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Since their conception in the mid-nineteenth century Boolean algebras
have played a special role in mathematics, primarily as the “algebra of logic”
and as the “algebra of classes” and have subsequently inspired alternative
algebras of logic and also the the study of infinitary Boolean operations
and topological properties. In the present essay our purpose is to examine
a well known purely algebraic property of Boolean algebras, namely their
dual roles as both algebras based on lattice properties and as special types
of rings, i.e.; Boolean rings. We show how, taken together, properties of
these two features enable us to locate Boolean algebras/rings as the simplest
example of a much broader general class of algebraic structures, “arithmetical
polynomial complete varieties” which naturally inherit many of the special
features of the Boolean case.

There have been many variations of Boolean algebras in the past, usually
obtained by strengthening or weakening the properties of the basic operations
or by adding new operations, usually retaining some of the underlying lattice
structure. Thus this might be called a “bottom- up” approach. Our program
is to take what we might call a “top-down” approach: thus we start with the
basic variety setting for Boolean theory, arithmetical varieties, and study how
adding appropriate properties, recaptures Boolean properties. The program
is at an early stage and what is presented here may be considered a progress
report.

This essay is expository and it’s intended audience is graduate students
with a little background in general algebraic systems. Detail background
through the year 2000 may be found in [1], and in [2]-[4] for later develop-
ments. While these works are published as joint work of Alden Pixley and
Kalle Kaarli, the former author freely acknowledges that they could never
have appeared without the generous participation of the latter.

1.Varieties and the variety of Boolean algebras
Model theory and varieties In mathematical logic, model theory is the

study of the relationship between formal theories (a collection of sentences in
a formal language expressing statements about a mathematical structure),
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and their models (those structures in which the statements of the theory
hold). Since our interest is in algebras, and since the most common algebraic
systems, groups, rings, lattices, and Boolean algebras, can be defined by
equations, we restrict ourselves to certain specialized kinds of formal theories,
equational theories, in which the sentences are just universally quantified
equations, and their models are algebras satisfying these equations. The
class of all algebras modeling an equational theory is called a variety (or
equational class).

To make our definition more precise we define an algebraic language or
type to be a set of finitary operation symbols denoted by

f(x1, . . . , xn), g(x1, . . . , xm), · · · ,m, n ≥ 0, etc.

Terms are then formal compositions of operation symbols, and equations
are formal equalities t(x1, . . . , xn) ≈ s(x1, . . . , xm) (briefly t ≈ s). An alge-
bra A = 〈A,F 〉 of a particular type is understood to be a non-empty set
A, the universe of A, together with a set F of finitary operations which are
interpretations of the operation symbols of the type, an operation symbol
f(x1, . . . , xn) interpreting as an operation in An → A, and each term inter-
preting as a term function. Homomorphisms and direct products are defined
as usual and a subalgebra is an algebra of the same type with universe a
nonempty subset of A which is closed under the operations of A.

The following is an important characterization of varieties, due to Garrett
Birkhoff (1931).

Birkhoff1 A class of algebras of a given type is definable by a
set of equations of the type iff the class is closed under the suc-
cessive formation of homomorphic images of subalgebras of direct
products.

In symbols this means that V is a variety ifff V = HSPV . If V is a vari-
ety, i.e.: defined by a set of equations, satisfaction of this formula is rather
obvious; proof of the converse, that satisfaction of the formula implies the
existence of a set of defining equations for V , entails showing that satisfac-
tion of the formula enables construction of a free algebra in HSPV .

If K is a class of algebras of the same type, then V (K) is the least variety
containing K, the variety defined by all of the identities common to all of the
algebras of K. From Birkhoff1 it follows that V (K) = HSPK. While these
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formulas look simple, the complexity of the algebras resulting from forming
homomorphic images of subalgebras of direct products can be formidable.
More of this later.

Consider the familiar domain of groups. The choice of operations is im-
portant. For example, groups may be defined as systems G = 〈G, ·〉 where
· satisfies the associative identity and it is stipulated that G contains an
identity element and that each member of G has an inverse with respect to
this identity. In this formulation of the definition if we consider only the
identities, ie.: associativity for ·, we have the variety of semigroups, which
properly contains the class of groups. The problem here is that in this for-
mulation of groups a subalgebra (i.e.: a subset closed under the operation)
is not necessarily a subgroup. (For example the positive integers are not a
subgroup of the group of integers under addition.) On the other hand groups
defined as systems G = 〈G, ·, e,−1 〉, (e the nullary identity operation and −1

the unary inverse), satisfying the usual identities, are a variety.
In the case of groups the distinction is not really very important, since

in either formulation the classes of structures described are essentially the
same. This is because in the first description the subalgebras of groups which
are groups are the same as the subalgebras in the second formulation. (This
in turn is because in groups the identity and inverses “descend” to each
subgroup.) Thus the variety of groups is unambiguously described either
way.

Properly describing Boolean algebras is a bit more delicate. For dis-
tributive lattices, complements, when they exist, are unique and Boolean
lattices are defined as complemented distributive lattices, i.e.: as systems
L = 〈L,∨,∧〉 in which the operations ∨ and ∧ satisfy the (dual) identities
defining distributive lattices and in which there are distinct largest and least
elements, 1 and 0 relative to the the lattice order, and such that each ele-
ment x ∈ L has a complement x′ ∈ L relative to 1 and 0. In contrast to
groups, which contain exactly one 1-element subgroup, each element of L is
a 1-element subalgebra and a subalgebra of a Boolean lattice need not be
a Boolean lattice. For example Boolean lattices always contain sublattices
which are chains which, of course are not complemented unless they have
only two elements. Moreover subalgebras of Boolean lattices, when they are
Boolean, generally have only “local” 0 and 1 elements and complements.
Clearly Boolean lattices do not form a variety.

On the other hand Boolean algebras are defined as systems B = 〈B,∨,∧, 0, 1,′ 〉
in which ∨ and ∧ satisfy the dual identities defining distributive lattices and
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additionally, for complementation ′, the identities 0′ = 1, 1′ = 0 and the dual
DeMorgan identities. As a result every subalgebra of a Boolean algebra is
also a Boolean algebra and always contains both the 0 and 1 of the parent
algebra; in contrast to the usual pattern in groups, rings, and lattices, no
non-trivial Boolean algebra contains a 1-element subalgeba; as we shall see
later, this is a very special feature of Boolean algebras. Boolean algebras
clearly do form a variety.

2. Basic features of Boolean algebras
Boolean algebras vs Boolean rings An alternative approach to Boolean

algebras is via ring theory: i.e.: Boolean rings and their inter-definability
with Boolean algebras, which we now review. A Boolean ring is a system
B = 〈B,+, ·, 0, 1〉 which is a ring in which every element is idempotent, i.e.:
x2 = x for all x ∈ B. Thus for x, y ∈ B,

(x+ y)(x+ y) = x+ y,

so x2 + yx+ xy + y2 = x+ yx+ xy + y = x+ y.

Canceling and setting x = y yields both x + x = 0, characteristic 2,
and yx = xy, commutativity. Therefore Boolean rings, defined by the usual
ring identities for +, ·, 0, 1 together with idempotence, form a variety. The
important fact is that these two varieties are inter-definable: given a Boolean
ring, define

x ∧ y = xy,

x ∨ y = x+ y + xy,

and x′ = 1 + x,

to obtain a Boolean algebra as a special kind of lattice. The other way
around, given a Boolean algebra, define

xy = x ∧ y,
and x+ y = (x ∨ y) ∧ (x ∧ y)′,

to obtain a Boolean ring. (Either way the 0 and 1 are the same.) Thus the
varieties of Boolean algebras and of Boolean rings are inter-definable. For
our purposes the significance of this inter–definability is that it shows how
Boolean algebras/rings bridge two major areas of mathematics: order and
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lattice theory on the one hand, and group/ring theory on the other. No
wonder their joint character has intrigued mathematicians for so long!

This has been recognized for many years but it’s deeper significance is
only more recently understood and is our major purpose here.

The two element Boolean algebra Almost from the historical be-
ginning of Boolean algebras particular attention has been paid to the two
element Boolean algebra

B2 = 〈{0, 1},∨,∧,′ , 0, 1〉,

because of it’s role in logic. Specifically, this is because every finitary oper-
ation f ∈ {0, 1}n → {0, 1}, n a non-negative integer, is a term function. In
logic this means that every truth function can be composed from the Boolean
operations using a familiar algorithm; in electrical engineering this fact it is
sometimes called the “fundamental theorem of switching circuit theory”.

A more recently recognized feature of this variety (Marshall Stone 1936)
is that the algebra B2 generates the entire variety B of all Boolean algebras
in the sense that every Boolean algebra is isomorphic to a subdirect power of
B2, i.e.: B = IPSB2. An algebra is a subdirect product of factor algebras if it
is a subalgebra of a product and each of the projections into a factor of the
product is onto that factor. The operation PS represents the formation of
subdirect products. The representation B = IPSB2 obviously implies that
the defining identities of the variety of Boolean algebras are just the identi-
ties of the algebra B2. The formula also implies that every Boolean algebra
is isomorphic to a field of sets: a collection of subsets of some universe U
containing the empty set and U and which is closed under the operations of
finite set unions and intersections and complementation. The “points” of the
set U are the maximal filters (dual ideals) of the algebra.

3. The structure of varieties and Malcev conditions The rep-
resentation B = IPSB2 of the variety B of Boolean algebras is intuitively
so appealing: we think of each Boolean algebra B as consisting of a class of
vectors b = (b1, . . . , bk, . . .), over some index set K, each bk ∈ {0, 1} and for
each k ∈ K, the projection projkB of B into the set of all kth coordinates, is
equal to {0, 1}. (Generally, K is possibly uncountable and B is a subset of
the functions {0, 1}K → {0, 1}.) To understand this representation as com-
pared with the rather opaque general HSPK representation, we need a few
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more basics about varieties.

First, more about subdirect products (Most of these facts are due to Gar-
rett Birkhoff; their proofs can be found in any introductory text on universal
algebra.)

Birkhoff2 Suppose an algebra A is a subalgebra of the direct
product of algebras Ak, k ∈ K for some index set K, and suppose
the projection homomorpsms pk : A → Ak are onto the Ak, so
that for their kernels φk ∈ ConA, A/φk

∼= Ak, then∧
{φk : k ∈ K} = 0

if and only if A is a subdirect product of the Ak.

Notice that when A is a subdirecrt product as above, then A isomorphic to
a product in

∏
{A/φk : k ∈ K}. This gives an internal description of when

A is isomorphic to some subdirect product of algebras: If {φk : k ∈ K} is a
family of congruences in ConA then the mapping a 7→

∏
{a/φk : k ∈ K}

is an isomorphism of A onto a subdirect product in
∏
{A/φk : k ∈ K} iff∧

{φk : k ∈ K} = 0.
A non-trivial algebra A is simple if 0 and 1 are its only congruences. More

generally, A is subdirectly irreducible if it has at least one congruence larger
than 0 and if the intersection of all congruences larger than 0 is a congruence
µ which is also larger than 0. µ is called the monolith of ConA. Thus if A
is subdirectly irreducible then in any subdirect representation of A, one of
the subdirect factors is isomorphic with A.

Birkhoff3 Every non-trivial algebra is isomorphic with a subdi-
rect product of subdirectly irreducible algebras.

This appealing fact has the equally appealing consequence: Each variety
V is generated by it’s subdirectly irreducible members, VSI , so V can be
represented as V = IPS(VSI), like the appealing “vector” representation of
Boolean algebras. In fact it is easy to show that B2 is the only subdirectly
irreducible member of the variety of Boolean algebras, which explains the
representation B = IPSB2 noted above.

On the other hand, in many other varieties the description of the subdi-
rectly irreducible members is not so simple. For example the class of sub-
directly irreducible groups is as large as the class of all groups themselves.
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In these varieties the subdirect representation Birkhoff3 is not so appealing.

Malcev conditions The HSP characterization of varieties of Birkhoff1
makes a vital connection between the abstract “syntactical” description of
a variety, i.e: a set of equations, and a “semantical” description, i.e.: as a
class of actual algebras determined by closure under H, S, and P. (In fact this
description provides a proof of the completeness of the rules for equational
logic.) This suggests that there might be more specific connections between
the equations defining a variety and some more specific algebraic properties.

In fact this is true and is the significance of Malcev conditions, the first of
which was discovered by A. I. Malcev. In general the join of two congruences
in the lattice of congruence relations of an algebra is the union of all of their
finite relation products:

θ ∨ φ = θ ∪ φ ∪ θ ◦ φ ∪ θ ◦ φ ◦ θ ∪ · · · .

In the special case where θ ∨ φ = θ ◦ φ the congruences are permutable.
In certain varieties, for example any algebra with a group reduct, the con-
gruences always permute. Congruence permutability for varieties was char-
acterized by Malcev as follows:

Malcev A variety V is congruence permutable iff there is a ternary
term p(x, y, z) in the language of V , such that the identities

p(x, x, y) ≈ y ≈ p(y, x, x)

are satisfied by all of the algebras of V .

For example in any variety of algebras with group reducts, the term xy−1z is
a Malcev term. This is thus a direct link between a specific property of the
equational theory of a variety and a specific algebraic property shared by all
of the algebras of the variety. Inspired by this early result an important and
large literature of Malcev conditions has arisen, each linking some algebraic
property of the variety with the formal equations defining the variety.

For our purposes in examining Boolean algebras we take a more fo-
cused approach. Our key is to observe that since Boolean algebras can
be construed as both rings and as special lattices, and that as rings they
have a Malcev term witnessing congruence permutability. Indeed, the term
p(x, y, z) = x + y + z where x + x = 0 is such. So we seek a central prop-
erty of lattices which might be correspondingly represented. Such a property
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is congruence distributivity: for congruence lattices each of the (equivalent)
dual distributive laws holds. This has long been known, and if one checks
the proof it is clear that it only depends upon the fact that lattices have a
ternary majority term, i.e.: a term m(x, y, z) satisfying the identities

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ x.

Such a term in the language of lattice theory is

m(x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z).

Thus the existence of a majority term for a variety is sufficient for congru-
ence distributivity. Conditions both necessary and sufficient for congruence
distributivity are known and are more complex. However it is not hard to
show that the existence of both Malcev and majority terms is both necessary
and sufficient for a variety to be both congruence permutable and distribu-
tive, and this is what we have for Boolean algebras.Such a variety is called
an arithmetical variety.

In fact we can say more:

Arithmeticity1 A variety is both congruence permutable and
congruence distributive iff there is a term t(x, y, z) in the lan-
guage of the variety satisfying the identities

t(x, y, y) ≈ t(x, y, x) ≈ t(y, y, x) ≈ x.

Such a term is called an arithmetical term or a Pixley term. Notice that if
m, p, t are respectively majority, Malcev, and arithmetical terms, then clearly
t(x, t(x, y, z), z) is a majority term and m(x, p(x, y, z), z) is an arithmetical
term. An arithmetical term in the language of Boolean algebras is

t(x, y, z) = (x ∨ y′) ∧ (x ∨ z) ∧ (y′ ∨ z).

where ′ is Boolean complementation.

Arithmetical varieties This then is a big part of what is so special
about Boolean algebras: the variety of Boolean algebras is arithmetical.

We want to emphasize that while it was well known years earlier that
Boolean algebras, via their dual nature as lattices and rings, enjoyed arith-
meticity, little was made of this on the varietal level until the discovery and
exploitation of Malcev conditions.
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What does it mean algebraically for a variety to be arithmetical? What
is gained by combining permutability of congruences with distributivity? In
the variety of groups, the most fundamental exemplar of congruence per-
mutability, the congruence lattices are determined by the normal subgroups
and the join of two normal subgroups N and M is just NM . This somewhat
obscures our earlier description, which is to observe that for the congruences
θ1, θ2 determined by these normal subgroups,

(a, b) ∈ θ1 ∨ θ2 ↔ (a, x) ∈ θ1 and (b, x) ∈ θ2

for some element x of the group. Alternatively, congruence permutability
asserts that the pair of congruences

a ≡ x (θ1)

b ≡ x (θ2)

is solvable iff a ≡ b (θ1 ∨ θ2).

Another suggestive way of thinking of congruence permutability is geo-
metrically. Let A, B be algebras in a congruence permutable variety and let
S be a subuniverse in their direct product A×B. Let (x, y), (x, v), (u, v) be
three vertices of a rectangle in A × B and suppose they also lie is S. Then
applying the Malcev term p(, x, y, z) we have

p(x, y), (x, v), (u, v)) = (p(x, x, u), p(y, v, v)) = (u, y),

so the fourth vertex of the rectangle must also lie in S. Thus the possibilities
for subuniverses of direct products in congruence permutable varieties is quite
restricted.

There are many other consequences of congruence permutabilityy; for
example it implies that the lattice of congruences is modular which for groups
translates into the Jordan-Hölder Theorem.

What about congruence distributivity? For congruence distributive va-
rieties a most fundamental fact is that there are no skew congruences for
subdiret decompositions of an algebra into finitely many factors This means
that whenever ρ, θ1, . . . , θn are congruence relations of an algebra A in such
a variety and θ1 ∧ · · · ∧ θn = 0, then (θ1 ∨ ρ) ∧ · · · ∧ (θn ∨ ρ) = ρ. So
the congruences of A are specifically determined by those of the subirect

9



factors, a major simplification! Significantly, this condition, the absence of
skew congruences in finite subdiret decompositions, is actually equivalent to
congruence distributivity for varieties.

A further critical fact about lattices is that the existence of a majority
term endows them with not only congruence distributivity but in addition an
important interpolation property not shared by all congruence distributive
varieties. This property asserts that if L is a lattice and f : Lm → L is a
partial function with domain D a finite subset of Lm and all subuniverses of
L2 are closed under f , applied coordinate-wise where it is defined, then there
is a term function of L which agrees with f on D, i.e.: f can be interpolated
by a term function. This property leads to an important characterization of
arithmetical varieties, the following so called Chinese Remainder Theorem,
which generalizes the solvability criterion for two congruences as described
above:

Chineses Remainder Theorem A variety V is arithmetical if
and only if for every algebra A in V , elements a1, . . . , an in A,
and congruence relations θ1, . . . , θn of A, the system of congru-
ences

a1 ≡ x (θ1)

...

an ≡ x (θn)

is solvable in A iff the congruences are pairwise compatible, mean-
ing that for each 1 ≤ i < j ≤ n, ai ≡ aj(θi ∨ θj).

4. Polynomial completeness We noted earlier two special properties
of the two element Boolean algebra B2 which we return to now:

Boolean 1. Each operation on {0, 1} , i.e..: in {0, 1}n → {0, 1},
n = 0, 1, . . . is a term function of B2 (the fundamental theorem
of switching circuit theory).

2. B2 generates the variety of Boolean algebras.

The first of these properties is called primality: a finite algebra A =
〈A,F 〉 is primal if each operation on A is a term function of A. Until the
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discovery of Malcev conditions this was regarded as an oddity and not re-
ally an algebraic property of algebras. Now with our characterization of
arithmetical varieties (as having an arithmetical term) we can characterize
primality algebraically as follows:

Primal A non-trivial finite algebra is primal iff i) it is simple
(has only the congruences 0 and 1),ii) it is rigid (has only the
identity automorphism), iii) it is minimal (has no non-trivial sub-
algebras), and iv) it has an arithmetical term.

Since primality entails conditions i)-iii) the notion does not apply to va-
rieties. However it has long been known that the variety of Boolean algebras
is polynomial complete, .i.e: every congruence compatible operation on B is
a Boolean polynomial. While this property of varieties until recently was
pretty much ignored the following algebraic characterization of arithmetical
varieties was suggestive:

Arihmeticity2 A variety V is arithmetical iff for each algebra
A ∈ V , each finite partial operation on A which is congruence
compatible (where defined) agrees with some polynomial of A.

This and other related results inaugurated research into polynomial com-
plete varieties (originally called affine complete varieties). Some sample re-
sults of this research include:

Polynomial Completeness

• Every polynomial complete variety V is residually finite (all subdirectly
irreducible members are finite),

• and is also congruence distributive. Additionally,

• if A ∈ V and B < A then any (congruence) compatible operation on
B has exactly one compatible extension on A. From this it immediately
follows that

i) if B < A ∈ V , then V (B) = V (A), and

ii) V is semidegenerate (no non-trivial algebra in V has a one element
subalgebra) This condition is equivalent to: For each A ∈ V the unit
congruence 1A ∈ ConA is compact, i.e.: is the join of finitely many
principal congruences).
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• For a polynomial complete variety V the following are equivalent: i)
V is generated by a finite minimal algebra; ii) is locally finite (every
finitely generated algebra is finite; iii) is term equivalent to a variety of
finite type; iv) has only finitely many siubvarieties.

5. Conclusion Because of these strong properties we ask if polynomial
completeness for a variety can be characterized algebraically. For arithmeti-
cal varieties, (remembering that the variety of Boolean algebras is such), we
have the following important result:

Arithmetical Completeness An arithmetical variety V of fi-
nite type is polynomial complete iff it is generated by a finite min-
imal algebra. In this case V = IPSHA, where A is the generating
algebra. V is called an arithmetical complete variety

From this representation it follows that for polynomial complete arith-
metical varieties of finite type the minimal generating algebra is the unique
largest finite minimal algebra in the variety.

Thus Boolean algebras are just the simplest example of this character-
ization: Suppose an arithmetical complete variety contains a two element
minimal algebra A. Obviously A must be simple. Unless the exchange the
two elements is an automorphism A is rigid and it follows, from the charac-
terization Primal above, that A is a primal and hence is term equivalent to
the two element Boolean algebra.This is “what is so special about Boolean
algebras”.

Characterizing general (necessarily congruence distributive) polynomial
complete varieties of finite type is more complicated. Whereas for the arith-
metical case all finite algebras are polynomial complete, in the general con-
gruence distributive case we must check that all minimal algebras are polyno-
mial complete. The most we can say in this case is that there is a constructive
process for doing this, but which might be quite complex.

Finally, it should be emphasized that the above characterization Arith-
metical Completeness gives us a simple tool kit for constructing such
varieties, in fact, all such varieties: For any finite set A and arithmetical
partition lattice L on A containing both the equality and diversity rela-
tions, choose a compatible arithmetical function t(x, y, z) as an operation.
(Such an operation necessarily exists and can be constructed.) Add a fi-
nite set F = {g, h, . . .} of other operations to guarantee that the algebra
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A = 〈A, {t} ∪ F 〉 is minimal and that L is the congruence lattice of A. (It
is well known that this is possible because L is distributive.) Therefore A
generates an arithmetical polynomial complete variety of finite type in the
same way that B2 generates the variety of Boolean algebras.
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