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Introduction In 1970 G. Grétzer [1] showed that a variety of algebras
is regular if and only if the free algebra on 3 generators is regular. Recently
Kaarli and Pixley proved the following specialized description:

([4],Lemma 3.5)If an arithmetical variety is generated by a finite
minimal algebra which is reqular, then the variety is reqular. (An
algebra is minimal if it has no proper subalgebras.)

The purpose of the present note is to present the following companion
result for congruence uniformity and coherence.

Theorem If an arithmetical variety is generated by a finite minimal alge-
bra which is congruence uniform, then the variety is both congruence uniform
and congruence coherent.

From the congruence distributivity of the variety it follows that the subdi-
rectly irreducible members are homomorphic images of a minimal generating
algebra. Thus the proof of Lemma 3.5 actually required only that the mini-
mal generating algebra A satisfy the condition:

a) for each meet irreducible congruence 6 of A, if p is the unique
cover of @, then no p-class consists of a single element.

Likewise the proof of the present Theorem will require only that A satisfy:

b) for each meet irreducible congruence 6 of A, if u is the unique
cover of #, then all u-classes are the same size.

Background An algebra is congruence regular if no pair of distinct
congruence relations share a congruence class; an algebra is congruence
uniform if for every congruence relation 6, all #-classes have the same car-
dinality. A variety is congruence regular (uniform) if each algebra in the
variety is congruence regular (uniform).

Because for varieties regularity is equivalent to the condition that no non-
zero congruence has a singleton congruence class, every congruence uniform



variety is obviously congruence regular, which is reflected by the fact that
condition b) above obviously implies a). (Though not relevant for our present
concerns it is also easy to see that every finite congruence uniform algebra
is also congruence regular, and that for finite congruence uniform algebras,
homomorphic images are also congruence uniform.)

An algebra A is congruence coherent if for each sub-universe B and
congruence 6 € ConA , if B contains some #-class, then B is the union of
f-classes. Varieties are coherent if the algebras in the variety are coherent.
It is known that for varieties, congruence coherence implies regularity.

Recall [2] that a variety V is affine complete if all congruence compatible
operations of algebras in V' are polynomials. The study of affine complete
varieties has been inspired by the early observation by G. Grétzer that the
variety of Boolean algebras is affine complete and the subsequent discovery
that many properties of Boolean algebras are inherited in some more general
form by affine complete varieties. While on the one hand no strictly algebraic
characterization of affine complete varieties is known, it is important to know
that on the other hand arithmetical affine complete varieties of finite type
are precisely those arithmetical varieties generated by some finite minimal
algebra and we tend to use these descriptions interchangeably. [2], Section
4.2.

The proof of our Theorem uses the arithmeticity of the variety to con-
struct a certain compatible function by induction on the congruence lattice
of the minimum generating algebra. This is the method described in the
proof of Theorem 2.2.6 of [2] and as adapted in the proofs of Theorems 3.2
of [3] and 3.2 of [4].

In addition several of the general properties of affine complete varieties
referred to above are used in the proof; in order to make the proof more
accessible we gather together some of these as follows:

P1 All affine complete varieties V' have the properties:

e residual finiteness,

e congruence distributivity,

e V if B is any subalgebra of any algebra A € V', then VB) = V(A).
An immediate consequence is that no non-trivial algebra in V
has a one-element subalgebra. ([2], Section 4.2) (This property is
usually called semi-degeneracy.)
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e the properties of being finitely generated, locally finite, and equiv-
alent to a variety of finite type (i.e.: only finitely many basic op-
erations) are all equivalent. ([2], Section 4.4)

e if V is of finitely generated then it is generated by a unique min-
imal algebra (i.e.: a finite algebra A of more than one element
and having no proper subalgebras), which is also the largest min-
imal algebra in the variety. This generator is constructable from
any finite generator and is characterized by the property of being
weakly diagonal, i.e.: every subuniverse of A% contains the graph
of some automorphism of A.([3], Section 2)

P2 If A is a weakly diagonal algebra and ¢(z, ..., z,a) and u(x, ..., z,a) are
polynomials containing only the element a € A and t(z,...,z,a) =
u(z,...,z,a for all x,...,z € A, then for some unary term s(x),
t(z,...,z,s8(x)) =u(x,..., 2 s(x)) is a term identity of A.

Thus the polynomial identities of A determine the equational theory
of A. [3]), Section 2.)

A ternary function u(zx,y, z) is a minority function on a set A if
forallz,y € A, u(z,z,y) = u(z,y,z) = u(y, z,z) =y (min)
For example, if p is any Pixley function and m a ternary majority, then

u(z,y,z) = m(p(z,z,y),p(z,y,7),p(x, 2,y)) (1)

is a minority function.

Proof of the Theorem We let A be a minimal generator of V' which
satisfies the uniformity hypothesis of condition b) of the Introduction. We
show that V is both uniform and coherent. We will use the same proof
strategy as was used to prove Theorem 3.2 of [3] and Theorem 3.2 of [4] and
hence will require our hypothesis for the largst minimal algebra M in V. But
since the subdirectly irreducible members of V' are homomorphic images of
both A and M, condition b) transfers to M. Henceforth we shall therefore
assume that A is the largest minimal algebra of V.

We shall first prove, by induction on the height m of Con(A/#), for every
0 € ConA, the statement S,,:



There exists a system of functions
{ug | 0 € ConA, height(0) < m},

such that every wy is a minority function on A/# which, for fixed
x/0,y/0, as a function of z/6 , is an involution on A /6:

ug(/o,y/0,u0(/0,y/0,2/0)) = 2/¢. (inv)

The system is compatible in the sense that each of the functions
induces on each previous level the functions belonging to that
system. (Notice that if p is the discriminator, u defined by () is
an involution.)

To prove Sy (A/6 is simple), we define uy by ug(x/0,y/0,2/0) = /6 if
x/0,y/0,z/0 are all different, and as a minority function otherwise. Then
ug is obviously a minority function which is an involution as a function of
z/6. (If p were a principal function, then since A/ is simple so p is the
discriminator, we could take ug to be the term (f). Of course there are other
involutions, and this is important later in the proof.)

We proceed with the induction step just as in the proof of Theorem 3.2
of [4]. Thus we first suppose that p has more than one cover in ConA. Then
as before u, is uniquely determined by the functions u, with p < o. Since
each of these is a compatible minority function satisfying (inv), the same is
true of u, on A/p.

Next suppose p has only one cover in ConA so A/p is subdirectly irre-
ducible; let the cover of p be . To simplify notation, without loss of gener-
ality we may take p = 04; so that a/p = a for all a € A, A is subdirectly
irreducible, and u, = v when defined.

For z,y, 2 € A the system of congruences

w =

|
w

(Cy(z,y))
w z (Cy(y, 2))
w = y (Cg(z,2))

is pairwise compatible so, by arithmeticity, always has solutions w € A. (The
formula () provides one solution.) The set of all solutions is w/Cg(z,y) N
w/Cg(y,z) Nw/Cg(z,z). If any two of x,y, z are equal, this set contains

I\
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only one element; otherwise, since A is subdirectly irreducible, it contains
w/p. We will choose u(z,y, z) in this set. From this it follows that any such
choice will determine u(x,y, z) as a minority function. Also, each element of
w,(x /1,y /1, 2/ ) is obviously a solution of the system of congruences. Hence,
since all p classes are the same size, for each fixed pair x,y we can choose
w(z,y, 2) € wu(x/pm,y/p, 2/p), so that, as a function of z, it is an involution
between z/p and w,(x/p,y/p, 2/p). In this way u(z,y, 2) is defined for all
x,y,z in A and is a compatible minority function satisfying (inv).

Now since A is affine complete and u is congruence compatible by con-
struction, it is a polynomial which is a minority function which satisfying
(inv). Therefore, since A is the largest minimal algebra of V| by P1 it is
weakly diagonal and hence by P2 there is a minority term, which we also call
u(z,y, z), which also satisfies (inv) in V. Hence for any A € V, since u is
a minority function, for each z,y € A and § € ConA, it induces a bijection
between x/60 and y/6. We conclude that V' is congruence uniform.

Finally,for any A € V by (inv) we have u(z,y,z/0) = y/0 for any
0 € ConA and, since u(z,y,z) is a term, y/6 is contained in any subal-
gebra containing /0 and y; thus V is also congruence coherent. °

If A is a finite simple algebra in an arithmetical variety, it obviously sat-
isfies all of the conditions described by Theorem 3.2 of [3], Theorems 3.1, 3.2,
and Lemma 3.5 of [4] and the Theorem of the present note. Hence we have

Corollary If A is a finite, simple, minimal algebra which generates an
arithmetical variety V, the Pixley term t can be chosen so that the following
conditions are satisfiedf by V' and for every algebra A in V:

a) (z,y) € Cg(u,v) <> t(u,v,z) = t(u,v,y), (Equationaly definable prin-
cipal congruences),

b) V is congruence regular,

c) the principal congruences of A form a sublattice of ConA with

Cg(a,b) VvV Cq(c,d) = Cg(t(a,b,c),t(b,a,d)), and
Cg(a,b) ANCyg(c,d) = Cg(m(a,b,c),m(a,b,d)),

where m is the magjoority term m(z,y, z) = t(z,t(z,y, 2), 2).



d) V is both congruence uniform and congruence coherent.

For example, from the Corollary it follows at once that the variety of
Boolean algebras, or the variety generated by any primal algebra has all of
the properties a), ..., d).

Comments: 1. In contrast to the proofs of both Theorem 3.2 of [3] and
Theorem 3.2 of [4], this theorem does not require the construction of a ”spe-
cial” Pixley function, and, in fact the function does not even have to be
principal.

2. The method of proof of this theorem has been used with variations
([3],[4]) to obtain conditions under which an arithmetical affine complete
variety has any of the conditions a),...,d). A question: are there further
properties of arithmetical affine complete varieties yet to be obtained using
this method?
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