a, b).

We shall call the function f a principal Pixley function for L if the converse
is also true, i.e:

f(a, b, c) = f(a, b, d) ⇐⇒ (c, d) ∈ Eg(a, b).

Thus, if f is a principal Pixley function for a complete equivalence lattice L
on A, the principal equivalence relation Eg(a, b) consists of all pairs (c, d) such
that f(a,b)(c) = f(a,b)(d) where f(a,b)(x) is the derived unary function f(a, b, x).
In other words, Eg(a, b) is the kernel of the function f(a,b). It is easy to see
that (f(a,b)(x), x) ∈ Eg(a, b) for all a, b, x ∈ A, thus, the function f(a,b) selects
an element in every class of Eg(a, b). We will call any such function a selector
for Eg(a, b). More generally, if θ ∈ L, an L-compatible function f : A → A is a
selector for θ if for all x, y ∈ A,

(x, y) ∈ θ =⇒ f(x) = f(y) and (f(x), x) ∈ θ.

(Selectors appeared under the name “choice function” in [9] and [11].)
For an algebra A a ternary term p(x, y, z) in the language of A is a Pixley

term for A if it induces a Pixley function on A, the universe of A. A term
that is a Pixley term for all algebras of the variety V is called a Pixley term
for V. An algebra A is called:

• arithmetical if its congruence lattice Con(A) is an arithmetical equiva-
lence lattice on A;

• affine complete if its polynomial functions are precisely its congruence
compatible functions.

A variety is called arithmetical (affine complete) if all of its members are
arithmetical (affine complete). It is well known that a variety admits a Pixley
term iff it is arithmetical. It is also known [10] that an arithmetical variety
of finite type is affine complete iff it is generated by a finite minimal algebra.
Here an algebra is called minimal if it has no proper subalgebras.

Definition 1.2. An algebra A is called a principal arithmetical algebra if it
admits a principal Pixley term, i.e.: a term p that induces on A a principal
Pixley function for Con(A). A variety V is called a principal arithmetical
variety if there is a common principal Pixley term for all algebras A ∈ V.

The most common examples of principal arithmetical varieties are dis-
criminator varieties. Recall that every set A admits a “standard” Pixley func-
tion d(x, y, z) called the discriminator, which is defined by: d(x, y, z) = z if
x = y and d(x, y, z) = x otherwise. A discriminator term for an algebra A
is a ternary term t in language of A such that tA is the discriminator on A.
An algebra A admitting a discriminator term is called a discriminator alge-
bra. It is easy to see that all discriminator algebras are simple. If there is a
common discriminator term for all subdirectly irreducibles of a variety, this
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variety is called a dicriminator variety. It was proved by McKenzie [13] that
a discriminator term for a variety V is also a principal Pixley term for V.

The most important example of a discriminator variety is the variety of
Boolean algebras B in which a discriminator term is (x∧y′)∨ (x∧z)∨ (y′ ∧z).
Since B is generated by the 2-element Boolean algebra which is minimal, the
variety B is affine complete. Note that the latter was originally established
by Grätzer [6]. Thus, discriminator varieties and arithmetical affine complete
varieties of finite type are two different generalizations of the variety of Boolean
algebras and principal arithmetical varieties generalize both of them.

2. Finitely generated congruences

2.1. Finite joins of principal congruences

Let V be a principal arithmetical variety with principal Pixley term p(x, y, z),
A ∈ V and a, b ∈ A. Then the unary polynomial function f(a,b)(x) = p(a, b, x)
is a selector function for CgA(a, b), the principal congruence of A generated
by (a, b). Clearly, CgA(a, b) = EgL(a, b) where L = Con(A). We often drop
the superscript A when the context is clear.

Lemma 2.1. If ρ, σ are congruences of an algebra A and f and g are selectors
for ρ and σ, respectively, then the composition fg is a selector for ρ ∨ σ.

Proof. We must show that for a, b ∈ A, (a, b) ∈ ρ ∨ σ ⇒ fg(a) = fg(b) and
(fg(a), a) ∈ ρ ∨ σ.

For the first condition, first note that if a ρ b, then g(a) ρ g(b) since g is
congruence compatible, so fg(a) = fg(b) since f is a selector for ρ; hence fg is
constant on ρ-classes. Likewise if a σ b, then g(a) = g(b) since g is a selector for
σ, so fg(a) = fg(b) and fg is also constant on σ-classes. Thus if a/ρ and b/σ
overlap, fg(a) = fg(b). Since ρ ∨ σ is the union of all finite products of ρ and
σ, it follows that if (a, b) ∈ ρ ∨ σ, then there is a finite sequence of alternating
ρ- and σ-classes in which adjacent classes overlap and a is in the first class and
b is in the last. Therefore fg(a) = fg(b).

For the second condition, given any a ∈ A, we have (fg(a), g(a)) ∈ ρ and
(g(a), a) ∈ σ, hence (fg(a), a) ∈ ρ ∨ σ. �

Finally, a simple induction proves the following result.

Theorem 2.2. If A is an algebra in a principal arithmetical variety with prin-
cipal Pixley term p and if θ ∈ Con(A) is finitely generated, i.e.: is the join of
finitely many principal congruences, say

θ = CgA(a1, b1) ∨ CgA(a2, b2) ∨ · · · ∨ CgA(am, bm),

then the nested polynomial

f(x) = p(a1, b1, p(a2, b2, . . . , p(am, bm, x) . . . )) (2.1)

is a selector for θ.
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Remarks. 1. It is important to note that selector polynomial for a given con-
gruence is not usually unique. For example, though Cg(a, b) = Cg(b, a), it is
not generally true that f(a,b) = f(b,a) since f(a,b)(a) = p(a, b, a) = a while
f(b,a)(a) = p(b, a, a) = b. More generally, the composition polynomial (2.1) of
Theorem 2.2 is constant on each θ congruence class, but the particular constant
depends upon the order of composition.

2. It is well-known that an algebra satisfies the ascending chain condi-
tion (ACC) for congruences iff each congruence is finitely generated. Thus
an algebra in a principal arithmetical variety satisfies the ACC iff all of its
congruences admit polynomial selectors.

3. It is obvious from the definition that every principal arithmetical va-
riety V satisfies the congruence extension property for principal congruences,
that is, if B ∈ V, A ≤ B and a, b ∈ A then

CgA(a, b) = CgB(a, b) ∩ (A × A).

By a result of Day [5], this implies that V satisfies the general congruence
extension property. Since Day’s proof is complicated, we present a simpler
proof directly from Theorem 2.2 which applies to the special case of a principal
arithmetical variety.

Let A and B be as above and ρ ∈ Con(A). We want to show that
ρ = σ ∩ (A × A) where σ =

∨{CgB(a, b) | (a, b) ∈ ρ }. Obviously, ρ ≤ σ. In
order to prove the converse, take (c, d) ∈ σ ∩ (A × A). Since the congruence
CgB(c, d) is compact, there are finitely many pairs (a1, b1), . . . , (am, bm) ∈ ρ
so that

CgB(c, d) ≤ CgB(a1, b1) ∨ · · · ∨ CgB(am, bm) = φ.

By Theorem 2.2 the nested polynomial f given by formula (2.1) is a selector for
φ, hence f(c) = f(d). But by the same theorem, the same polynomial function
f restricted to A is also a selector for

θ = CgA(a1, b1) ∨ · · · ∨ CgA(am, bm).

Therefore, (c, d) ∈ θ ≤ ρ.

2.2. The Chinese remainder theorem

The classical Chinese remainder theorem asserts that the system of simulta-
neous integer congruences

x ≡ a1 (m1)

. . . . . . . . . . . . (A)

x ≡ an (mn)

is solvable iff ai ≡ aj ((mi,mj)) for all 1 ≤ i < j ≤ n. (Here the (mi) are prin-
cipal ideals (congruences) and (mi,mj) denotes the greatest common divisor
of mi and mj .) If x0 is any solution of (A) the general solution consists of all
integers x congruent to x0 modulo [m1, . . . ,mn], the least common multiple of
m1, . . . ,mn.
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Using virtually the same proof as for the ring of integers, an algebra A
is seen to be arithmetical iff the Chinese remainder theorem holds for A, i.e.:
for every a1, . . . , an ∈ A and θ1, . . . , θn ∈ Con(A), the system of congruences

x ≡ a1 (θ1)
. . . . . . . . . . . .

x ≡ an (θn)
(B)

is solvable iff ai ≡ aj (θi ∨ θj) for all 1 ≤ i < j ≤ n, i.e.: are pairwise
compatible.

It follows that a variety is arithmetical iff the Chinese remainder theorem
holds for all of its members.

Now let us address the solvability of a system (B) in case V is a principal
arithmetical variety with a principal Pixley term which for our purposes we
imagine to be computable. We suppose the system is finitely presented, mean-
ing that for some fixed integer m each θi is the join of at most m principal
congruences:

θi = Cg(ai1, bi1) ∨ · · · ∨ Cg(aim, bim). (2.2)

In this case we can construct selector polynomials gi(z) for each θi as prescribed
by Theorem 2.2. Hence the system (B) is pairwise solvable iff

for all 1 ≤ i < j ≤ n, gi(gj(ai)) = gi(gj(aj)) (C)

which can be effectively tested, assuming the computability of p(x, y, z). If the
conditions (C) all test positive, then actual pairwise solutions sij are computed
by

p(gi(ai), gi(gj(aj)), gj(aj)) = p(gi(ai), gi(gj(ai)), gj(aj)). (S)

This is because the two sides of (S) are equal by (C) and its left (right) side is
congruent to ai modulo θi (aj modulo θj).

The computation of a solution of the system (B) from the pairwise
solution which we shall describe is due to A.P. Huhn. The result was con-
tained in his preprint “Weakly distributive lattices” which became available
in 1972. It was published only in 1983 [8]. Specifically, as is well known,
m(x, y, z) = p(x, p(x, y, z), z) is a majority term for V, i.e.: m satisfies the
identities: m(x, x, y) = m(x, y, x) = m(y, x, x) = x. Thus, for example, if each
of s12, s13, s23 solves the indicated two congruences of the first three of (B) then
we can compute s = m(s12, s13, s23) which clearly solves all three. More gener-
ally, we proceed by induction. For n > 3, denote by (Bi) the system of congru-
ences obtained from (B) by removing the i-th congruence, i = 1, 2, 3. By induc-
tion, let s1, s2, s3 be solutions which have been computed for (B1), (B2), (B3),
respectively. Then it is easy to see that s = m(s1, s2, s3) is a solution for (B).

Note that by Theorem 2.2 the polynomials gi are obtained in a uniform
way from the same (2m + 1)-ary terms composed only from p, regardless the
choice of algebra A in V. Moreover, by the discussion above, there is a (2m+n)-
ary term t whose value after replacing its variables by aij , bij and ai, 1 ≤ i ≤ n,
1 ≤ j ≤ m, is a solution of (B). Thus we have the following theorem.
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Theorem 2.3. Let V be a principal arithmetical variety with principal Pixley
term p. Then there are (2m + 1)-ary terms

ti(xi1, yi1, . . . , xim, yim, z), 1 ≤ i ≤ n

and a (2m + n)-ary term

t(xi1, yi1, . . . , xim, yim, z1, . . . , zn)

such that for any algebra A ∈ V, any system (B) over A with congruences θi

as in (2.2) is solvable if and only if

gi(gj(ai)) = gi(gj(aj)), 1 ≤ i < j ≤ n

where

gi(z) = ti(ai1, bi1, . . . , aim, bim, z), 1 ≤ i ≤ n.

If these conditions are satisfied then a solution of (B) is

c = t(ai1, bi1, . . . , aim, bim, a1, . . . , an).

It is interesting to compare the solution above with the case of integer
congruences (A): again we first solve the congruences two at a time and then
use distributivity (Z is an arithmetical ring) to solve all. For two congruences,
say the first and second, recall that by the Euclidean Algorithm, m = (m1,m2)
is expressible as m = m1u+m2v for some integers u and v and since m divides
a1 − a2, we have a1 − a2 = m1uk + m2vk for some k; hence

a1 − m1uk = a2 + m2vk

and the left side of this equality is congruent to a1 modulo m1 and the right
side is congruent to a2 modulo m2. This is analogous to the pairwise solutions
presented in the proof of Theorem 2.3. Again we use induction and distribu-
tivity of the congruence lattice to complete the solution but we no longer have
a majority term available to obtain a closed form solution.

3. The lattice of compact congruences

3.1. Summary and background

Throughout this section we will deal exclusively with an arithmetical affine
complete variety V of finite type, that is, an arithmetical variety of finite type
which is generated by a finite minimal algebra A. We will prove the following
two theorems.

Theorem 3.1. Let p(x, y, z) be any principal Pixley term for V and m be the
majority term given by m(x, y, z) = p(x, p(x, y, z), z). Then in all algebras of
V the meet of principal congruences is given by the formula

Cg(a, b) ∧ Cg(c, d) = Cg(m(a, b, c),m(a, b, d)). (M)

Theorem 3.2. If the minimal algebra A generating V is regular, then there
exists a principal Pixley term p(x, y, z) for V such that for all algebras in V
the join of principal congruences is given by the formula

Cg(a, b) ∨ Cg(c, d) = Cg(p(a, b, c), p(b, a, d)). (J)
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Recall that an equivalence lattice L on a set A is called regular if for any
θ, φ ∈ L and an element a ∈ A, a/θ = a/φ implies θ = φ. An algebra is regular
if Con(A) if a regular equivalence lattice on A. A variety is called regular, if
all of its members are regular.

Remarks. 1. We will soon see (Lemma 3.6) that if V is not regular, then the
formula (J) no longer holds. This is not to say that in the absence of regularity
some other formula might not be available.

2. Motivation for the formula (M) was provided by Baker [1]. In that
paper elements m(a, b, c), m(a, b, d) satisfying (M) were called principal inter-
section polynomials and were illustrated for the variety of distributive lattices
by the lattice median m(x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z).

In general, the majority term m(x, y, z) = p(x, p(x, y, z), z) in the state-
ment of Theorem 3.1 cannot be replaced by some arbitrary majority term.
For example let A be a simple algebra with the universe A = {a, b, c, d}, gen-
erating an arithmetical variety, for example a discriminator algebra, with an
additional majority operation m(x, y, z) such that m(x, y, z) = d if x, y, z are
all different. Then obviously

Cg(a, b) ∧ Cg(c, d) �= Cg(m(a, b, c),m(a, b, d)),

so (M) fails.
Early appearance of formula (J) is less clear but the paper [2] does ob-

tain both (M) and (J) for finitely generated discriminator varieties (which are
already known to be regular).

3. Note the reversal of a, b in (J). It is interesting [2] that for discriminator
varieties, if Cg(a, b) ≤ Cg(c, d) then Cg(p(a, b, c), p(a, b, d)) (p the discriminator
term) is a relative complement of Cg(a, b) in the interval [0,Cg(c, d)]. This, of
course, is not generally applicable in the present context.

4. Theorems 3.1 and 3.2 together show that if V is regular, the principal
(=compact) congruences of any algebra A in V form a sublattice of Con(A).

5. Assuming that p is computable, Theorem 2.2 and Theorem 3.2 pro-
vide two different ways for effectively determining membership in a finitely
generated congruence, i.e.: determining if

(x, y) ∈ Cg(a1, b1) ∨ · · · ∨ Cg(am, bm),

both by repeatedly composing p with itself. Is one more efficient than the
other? In fact it is easy to count the number of evaluations of p required
and to see that in each case, perhaps surprisingly, exactly 2m evaluations are
required.

6. Notice that in applying Theorem 3.2 to compute a single generating
pair for the join of several principal congruences, different arrangements of the
constituent principal congruences generally produce different generating pairs.

3.2. Proofs of Theorems 3.1 and 3.2

Proof of Theorem 3.1. Since our majority function m(x, y, z) is compatible,
the inequality

Cg(m(x, y, u),m(x, y, v)) ≤ Cg(x, y) ∧ Cg(u, v)
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is trivial, so to prove (M), we only need to prove

Cg(x, y) ∧ Cg(u, v) ≤ Cg(m(x, y, u),m(x, y, v)). (3.1)

Since V is principal with respect to the term p(x, y, z), this is equivalent to

∀x, y, u, v, z, w,

[p(x, y, z) = p(x, y, w)&p(u, v, z) = p(u, v, w)]

=⇒ p(m(x, y, u),m(x, y, v), z) = p(m(x, y, u),m(x, y, v), w). (3.2)

It is easy to verify directly that if (3.2) is true on each of the factors of a
subdirect product then it is true on the subdirect product. (More generally,
(3.2) is a special Horn sentence; in fact it is a quasi-identity ; such sentences
are preserved under the formation of subdirect products.) Thus, it is sufficient
to prove that the formula (M) holds in all subdirectly irreducible members
of V. However, by congruence distributivity of V and the minimality of A,
all subdirectly irreducible algebras of V are contained in H(A). Hence, it is
sufficient to prove that (M) (equivalently either of (3.1) or (3.2)) holds in all
homomorphic images B of A.

We proceed by induction on the height n of Con(B). If n = 1, then B
is simple. So, since the term p is principal, it must be the discriminator and
(3.2) follows by considering the cases x = y, x �= y.

Suppose all homomorphic images of A with height less than n satisfy
(3.2) and let B be isomorphic to A/ρ where ρ ∈ Con(A).

Case 1. ρ is not meet irreducible. In this case B is isomorphic to a subdirect
product of algebras C ∈ H(A) with the height of Con(C) less than n. By the
induction hypothesis, all these C satisfy (3.2) but then (3.2) is also true for B.

Case 2. ρ is meet irreducible. In this case B is subdirectly irreducible; let μ
be its monolith congruence. We verify (3.1) for B. Let x, y, u, v ∈ B. Since μ
covers 0, either

(a) μ ≤ Cg(x, y) ∧ Cg(u, v) or (b) 0 = Cg(x, y) ∧ Cg(u, v).

In case (a), since μ is the monolith, both μ ≤ Cg(x, y) and μ ≤ Cg(u, v), so
both Cg(x, y)/μ = Cg(x/μ, y/μ) and Cg(u, v)/μ = Cg(u/μ, v/μ) are defined.
By the induction hypothesis, in Con(B/μ)

0 ≤ Cg(x/μ, y/μ) ∧ Cg(u/μ, v/μ) ≤ Cg(m(x/μ, y/μ, u/μ),m(x/μ, y/μ, v/μ))

from which follows

0 ≤ (Cg(x, y) ∧ Cg(u, v))/μ ≤ Cg(m(x, y, u),m(x, y, v))/μ

in Con(B/μ), so in Con(B)

μ ≤ Cg(x, y) ∧ Cg(u, v) ≤ Cg(m(x, y, u),m(x, y, v)),

which proves (3.1). In case (b), (3.1) is obvious. �

In order to prove Theorem 3.2, we need some background information and
auxiliary results. If an algebra is regular then clearly only its zero congruence
can have a singleton class. In what follows we will call this the NSC (no
singleton classes) property. Surprisingly, we could not find in the literature an
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example showing that the NSC is strictly weaker than regularity. Therefore we
present such an example here.

Example. A finite nonregular arithmetical algebra satisfying the NSC. Let
A = {1, 2, 3, 4, 5, 6} and let L be an equivalence lattice on A consisting of 0A,
σ, ρ and 1A where σ has classes {1, 2}, {3, 4}, {5, 6} and ρ has classes {1, 2},
{3, 4, 5, 6}. Since L is distributive, by a well known theorem of Quackenbush
and Wolk [14], L is the congruence lattice of the algebra A = (A,F ) where F
is the clone of all L-compatible functions on A. Obviously this algebra satisfies
the NSC but is not regular.

At the level of varieties, however, the property NSC and regularity are
known to be equivalent, i.e.: all members of a variety V are regular if and only
if all members of V satisfy the NSC (Thurston [15]). The same proof of this
fact can also be found in [3], and actually, in both cases, the proof only requires
that all homomorphic images of a generating algebra satisfy the NSC. Hence
we have the following stronger result.

Lemma 3.3. An algebra is regular if and only if all of its homomorphic images
satisfy the NSC.

The next result was proved by Grätzer [7].

Lemma 3.4. A variety is regular if and only if the free algebra in 3 generators
of the variety is regular.

Lemma 3.5. Let A be a finite minimal regular algebra generating an arithmeti-
cal variety V. Then V is regular.

Remark. Lemma 3.5 is quite strong in that only the regularity of any finite
minimal generator A is required to infer the regularity of V; such an algebra
may be considerably smaller than the free algebra in 3 generators generally
required by Lemma 3.4. Moreover, it is clear from the proof of Lemma 3.5
below, that all that is actually needed is that A satisfy the following condition:
for each meet irreducible congruence θ of A, if μ is the unique cover of θ, then
no μ-class consists of a single θ-class. This is just the NSC condition, and in
this special form is easy to verify in particular cases.

Proof. We want to prove that all members of V are regular. Since A is finite, by
Lemma 3.4 it suffices to show that every finite algebra S ∈ V is regular and by
Lemma 3.3 it is enough to prove that all finite algebras S ∈ V satisfy the NSC.
Let S be subdirect in A1 × · · · ×An where Ai are subdirectly irreducible. We
may assume that this representation is not redundant, i.e.: S is not a subdirect
product of fewer than n of the Ai. Since V is congruence distributive and A
is minimal, V = PSH(A), in particular, all Ai are just homomorphic images
of A; thus they all are regular by Lemma 3.3.

Let a = (a1, . . . , an) be any element of S and θ be any non-zero con-
gruence of S. We have to show that | a/θ |> 1. By congruence distributivity,
θ = (θ1 × · · · × θn) |S , for congruences θi of Ai. This means: for x, y ∈ S,
(x, y) ∈ θ iff for each 1 ≤ i ≤ n, (xi, yi) ∈ θi. Since θ �= 0, at least one θi is not
zero. Without loss of generality, let θ1 �= 0.
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For i < j, let Sij be the projection of S in Ai × Aj . Our particular
interest is in projections S1i, 1 < i. By congruence permutability there ex-
ist congruences αi, βi in Con(A1),Con(Ai), respectively, and an isomorphism
gi : A1/αi → Ai/βi, such that (s1, si) ∈ S1i if and only if gi(s1/αi) = si/βi

(cf. Theorem 1.2.14 of [11]). Then s1/αi × si/βi = (s1, si)/(αi × βi) is a com-
ponent block of S1i and S1i is the disjoint union of all such blocks. Note that
neither αi nor βi can be zero, for otherwise one of A1 and Ai would be a
homomorphic image of the other, and hence would be a redundant factor.

By our assumption, the monolith congruence μ1 of A1 has no singleton
class. Thus, there exists b1 ∈ a1/μ1 such that b1 �= a1. Since μ1 ≤ α2∩· · ·∩αn,
we have a1/αi = b1/αi, hence,

(b1, ai) ∈ S1i, i = 2, . . . , n.

Therefore, for each i < j, the projection of b = (b1, a2, . . . , an) into Ai ×
Aj is in Sij . Since V has a majority term, S is uniquely determined by the
Sij ([11], page 133), so b ∈ S. Moreover, (b1, a1) ∈ μ1 ≤ θ1 implies b ∈ a/θ. �

The next lemma gives two characterizations of condition (J) that will be
useful in the proof of Theorem 3.2.

Lemma 3.6. Let L be a complete arithmetical equivalence lattice on a set A
and let f(x, y, z) be a principal Pixley function on A for L. Let a, b, c, d ∈ A.
Then the following are equivalent:
(1) Eg(a, b) ∨ Eg(c, d) = Eg(f(a, b, c), f(b, a, d));
(2) f(f(a, b, c), f(b, a, d), a) = f(f(a, b, c), f(b, a, d), b);
(3) Eg(a, b) ≤ Eg(f(a, b, c), f(b, a, d)).

Moreover, each of these equivalent conditions implies regularity of L.

Proof. (1) ⇒ (2). Since (a, b) ∈ Eg(a, b) ∨ Eg(c, d), the equality (2) follows
from (1) just by the definition of a principal Pixley function.

(2) ⇒ (3). Assume that (2) holds and f(a, b, c) ≡ f(b, a, d) (ρ). Then
a ≡ b (ρ) follows from the definition of a Pixley function and the compatibility
of f with ρ.

(3) ⇒ (1). Clearly, Eg(a, b)∨Eg(c, d) ≥ Eg(f(a, b, c), f(b, a, d)) is trivially
true. To prove the reverse inequality, put ρ = Eg(f(a, b, c), f(b, a, d)). Then,
by (3), a ≡ b (ρ) and therefore

c/ρ = f(a/ρ, a/ρ, c/ρ) = f(a/ρ, b/ρ, c/ρ) = f(a, b, c)/ρ = f(b, a, d)/ρ

= f(b/ρ, a/ρ, d/ρ) = f(a/ρ, a/ρ, d/ρ) = d/ρ ,

thus c ≡ d (ρ). We have proved that (a, b), (c, d) ∈ ρ; therefore Eg(a, b) ∨
Eg(c, d) ≤ ρ.

Now assume that any of the conditions (1)–(3) is satisfied. Let c ∈ A,
ρ, σ ∈ L and c/ρ = c/σ. Then, without loss of generality, ρ ≤ σ. Assume
that ρ < σ and pick a pair (a, b) ∈ σ\ρ. Then f(a, b, c) ∈ c/σ = c/ρ and
similarly f(b, a, c) ∈ c/σ = c/ρ. Hence, f(a, b, c) ≡ f(b, a, c) (ρ) but a �≡ b (ρ)
which contradicts the third condition of the lemma. Therefore ρ = σ, so L is
regular. �
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Now we are ready to complete the proof of Theorem 3.2. As will be
apparent below, the proof of Theorem 3.2 is much more complicated than
that of Theorem 3.1. This is because in Theorem 3.1 we were able to show
that for any given principal Pixley term, the corresponding majority term
yields formula (M). The proof of Theorem 3.2, on the other hand, requires the
construction of a new principal Pixley function, using the added hypothesis
of regularity, to satisfy condition (J). This will require revisiting the proofs
of Theorem 1.1 (Theorem 3.2 of [12]) and of Theorem 2.2.6 of [11]. We shall
assume the reader’s familiarity with both of these.

Proof of Theorem 3.2. By Lemma 3.5 we may assume that A is the largest
minimal algebra of V. Let L = Con(A). In the sequel we say that σ ∈ L is of
height m if m = height(Con(A/σ)); thus the maximal congruences of A have
height 1. Our aim is to prove by induction on m the following statement (Sm):

There exists a system of functions { fσ | σ ∈ L,height(σ) ≤ m } such
that every fσ is a principal Pixley function on A/σ satisfying (J)
for the algebra A/σ and the system is compatible in the sense that
each of the functions induces on every previous level the functions
belonging to our function system.

For proving (S1), as in the proof of Theorem 2.2.6, we define fσ to be the
discriminator function on A/σ for all σ ∈ L of height 1, that is, for maximal
congruences σ of A. We know that all these functions satisfy (J).

Proceeding with the induction step, we assume that (Sm−1), m ≥ 2, holds
and show how to define the functions fρ for the next level (i.e.: for ρ ∈ L of
height m) so that the system { fσ | σ ∈ L,height(σ) ≤ m } will satisfy (Sm).

Suppose first that ρ has more than one cover in L. Then, as shown in
the proof of Theorem 2.2.6, fρ is uniquely determined by the functions fσ

with ρ < σ. Moreover, since condition (J) is equivalent to the equation (2) in
Lemma 3.6, fρ satisfies this condition because so do all fσ with ρ < σ.

Next suppose that ρ has only one cover in L, let it be μ. Without loss
of generality let ρ = 0; thus a/ρ = a for every a ∈ A and fρ = f . Revisiting
the proof of Theorem 2.2.6, we recall that any function f satisfying the fol-
lowing three conditions is a principal Pixley function for L: for all u, v, x ∈ A,
(i) f(u, u, x) = x; (ii) if u �= v and x ≡ u (EgL(u, v)) then f(u, v, x) = u;
(iii) if u �= v and x �≡ u (EgL(u, v)) then f(u, v, x) is any fixed element in
fμ(u/μ, v/μ, x/μ) (not depending of the choice of x in its μ-class). Note that
the third condition provides some freedom for constructing f . We shall use
this freedom to construct an f which satisfies condition (J).

Since f is a principal Pixley function for L, the derived unary functions
f(u, v, x) and f(v, u, x) are selectors for Eg(u, v), for any fixed u, v ∈ A. We
now prove that f can be defined so that, whenever u �= v, these two functions
agree at no element a ∈ A, i.e.:

u �= v =⇒ f(u, v, a) �= f(v, u, a). (3.3)

Indeed, if condition (ii) applies this is obvious while if (iii) applies, f(u, v, a)
can be any fixed element b ∈ fμ(u/μ, v/μ, a/μ) and f(v, u, a) can be any fixed
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element c ∈ fμ(v/μ, u/μ, a/μ). Regularity insures that these choices, with
b �= c can always be made, even if fμ(u/μ, v/μ, a/μ) = fμ(v/μ, u/μ, a/μ).
Thus f(u, v, a) �= f(v, u, a) as required.

Now we show that the function f defined as above satisfies condition (3)
of Lemma 3.6, hence it satisfies the condition (J), as well. Let a, b, c, d ∈ A,
and σ = Eg(f(a, b, c), f(b, a, d)). We must prove a ≡ b (σ). Let first σ =
0. Then f(a, b, c) = f(b, a, d) which implies c ≡ d (Eg(a, b)) because f is a
Pixley function. Since, f(b, a, x) is a selector function for Eg(a, b), we now
have f(b, a, d) = f(b, a, c) but then also f(a, b, c) = f(b, a, c), so a = b by (3.3).

Now let σ �= 0, hence μ ≤ σ and f(a, b, c) ≡ f(b, a, d) (σ) implies

fμ(a/μ, b/μ, c/μ) ≡ f(b/μ, a/μ, d/μ) (σ/μ).

Then, by our induction hypothesis, a/μ ≡ b/μ (σ/μ) which clearly implies
a ≡ b (σ). Hence, f satisfies condition (3) and therefore also condition (J).

Thus, we have an L-compatible principal Pixley function f on A which
satisfies (J). Since A is affine complete and minimal, there exists a 4-ary term
t and an element a ∈ A such that f(x, y, z) = t(x, y, z, a) for all x, y, z ∈
A. By Lemma 2.1 of [12] there exists a unary term s(x) such that s(A) is
contained in a single orbit of Aut(A) and then by the proof of Theorem 1.1,
p(x, y, z) = t(x, y, z, s(x)) is a principal Pixley term for V. It remains to prove
that p(x, y, z) satisfies condition (J).

Consider the terms

u(x1, x2, x3, x4, y) = t(t(x1, x2, x3, y), t(x2, x1, x4, y), x1, y)

and

v(x1, x2, x3, x4, y) = t(t(x1, x2, x3, y), t(x2, x1, x4, y), x2, y).

Since the function f satisfies equation (2) from Lemma 3.6, by the choice of
the term t, we have:

u(x1, x2, x3, x4, a) = v(x1, x2, x3, x4, a),

for all x1, x2, x3, x4 ∈ A. Thus, by Lemma 2.2 of [12] the identity

u(x1, x2, x3, x4, s(x)) = v(x1, x2, x3, x4, s(x))

holds in A, hence also in V. But this is exactly what we need: the term p(x, y, z)
satisfies condition (J). �

4. Conclusion

The proofs of both Theorems 1.1 and 3.2 make use of the same method. In
each case we work with the largest minimal algebra A in the variety and con-
struct a Con(A)-compatible Pixley function f which, in addition to satisfying
the identity (P), also satisfies other identities which characterize properties of
particular interest. In the case of Theorem 1.1 the property is that of being a
principal arithmetical variety, which is characterized by the identities (one for
each basic operation g of A),

f(u, v, g(x1, . . . , xm)) = f(u, v, g(f(u, v, x1), . . . , f(u, v, xm)) (4.1)
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from Theorem 1.2.6 of [11]. Since A is minimal and affine complete, for any
a ∈ A, f is a polynomial t(u, v, x, a) for some term function t(u, v, x, z). Since
A is necessarily weakly diagonal, for an appropriate unary term s(x), the
term function f(u, v, x, s(u)) satisfies (4.1) as well as (P); hence the variety is
a principal arithmetical variety.

The same strategy was used in proving Theorem 3.2, except that the
function f , in addition to satisfying (P) and (4.1), was constructed to satisfy
the identity (2) of Lemma 3.6 as well.

It seems likely that this strategy can be further developed and used to
discover when other interesting properties of arithmetical affine complete va-
rieties occur.
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