As usual, “R” means read, but do not do the problem (do it in your head).

1. Let K be an infinite field, and f and g in $K[x_1, ... , x_n]$. Show that $f = g$ as polynomials if and only if $f, g : \mathbb{A} \to K$ are the same function.

2. If $W = \mathcal{Z}(f_1, ..., f_s)$ and $V = \mathcal{Z}(g_1, ..., g_t)$ are algebraic sets in \mathbb{A}^n, show that $W \cup V$ and $W \cap V$ are algebraic sets.

R3. Show that every finite subset of \mathbb{A}^n is an algebraic set.

4. Show that $X = \{(x, x) : x \in \mathbb{R}, x \neq 1\}$ is not an algebraic set in \mathbb{R}^2. Hint: if $f \in \mathbb{R}[x, y]$ vanishes on X, what can be said about $f(1, 1)$?

5. Let V be an algebraic set in \mathbb{A}^n (over a field K). Let $\mathcal{I}(V)$ be the ideal of all polynomials in $K[x_1, ... , x_n]$ that vanish (evaluate to 0) on the set V.

Call an ideal I in a commutative ring a radical ideal if for all $r \in R$, $r^m \in I$ implies $r \in I$.

Show that $\mathcal{I}(V)$ is a radical ideal.

6. For any nonzero polynomials f and g, show that:
 \begin{itemize}
 \item[(a)] $LT(fg) = LT(f)LT(g)$ and $\partial(fg) = \partial(f) + \partial(g)$.
 \item[(b)] $\partial(f + g) \leq \max\{\partial(f), \partial(g)\}$ with equality if $\partial(f) \neq \partial(g)$ (where \leq is a monomial order).
 \end{itemize}