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Introduction

You might be surprised to learn that the finite continued fraction
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have the same numerator. These fractions simplify to 103993
33102 and 103993

355 respectively.
In this paper, we provide a combinatorial interpretation for the numerators and
denominators of continued fractions which makes this reversal phenomenon easy
to see. Through the use of counting arguments, we illustrate how this and other
important identities involving continued fractions can be easily visualized, derived,
and remembered.

We begin by defining some basic terminology. Given an infinite sequence of
integers a0 ≥ 0, a1 ≥ 1, a2 ≥ 1, . . . , let [a0, a1, . . . , an] denote the finite continued
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The infinite continued fraction [a0, a1, a2, . . . ] is the limit of [a0, a1, . . . , an] as n→
∞. This limit always exists and is some irrational number α [3]. The rational
number rn := [a0, a1, . . . , an] is a fraction pn/qn in lowest terms, called the n-th
convergent of α. It is well-known that pn and qn satisfy the recurrences

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2

for n ≥ 2, with initial conditions p0 = a0, p1 = a1a0 + 1, q0 = 1, q1 = a1.

Now let’s do some combinatorics. For a given continued fraction [a0, a1, a2, . . . ],
consider the following tiling problem. Let Pn count the number of ways to tile a
1 × (n + 1) board with dominoes and stackable square tiles. All cells (numbered
0, 1, . . . , n) must be covered by a tile. Nothing can be stacked on top of a domino, but
cell number i may be covered by a stack of as many as ai square tiles, i = 0, . . . , n.
Figure 1 shows an empty board with the height conditions a0, a1, . . . , an indicated.
Figure 2 gives an example of a valid tiling for a 1× 12 board with height conditions
5, 10, 3, 1, 4, 8, 2, 7, 7, 4, 2, 3.
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Figure 1: An empty 1× (n+ 1) board.

For n ≥ 2, we show
Pn = anPn−1 + Pn−2.

This follows from the observation that a tiling either ends with a stack of square
tiles or a single domino. In the first case, there are an choices for the stack size and
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Figure 2: A tiling satisfying the height conditions 5, 10, 3, 1, 4, 8, 2, 7, 7, 4, 2, 3.
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Figure 3: Verifying the initial conditions for the recurrence relation Pn = anPn−1 +
Pn−2.

Pn−1 ways to tile cells 0 through n− 1. In the second case, there is only one choice
for the last domino, and there are Pn−2 ways to tile cells 0 through n − 2. Using
Figure 3 one can check that P0 = a0 and P1 = a0a1 + 1. Since Pn and pn satisfy the
same recurrence and initial conditions, we have Pn = pn.

Removing cell 0 from the previous board, let Qn count the number of ways to
tile the 1 × n board with dominoes and stackable square tiles, where the ith cell
may be covered by a stack of as many as ai square tiles, i = 1, . . . , n. By the same
reasoning as before, (and letting Q0 = 1 denote the “empty” tiling) we see that
Qn = qn.

To illustrate, consider the continued fraction representation for π, which begins
[3, 7, 15, 1, 292, . . . ]. See Figure 4. If we count the number of ways to tile cells 0, 1,
and 2, we get p2 = 333. Counting the number of ways to tile only cells 1 and 2
easily gives us q2 = 106. This produces the π approximation r2 = 333/106. The
reader should verify that tiling cells 0 through 3 produces r3 = 355/113.
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Figure 4: The beginning of the π board.

When ai = 1 for all i ≥ 0, it is well-known that the nth convergent pn/qn is the
ratio of two consecutive Fibonacci numbers. Specifically, if we define f0 = 1, f1 = 1,
and for n ≥ 2, fn = fn−1 + fn−2, then pn = fn+1 and qn = fn. You may recall that
the Fibonacci number fn counts the number of ways to tile a 1×n board with 1×1
squares and 1 × 2 dominoes. So the continued fraction tiling problem generalizes
the tiling interpretation of Fibonacci numbers [1, 2].

Identities

Armed with our tiling interpretation, many well-known continued fraction identities
can be explained combinatorially. We begin with the reversal identity.

Theorem 1 If [a0, a1, . . . , an−1, an] = pn/qn, then [an, an−1, . . . , a1, a0] = pn/pn−1.

Proof. Although one can easily prove this by induction, the theorem is nearly
obvious when viewed combinatorially. To understand the common numerator, we see
that the number of ways to tile the board with height conditions an, an−1, . . . , a1, a0

is the same as the number of ways to tile the board with height conditions a0, a1, . . . ,

an−1, an. The denominator of [an, an−1, . . . , a1, a0] is the number of ways to tile the
board with height conditions [an−1, . . . , a1, a0], which by reversal is pn−1.

The next few identities are useful for measuring the rate of convergence of con-
vergents.

Theorem 2 The difference between consecutive convergents of [a0, a1, a2, . . . ] is:
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rn − rn−1 = (−1)n−1/qnqn−1. Equivalently, after multiplying both sides by qnqn−1,
we have

pnqn−1 − pn−1qn = (−1)n−1.

Proof. Given height conditions a0, a1, . . . , an, let Pn denote the set of all tilings
on cells 0, . . . , n and let Qn denote the set of all tilings on cells 1, . . . , n. Note that
these sets have sizes |Pn| = pn and |Qn| = qn.

We will construct an almost one-to-one correspondence between the sets Pn ×
Qn−1 and Pn−1 ×Qn. Consider (S, T ) ∈ Pn ×Qn−1. For i ≥ 1, we say (S, T ) has a
fault at cell i if both S and T have tiles that end at i. We say (S, T ) has a fault at
cell 0 if S has a square at cell 0. For instance, in Figure 5, there are faults at cells
0, 3, 5, and 6.

If (S, T ) has a fault, construct (S′, T ′) by swapping the “tails” of S and T

after the rightmost fault. See Figures 5 and 6. Note that (S′, T ′) ∈ Pn−1 × Qn.
Since (S′, T ′) has the same rightmost fault as (S, T ), this procedure is completely
reversible.

S ∈ P11

T ∈ Q10

0 1 2 3 4 5 6 7 8 9 10 11

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11heights:

�
tail

� -
tail

-

6

?

6

?

6

?

6

?

Figure 5: A pair of tilings with faults and tails indicated.

Notice when either S or T contains a square, (S, T ) must have a fault. Thus
the only fault-free pairs occur when S and T consist of all dominoes in staggered
formation as illustrated in Figure 7. When n is odd (i.e., S and T both cover an
even number of cells), there is precisely one fault-free element of Pn×Qn−1 and no
fault-free elements of Pn−1 ×Qn. Therefore when n is odd, we have |Pn ×Qn−1| −
|Pn−1 ×Qn| = 1.

Similarly when n is even, there are no fault-free elements of Pn × Qn−1 and
exactly one fault-free element of Pn−1 ×Qn. Hence when n is even, |Pn ×Qn−1| −
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S′ ∈ P10

T ′ ∈ Q11

0 1 2 3 4 5 6 7 8 9 10 11

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11heights:

Figure 6: Result of swapping tails in Figure 5.

0 1 2 3 4 5 6 7 8 9 10 11

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

Figure 7: The fault-free pair consists of staggered dominoes.

|Pn−1 ×Qn| = −1. Treating the odd and even cases together, we obtain

pnqn−1 − pn−1qn = (−1)n−1.

The next identity shows that the even convergents are increasing, while the odd
convergents are decreasing.

Theorem 3 rn−rn−2 = (−1)nan/qnqn−2. Equivalently, after multiplying both sides
by qnqn−2, we have

pnqn−2 − pn−2qn = (−1)nan.

Proof. As in the last proof, we use tail swapping after the last fault to create a
one-to-one correspondence between the “faulty” elements of Pn×Qn−2 and Pn−2×
Qn. The proof is essentially given in Figures 8, 9, and 10.

The only unmatched elements are those that are fault-free. When n is odd,
there are no fault-free elements of Pn ×Qn−2, but there are precisely an fault-free
elements of Pn−2×Qn, consisting of a stack of squares on the nth cell, and dominoes
everywhere else (Figure 10). Likewise when n is even, there are no fault-free elements
of Pn−2×Qn, but there are an fault-free elements of Pn×Qn−2, consisting of a stack
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S ∈ P11

T ∈ Q9
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a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11heights:
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Figure 8: An element of P11 ×Q9 with rightmost fault indicated.

S′ ∈ P9

T ′ ∈ Q11

0 1 2 3 4 5 6 7 8 9 10 11

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11heights:

Figure 9: The result of swapping tails in Figure 8.

of squares on the nth cell, and dominoes everywhere else. Thus we have established
|Pn ×Qn−2| − |Pn−2 ×Qn| = (−1)nan, as desired.

Using the combinatorially clear fact that qn →∞ as n→∞, the last two iden-
tities demonstrate that (r0, r1), (r2, r3), (r4, r5), . . . is a sequence of nested intervals
whose lengths are going to zero. Hence, limn→∞ rn exists.

Extensions

Next we examine the quantity K(i, j), for i ≤ j, that counts the number of tilings
of the sub-board with cells i, i+ 1, . . . , j with height conditions ai, ai+1, . . . , aj . For
convenience we define K(i, i − 1) = 1. We see that K(i, j) is the numerator of the
continued fraction [ai, ai+1, . . . , aj ] and the denominator of the continued fraction
[ai−1, ai, . . . , aj ]. Thus the K(i, j) are identical to the classical continuants of Euler
[4].

The following theorem, due to Euler, can also be proved by the same tail-
swapping technique.
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0 1 2 3 4 5 6 7 8 9 10
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Figure 10: Problem pairings are fault-free.
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Figure 11: When j −m is even, there are K(i,m − 2)K(j + 2, n) fault-free tilings
(S, T ).

Theorem 4 For i < m < j < n,

K(i, j)K(m,n)−K(i, n)K(m, j) = (−1)j−mK(i,m− 2)K(j + 2, n)

This result follows by considering tilings of sub-boards S from cells i to j and T

from m to n. Every faulty pair (S, T ) corresponds to another faulty pair (S′, T ′)
obtained by swapping the tails after the last fault. The term on the right side
of Theorems 4 counts the number of fault-free tilings that only occur when the
overlapping regions (of S and T , or of S′ and T ′, depending on the parity of j −m)
consist entirely of dominoes in staggered formation. See Figures 11 and 12. Setting
i = 0 and m = 1, Theorem 4 generalizes Theorems 2 and 3 by allowing us to compare
arbitrary convergents rj and rn.

Finally, we generalize in a different direction. Suppose we allow dominoes to
be stacked as well as squares. Specifically, suppose we impose height conditions
b1, b2, . . . so that we may stack as many as bi dominoes on cells i − 1 and i. We
let P̂n count the number of ways to tile the board with cells 0, 1, . . . , n and height
conditions a0, . . . , an and b1 . . . , bn for the squares and dominoes respectively. We
let Q̂n count the same problem with cell 0 removed. As before, we see that P̂n and
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Figure 12: When j −m is odd, there are K(i,m − 2)K(j + 2, n) fault-free tilings
(S′, T ′).

Q̂n satisfy

P̂n = anP̂n−1 + bnP̂n−2

Q̂n = anQ̂n−1 + bnQ̂n−2

for n ≥ 2, with initial conditions P̂0 = a0, P̂1 = a1a0 + b1, Q̂0 = 1, Q̂1 = a1. But
these are precisely the conditions that define the convergents of the expansion

a0 +
b1

a1 +
b2

a2 +
b3

. . . +
bn

an +
.. .

In other words, when the above continued fraction is truncated at the bn/an

term, it simplifies to the rational number P̂n/Q̂n. All of the preceding theorems
have generalizations along these lines with similar combinatorial interpretations.
We invite the reader to continue these investigations.

Acknowledgment We thank Chris Hanusa for asking an inspiring question.
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