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Part I

Point-Set Topology
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Chapter 1

Cardinality: To Infinity and Beyond

Exercise 1.1. For sets A1, A2 ⊂ X show that

X − (A1 ∪A2) = (X −A1) ∩ (X −A2).
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Theorem 1.2. (DeMorgan’s Laws) Let X be a set, and let {Ak}Nk=1 be a finite collection of sets such that

Ak ⊂ X for each k = 1, 2, . . . , N . Then

X −

(
N⋃
k=1

Ak

)
=

N⋂
k=1

(X −Ak)

and

X −

(
N⋂
k=1

Ak

)
=

N⋃
k=1

(X −Ak).
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Exercise 1.3. For a function f : X → Y , and sets A,B ⊂ Y , show that f−1(A∪B) = f−1(A)∪ f−1(B)

and f−1(A ∩B) = f−1(A) ∩ f−1(B).
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Exercise 1.4. If f : X → Y is injective and y ∈ Y , then f−1(y) contains at most one point.
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Exercise 1.5. If f : X → Y is surjective and y ∈ Y , then f−1(y) contains at least one point.
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Theorem 1.6. Let 2N denote the even positive integers {2, 4, 6, . . .}. Then 2N has the same cardinality as

N, that is, |2N| = |N|.
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Theorem 1.7. The set Z has the same cardinality as N, that is, |Z| = |N|.
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Theorem 1.8. Every subset of N is either finite or has the same cardinality as N.

14



Theorem 1.9. Every infinite set has a countably infinite subset.
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Theorem 1.10. A set is infinite if and only if there is an injection from the set into a proper subset of itself.
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Theorem 1.11. The union of two countable sets is countable.
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Theorem 1.12. The union of countably many countable sets is countable.
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Theorem 1.13. The set Q is countable.
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Theorem 1.14. The set of all finite subsets of a countable set is countable.

20



Exercise 1.15. Suppose a submarine is moving in the plane along a straight line at a constant speed such

that at each hour, the submarine is at a lattice point, that is, a point whose two coordinates are both integers.

Suppose at each hour you can explode one depth charge at a lattice point that will hit the submarine if it is

there. You do not know the submarine’s direction, speed, or its current position. Prove that you can explode

one depth charge each hour in such a way that you will be guaranteed to eventually hit the submarine.
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Theorem 1.16 (Cantor’s Theorem). The cardinality of the set of natural numbers is not the same as the

cardinality of the set of real numbers. That is, the set of real numbers is uncountable.

22



Exercise 1.17. Suppose A = {a, b, c}. Explicitly write out 2A, the power set of A.
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Theorem 1.18. If a set A is finite, then the power set of A has cardinality 2|A|, that is, |2A| = 2|A|.
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Theorem 1.19. For any set A, there is an injection from A into 2A.
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Theorem 1.20. For a set A, let P be the set of all functions from A to the two point set {0, 1}. Then

|P | = |2A|.
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Theorem 1.21. There is a one-to-one correspondence between 2N and the set of all infinite sequences of 0’s

and 1’s.
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Theorem 1.22 (Cantor’s Power Set Theorem). There is no surjection from a set A onto 2A. Thus for

any setA, the cardinality ofA is not the same as the cardinality of its power set. In other words, |A| 6= |2A|.
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Exercise 1.23. Consider A = [0, 1] and B = [0, 1) and injections f(x) = x/3 from A to B and g(x) = x

from B to A. Construct a bijection h from A to B such that on some points of A, h(x) = f(x), and for the

other points of A, h(x) = g−1(x).
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Exercise 1.24. ConsiderA = [0, 1] andB = [0, 1) and injections f(x) = x/3 fromA toB and g(x) = x/2

from B to A. Construct a bijection h from A to B such that on some points of A, h(x) = f(x), and for the

other points of A, h(x) = g−1(x).
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Theorem 1.25 (Schroeder-Bernstein). If A and B are sets such that there exist injections f from A into

B and g from B into A, then |A| = |B|.
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Theorem 1.26 (Schroeder-Bernstein). If A and B are sets such that there exist a surjective function

f : A→ B and a surjective function g : B → A, then |A| = |B|.
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Theorem 1.27. |R| = |(0, 1)| = |[0, 1]|.
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Theorem 1.28. Let [0, 1]× [0, 1] denote the Cartesian product of two closed unit intervals. Then

|[0, 1]× [0, 1]| = |[0, 1]|.
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Theorem 1.29. The set of all functions f : R→ R has the same cardinality as 2R.
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Theorem 1.30. |R| = |2N|.
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Theorem 1.31. There are infinitely many different infinite cardinalities.
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Continuum Hypothesis. There is no uncountable set whose cardinality is greater than the cardinality of

N yet less than the cardinality of R.
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Exercise 1.32. Given a set X , consider the poset P of all subsets of X partially ordered by inclusion. Show

that X is the unique maximal element of P , and show that the empty set is the unique least element of P .
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Exercise 1.33. Construct an example of a poset with several maximal elements and several least elements.
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Exercise 1.34. Show that R with the ≤ relation is totally ordered but not well-ordered.
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Zorn’s Lemma. Let X be a partially ordered set in which each totally ordered subset has an upper bound

in X . Then X has a maximal element.
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Axiom of Choice. Let {Aα}α∈λ be a set of non-empty sets. Then there is a function f : λ →
⋃
α∈λAα

such that for each α in λ, f(α) is an element of Aα.
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Well-Ordering Principle. Every set can be well-ordered. That is, every set can be put in one-to-one

correspondence with a well-ordered set.

44



Theorem 1.35. Zorn’s Lemma, the Axiom of Choice, and the Well-Ordering Principle are equivalent.
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Theorem 1.36. 1. If α is an ordinal number, then any element of α is also an ordinal.

2. S(α) := α ∪ {α}, the successor of α, is also an ordinal.

3. The union of any set of ordinals is an ordinal.

4. The ordinal numbers are naturally ordered by inclusion.

5. The intersection of any set of ordinals is an ordinal contained in that set of ordinals and is the least

element in the set. Hence, any set of ordinal numbers has a least element. Hence, ordinals are well-

ordered.
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Theorem 1.37. Let {αi}i∈ω0 be a countable set of countable ordinal numbers; that is, each αi < ω1. Then

there is an ordinal β such that αi < β for each i and β < ω1.
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Theorem 1.38. For any countable set of countable ordinals {αi}i∈ω0 , there is a countable limit ordinal γ

such that for every ordinal β < γ, there exists an αi such that β < αi < γ.
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Theorem 1.39. Let A and B be unbounded sets of ordinals in ω1, that is, for every ordinal δ ∈ ω1, there is

an ordinal α ∈ A such that δ < α and an ordinal β ∈ B such that δ < β. Then there exists a limit ordinal

γ in ω1 such that γ is a limit of ordinals from A and is also a limit of ordinals from B.
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Chapter 2

Topological Spaces: Fundamentals

Theorem 2.1. Let {Ui}ni=1 be a finite collection of open sets in a topological space (X,T). Then
⋂n
i=1 Ui

is open.
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Exercise 2.2. Why does your proof not prove the false statement that the infinite intersection of open sets

is necessarily open?
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Theorem 2.3. A set U is open in a topological space (X,T) if and only if for every point x ∈ U , there

exists an open set Ux such that x ∈ Ux ⊂ U .
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Exercise 2.4. Verify that Tstd is a topology on Rn; in other words, it satisfies the four conditions of the

definition of a topology.
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Exercise 2.5. Verify that the discrete, indiscrete, finite complement, and countable complement topologies

are indeed topologies for any set X .
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Exercise 2.6. Describe some of the open sets you get if R is endowed with the topologies described above

(standard, discrete, indiscrete, finite complement, and countable complement). Specifically, identify sets

that demonstrate the differences among these topologies, that is, find sets that are open in some topologies

but not in others. For each of the topologies, determine if the interval (0, 1) is an open set in that topology.
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Exercise 2.7. Give an example of a topological space and a collection of open sets in that topological space

that show that the infinite intersection of open sets need not be open.
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Exercise 2.8. Let X = R and A = (1, 2). Verify that 0 is a limit point of A in the indiscrete topology and

the finite complement topology, but not in the standard topology nor the discrete topology on R.
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Theorem 2.9. Suppose p 6∈ A in a topological space (X,T). Then p is not a limit point of A if and only if

there exists a neighborhood U of p such that U ∩A = ∅.
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Exercise 2.10. If p is an isolated point of a set A in a topological space X , then there exists an open set U

such that U ∩A = {p}.
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Exercise 2.11. Give examples of sets A in various topological spaces (X,T) with

1. a limit point of A that is an element of A;

2. a limit point of A that is not an element of A;

3. an isolated point of A;

4. a point not in A that is not a limit point of A.
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Exercise 2.12.

1. Which sets are closed in a set X with the discrete topology?

2. Which sets are closed in a set X with the indiscrete topology?

3. Which sets are closed in a set X with the finite complement topology?

4. Which sets are closed in a set X with the countable complement topology?
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Theorem 2.13. For any topological space (X,T) and A ⊂ X , A is closed. That is, for any set A in a

topological space, A = A.
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Theorem 2.14. Let (X,T) be a topological space. Then the set A is closed if and only if X −A is open.
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Theorem 2.15. Let (X,T) be a topological space, and let U be an open set and A be a closed subset of X .

Then the set U −A is open and the set A− U is closed.
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Theorem 2.16. Let (X,T) be a topological space. Then:

i) ∅ is closed.

ii) X is closed.

iii) The union of finitely many closed sets is closed.

iv) Let {Aα}α∈λ be a collection of closed subsets in (X,T). Then
⋂
α∈λAα is closed.
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Exercise 2.17. Give an example to show that the union of infinitely many closed sets in a topological space

may be a set that is not closed.
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Exercise 2.18. Give examples of topological spaces and sets in them that:

1. are closed, but not open;

2. are open, but not closed;

3. are both open and closed;

4. are neither open nor closed.
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Exercise 2.19. State whether each of the following sets are open, closed, both, or neither.

1. In Z with the finite complement topology: {0, 1, 2}, {prime numbers}, {n | |n| ≥ 10}.

2. In R with the standard topology: (0, 1), (0, 1], [0, 1], {0, 1}, {1/n | n ∈ N}.

3. In R2 with the standard topology: {(x, y) | x2+y2 = 1}, {(x, y) | x2+y2 > 1}, {(x, y) | x2+y2 ≥ 1}.
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Theorem 2.20. For any set A in a topological space X , the closure of A equals the intersection of all closed

sets containing A, that is,

A =
⋂

B⊃A,B∈C
B

where C is the collection of all closed sets in X .
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Exercise 2.21. Pick several different subsets of R, and find their closures in:

1. the discrete topology;

2. the indiscrete topology;

3. the finite complement topology;

4. the standard topology.
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Theorem 2.22. Let A and B be subsets of a topological space X . Then

1. A ⊂ B implies A ⊂ B.

2. A ∪B = A ∪B.
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Exercise 2.23. Let {Aα}α∈λ be a collection of subsets of a topological space X . Then is the following

statement true? ⋃
α∈λ

Aα =
⋃
α∈λ

Aα.
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Exercise 2.24. In R2 with the standard topology, describe the limit points and closure of each of the follow-

ing two sets:

1. S =
{(
x, sin

(
1
x

))
| x ∈ (0, 1)

}
. The closure of the set S is called the topologist’s sine curve.

2. C = {(x, 0) | x ∈ [0, 1]} ∪
⋃∞
n=1

{(
1
n , y
)
| y ∈ [0, 1]

}
. The closure of the set C is called the topolo-

gist’s comb.
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Exercise 2.25. In the standard topology on R, there exists a non-empty subset C of the closed unit interval

[0, 1] that is closed, contains no non-empty open interval, and where no point of C is an isolated point.
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Theorem 2.26. Let A be a subset of a topological space X . Then p is an interior point of A if and only if

there exists an open set U with p ∈ U ⊂ A.
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Exercise 2.27. Show that a set U is open in a topological space X if and only if every point of U is an

interior point of U .
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Theorem 2.28. Let A be a subset of a topological space X . Then Int(A), Bd(A) and Int(X − A) are

disjoint sets whose union is X .
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Exercise 2.29. Pick several different subsets of R, and for each one, find its interior and boundary using:

1. the discrete topology;

2. the indiscrete topology;

3. the finite complement topology;

4. the standard topology.
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Theorem 2.30. Let A be a subset of the topological space X and let p be a point in X . If {xi}i∈N ⊂ A and

xi → p, then p is in the closure of A.
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Theorem 2.31. In standard topology on Rn, if p is a limit point of a setA, then there is a sequence of points

in A that converge to p.
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Exercise 2.32. Find an example of a topological space and a convergent sequence in that space, where the

limit of the sequence is not unique.
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Exercise 2.33. 1. Consider sequences in R with the finite complement topology. Which sequences con-

verge? To what value(s) do they converge?

2. Consider sequences in R with the countable complement topology. Which sequences converge? To

what value(s) do they converge?
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Chapter 3

Bases, Subspaces, Products: Creating
New Spaces

Theorem 3.1. Let (X,T) be a topological space and B be a collection of subsets of X . Then B is a basis for

T if and only if:

1. B ⊂ T, and

2. for each set U in T and point p in U there is a set V in B such that p ∈ V ⊂ U .
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Exercise 3.2. 1. Let B1 = {(a, b) ⊂ R | a, b ∈ Q}. Show that B1 is a basis for the standard topology

on R.

2. Let B2 = {(a, b)∪ (c, d) ⊂ R | a < b < c < d are distinct irrational numbers}. Show that B2 is also

a basis for the standard topology on R.
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Theorem 3.3. Suppose X is a set and B is a collection of subsets of X . Then B is a basis for some topology

on X if and only if:

1. each point of X is in some element of B, and

2. if U and V are sets in B and p is a point in U ∩V , there is a set W in B such that p ∈W ⊂ (U ∩V ).
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Exercise 3.4. Show that the basis proposed above for the lower limit topology is in fact a basis.
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Theorem 3.5. Every open set in Rstd is an open set in RLL, but not vice versa.
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Exercise 3.6. Give an example of two topologies on R such that neither is finer than the other, that is, the

two topologies are not comparable.
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Exercise 3.7. Check that the collection of sets that we specify as a basis in the Double Headed Snake actually

forms the basis for a topology.
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Exercise 3.8. In the Double Headed Snake, show that every point is a closed set; however, it is impossible

to find disjoint open sets U and V such that 0′ ∈ U and 0′′ ∈ V .
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Exercise 3.9. 1. In the topological space Rhar, what is the closure of the set H = {1/n}n∈N?

2. In the topological space Rhar, what is the closure of the set H− = {−1/n}n∈N?

3. Is it possible to find disjoint open sets U and V in Rhar such that 0 ∈ U and H ⊂ V ?
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Exercise 3.10. 1. In Hbub, what is the closure of the set of rational points on the x-axis?

2. In Hbub, which subsets of the x-axis are closed sets?

3. In Hbub, let A be a countable set on the x-axis and let z be a point on the x-axis not in A. Then

there exist disjoint open sets U and V such that A ⊂ U and z ∈ V . (Do you need the countability

hypothesis on A?)

4. In Hbub, let A and B be countable sets on the x-axis such that A and B are disjoint. Then there exist

disjoint open sets U and V such that A ⊂ U and B ⊂ V .

5. In Hbub, let A be the rational numbers and let B be the irrational numbers. Do there exist disjoint

open sets U and V such that A ⊂ U and B ⊂ V ?
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Exercise 3.11. Check that the arithmetic progressions form a basis for a topology on Z.
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Theorem 3.12. There are infinitely many primes.
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Exercise 3.13. A basis for a topology is also a subbasis for that topology.
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Theorem 3.14. Let (X,T) be a topological space and let S be a collection of subsets of X . Then S is a

subbasis for T if and only if

1. S ⊂ T, and

2. for each set U in T and point p in U there is a finite collection {Vi}ni=1 of elements of S such that

p ∈
n⋂
i=1
Vi ⊂ U .
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Exercise 3.15. Let S be the following collection of subsets of R: {x | x < a for some a ∈ R} and {x | a < x

for some a ∈ R}. Then S is a subbasis for R with the standard topology.
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Theorem 3.16. Suppose X is a set and S is a collection of subsets of X . Then S is a subbasis for some

topology on X if and only if every point of X is in some element of S.
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Exercise 3.17. Let S be the following collection of subsets of R: {x | x < a for some a ∈ R} and {x | a ≤ x
for some a ∈ R}. For what topology on R is S a subbasis?
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Exercise 3.18. Let X be a set totally ordered by <. Let S be the collection of sets of the following forms

{x ∈ X | x < a} or {x ∈ X | a < x}

for a ∈ X . Then S forms a subbasis for the order topology on X .
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Exercise 3.19. Verify that the order topology on R with the usual < order is the standard topology on R.
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Exercise 3.20. In the lexicographically ordered square find the closures of the following subsets:

A =

{(
1

n
, 0

)
| n ∈ N

}
.

B =

{(
1− 1

n
,
1

2

)
| n ∈ N

}
.

C = {(x, 0) | 0 < x < 1} .

D =

{(
x,

1

2

)
| 0 < x < 1

}
.

E =

{(
1

2
, y

)
| 0 < y < 1

}
.
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Exercise 3.21. Assume that N has the usual order. Let Nω denote the Cartesian product of a countable

number of copies of the space N. It can be endowed with the dictionary order in a natural way. Show that

Nω with the dictionary order topology is uncountable, is not well-ordered, and any set that does not have a

least element does have a limit point.
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Theorem 3.22. Consider the topological space ω1 consisting of all ordinals less than ω1, the first uncount-

able ordinal, with the order topology. Let A be an infinite set of ordinals in ω1. Then there is an ordinal

β < ω1 that is a limit point of A.
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Theorem 3.23. Let A and B be unbounded closed sets in the topological space ω1. Then A ∩B 6= ∅.
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Theorem 3.24. Let (X,T) be a topological space and Y ⊂ X . Then the collection of sets TY is in fact a

topology on Y .
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Exercise 3.25. Consider Y = [0, 1) as a subspace of Rstd. In Y , is the set [1/2, 1) open, closed, neither, or

both?
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Exercise 3.26. Consider a subspace Y of the topological space X . Is every subset U ⊂ Y that is open in Y

also open in X?
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Theorem 3.27. Let (Y,TY ) be a subspace of (X,T). A subset C ⊂ Y is closed in (Y,TY ) if and only if

there is a set D ⊂ X , closed in (X,T), such that C = D ∩ Y .
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Corollary 3.28. Let (Y,TY ) be a subspace of (X,T). A subset C ⊂ Y is closed in (Y,TY ) if and only if

ClX(C) ∩ Y = C.
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Theorem 3.29. Let (X,T) be a topological space, and (Y, TY ) be a subspace. If B is a basis for T, then

BY = {B ∩ Y |B ∈ B} is a basis for TY .
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Exercise 3.30. Consider the following subspaces of the lexicographically ordered square:

1. D =
{(
x, 12

)
| 0 < x < 1

}
.

2. E =
{(

1
2 , y
)
| 0 < y < 1

}
.

3. F = {(x, 1) | 0 < x < 1}.

As sets they are all lines. Describe their relative topologies, especially noting any connections to topologies

you have seen already.
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Exercise 3.31. Verify that the collection of basic open sets above satisfies the conditions of Theorem 3.3,

thus confirming that this collection is the basis for a topology.
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Exercise 3.32. Draw examples of basic and arbitrary open sets in R2 = R×R using the standard topology

on R. Find (i) an open set in R× R that is not the product of open sets, and (ii) a closed set in R× R that

is not the product of closed sets.
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Exercise 3.33. Is the product of closed sets closed?
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Exercise 3.34. Show that the product topology on X × Y is the same as the topology generated by the

subbasis of inverse images of open sets under the projection functions, that is the subbasis is {π−1X (U) |
U open in X} ∪ {π−1Y (V ) | V open in Y }.
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Exercise 3.35. Using the standard topology on R, is the product topology on R×R the same as the standard

topology on R2?
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Exercise 3.36. A basis for the product topology on Πα∈λXα is the collection of all sets of the form

Πα∈λUα where Uα is open in Xα for each α and Uα = Xα for all but finitely many α.
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Exercise 3.37. Let T be the topology on 2X with basis generated by the subbasis S.

1. Every basic open set in 2X is both open and closed.

2. Show that if a collection of subbasic open sets of 2X has the property that every point of 2X lies in at

least one of those subbasic open sets, then there are two subbasic open sets in that collection such that

every point of 2X lies in one of those two subbasic sets.

3. Show that if a collection of basic open sets of 2X has the property that every point of 2X lies in at least

one of those basic open sets, then there are a finite number of basic open sets in that collection such

that every point of 2X lies in one of those basic sets.
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Exercise 3.38. In the product space 2R, what is the closure of the set Z consisting of all elements of 2R that

are 0 on every rational coordinate, but may be 0 or 1 on any irrational coordinate? Equivalently, thinking

of 2R as subsets of R, what is the closure of the set Z consisting of all subsets of R that do not contain any

rational?
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Exercise 3.39. Find a subset A of 2R and a limit point x of A such that no sequence in A converges to x.

For an even greater challenge, determine whether you can find such an example if A is countable.
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Exercise 3.40. Let Rω be the countable product of copies of R. So every point in Rω is a sequence

(x1, x2, x3, ...). Let A ⊂ Rω be the set consisting of all points with only positive coordinates. Show

that in the product topology, 0 = (0, 0, 0, ...) is a limit point of the set A, and there is a sequence of points

in A converging to 0. Then show that in the box topology, 0 = (0, 0, 0, ...) is a limit point of the set A, but

there is no sequence of points in A converging to 0.

124



Exercise 3.41. Show that the set 2N in the box topology is a discrete space, whereas the set 2N in the product

topology has no isolated points.
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Chapter 4

Separation Properties: Separating This
from That

Theorem 4.1. A space (X,T) is T1 if and only if every point in X is a closed set.
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Exercise 4.2. Let X be a space with the finite complement topology. Show that X is T1.
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Exercise 4.3. Show that Rstd is Hausdorff.

129



Exercise 4.4. Show that Hbub is regular.
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Exercise 4.5. Show that RLL is normal.
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Exercise 4.6. 1. Consider R2 with the standard topology. Let p ∈ R2 be a point not in a closed set A.

Show that inf{d(a, p) | a ∈ A} > 0. (Recall that inf E is the greatest lower bound of a set of real

numbers E.)

2. Show that R2 with the standard topology is regular.

3. Find two disjoint closed subsets A and B of R2 with the standard topology such that

inf{d(a, b) | a ∈ A and b ∈ B} = 0.

4. Show that R2 with the standard topology is normal.
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Theorem 4.7. 1. A T2-space (Hausdorff) is a T1-space.

2. A T3-space (regular and T1) is a Hausdorff space, that is, a T2-space.

3. A T4-space (normal and T1) is regular and T1, that is, a T3-space.
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Theorem 4.8. A topological space X is regular if and only if for each point p in X and open set U contain-

ing p there exists an open set V such that p ∈ V and V ⊂ U .
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Theorem 4.9. A topological space X is normal if and only if for each closed set A in X and open set U

containing A there exists an open set V such that A ⊂ V , and V ⊂ U .
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Theorem 4.10. A topological space X is normal if and only if for each pair of disjoint closed sets A and B,

there are disjoint open sets U and V such that A ⊂ U , B ⊂ V , and U ∩ V = ∅.
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Theorem 4.11 (The Incredible Shrinking Theorem). A topological space X is normal if and only if for

each pair of open sets U , V such that U ∪ V = X , there exist open sets U ′, V ′ such that U ′ ⊂ U and

V ′ ⊂ V , and U ′ ∪ V ′ = X .
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Exercise 4.12. 1. Describe an example of a topological space that is T1 but not T2.

2. Describe an example of a topological space that is T2 but not T3.

3. Describe an example of a topological space that is T3 but not T4.
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Exercise 4.13. Construct a table, listing our previous examples of topological spaces as column titles, and

listing the separation properties as row titles. In each box, answer the question of whether the example of

the column has the property of the row. Here are the spaces to use as column titles:

1. Rstd

2. Rnstd

3. indiscrete topology

4. discrete topology

5. finite complement topology

6. countable complement topology

7. lower limit topology, RLL

8. double headed snake, R+00

9. Rhar

10. Sticky Bubble Topology, Hbub

11. arithmetic progression topology, Zarith

12. lexicographically ordered square

13. 2X

Here are the properties to use as row titles:

1. T1

2. Hausdorff

3. regular

4. normal
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Exercise 4.14. Show that Hbub is not normal.
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Theorem 4.15. Order topologies are T1, Hausdorff, regular, and normal.
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Theorem 4.16. Let X and Y be Hausdorff. Then X × Y is Hausdorff.
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Theorem 4.17. Let X and Y be regular. Then X × Y is regular.
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Exercise 4.18. Show that RLL × RLL is not normal. It may help to consider the “negative diagonal” line

L.
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Theorem 4.19. Every Hausdorff space is hereditarily Hausdorff.
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Theorem 4.20. Every regular space is hereditarily regular.
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Exercise 4.21. 1. Prove that the space 2R is normal.

2. Prove that if you remove a single point from 2R, the resulting subspace is not normal.
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Exercise 4.22. (Walking the Tychonoff Plank, or Mutiny on the Boundary)

1. Show that the Tychonoff Plank is normal.

2. Show that the Tychonoff Plank minus the single point (ω0, ω1) is not normal.
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Theorem 4.23. Let A be a closed subset of a normal space X . Then A is normal when given the relative

topology.
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Exercise 4.24. 1. Prove that for any setX , 2X is normal. (This part is not really different from showing

that 2R is normal, which you did in a previous exercise.)

2. Recall that there is a one-to-one correspondence between the points of 2X and subsets ofX , as follows:

recall that each point of 2X is a function f : X → {0, 1}, so f−1(1) is a subset of X . Let C ⊂ 2X

consist of those points that take on the value 1 on only a countable set of coordinates, that is, C is

the set of functions f : X → {0, 1}, for which f−1(1) is countable. Prove that C with the subspace

topology is normal.
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Exercise 4.25. Let Y be a subspace of a topological space X , and let A and B be two disjoint closed subsets

of Y in the subspace topology. Show that both A ∩B = ∅ and A ∩B = ∅, where the closures are taken in

X .
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Theorem 4.26. The space X is a completely normal space if and only if X is hereditarily normal.
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Exercise 4.27. 1. Recall that R is an order topology. Find a subset of R where the subspace topology is

not the order topology on the subset.

2. Find a line in the lexicographically ordered square whose relative topology is the discrete topology on

this line, but this is not the order topology on the subset.

3. Notice that RLL is not an order topology. Find a line in the lexicographically ordered square whose

relative topology is the lower limit topology.
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Theorem 4.28. Order topologies are hereditarily normal.
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Theorem 4.29 (The Normality Lemma). LetA andB be subsets of a topological spaceX and let {Ui}i∈N
and {Vi}i∈N be two collections of open sets such that

1. A ⊂
⋃
i∈N Ui,

2. B ⊂
⋃
i∈N Vi,

3. for each i in N, U i ∩B = ∅ and V i ∩A = ∅.

Then there exist open sets U and V such that A ⊂ U , B ⊂ V , and U ∩ V = ∅.
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Theorem 4.30. If X is normal and C = ∪i∈NKi is the union of closed sets Ki in X , then the subspace C

is normal.
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Theorem 4.31. Suppose a space X is regular and countable. Then X is normal.
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Theorem 4.32. Suppose a space X is regular and has a countable basis. Then X is normal.
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Theorem 4.33. Let X be a perfectly normal space. Then X is completely normal.
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Chapter 5

Countable Features of Spaces: Size
Restrictions

Exercise 5.1. Show that A is dense in X if and only if every non-empty open set of X contains a point of

A.
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Exercise 5.2. Show that Rstd is separable. With which of the topologies on R that you have studied is R not

separable?
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Exercise 5.3. Add ’separable’ as a new property in your chart, and complete your chart by deciding which

of the spaces we’ve studied are separable.
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Exercise 5.4. Find a separable space that contains a subspace that is not separable in the subspace topology.
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Theorem 5.5. If X and Y are separable spaces, then X × Y is separable.
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Theorem 5.6. The space 2R is separable.

166



Exercise 5.7. Let {Xβ}β∈µ be a collection of separable spaces where |µ| ≤ 2ω0 , then
∏
β∈µXβ is separable.
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Exercise 5.8. If X is a separable, Hausdorff space, then |X| ≤
∣∣∣22N∣∣∣.
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Theorem 5.9. Let X be a 2nd countable space, then X is separable.
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Exercise 5.10. 1. The space Rstd is 2nd countable (and hence separable).

2. The space RLL is separable but not 2nd countable.

3. The space Hbub is separable but not 2nd countable.
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Theorem 5.11. Every uncountable set in a 2nd countable space has a limit point.
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Exercise 5.12. A 2nd countable space is hereditarily 2nd countable.
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Exercise 5.13. If X and Y are 2nd countable spaces, then X × Y is 2nd countable.

173



Theorem 5.14. Let X be a 2nd countable space. Then X is 1st countable.

174



Theorem 5.15. If X is a topological space, p ∈ X , and p has a countable neighborhood basis, then p has a

nested countable neighborhood basis.
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Exercise 5.16. 1. The space RLL is 1st countable.

2. The space Hbub is 1st countable.

3. The space 2R is not 1st countable.
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Exercise 5.17. You may as well extend your table of spaces and properties by adding new rows for the

properties 1st countable and 2nd countable and determining those properties for each of your spaces.
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Theorem 5.18. Suppose x is a limit point of the set A in a 1st countable space X . Then there is a sequence

of points {ai}i∈N in A that converges to x.
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Exercise 5.19. A 1st countable space is hereditarily 1st countable.
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Exercise 5.20. If X and Y are 1st countable spaces, then X × Y is 1st countable.
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Exercise 5.21. Show that the real line with the standard topology is Souslin.

181



Theorem 5.22. A separable space has the Souslin property.
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Theorem 5.23. For any set X , the topological space 2X has the Souslin property.
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Exercise 5.24. Find a Souslin space that is not separable.
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Theorem. Let {Xβ}β∈µ be a collection of separable spaces, then
∏
β∈µXβ is Souslin.
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Chapter 6

Compactness: The Next Best Thing to
Being Finite

Theorem 6.1. Let X be a finite topological space. Then X is compact.
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Theorem 6.2. Let C be a compact subset of Rstd. Then C has a maximum point, that is, there is a point

m ∈ C such that for every x ∈ C, x ≤ m.
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Theorem 6.3. If X is a compact space, then every infinite subset of X has a limit point.
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Corollary 6.4. If X is compact and E is a subset of X with no limit point, then E is finite.
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Theorem 6.5. A space X is compact if and only if every collection of closed sets with the finite intersection

property has a non-empty intersection.
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Theorem 6.6. A space X is compact if and only if for any open set U in X and any collection of closed sets

{Kα}α∈λ such that
⋂
α∈λKα ⊂ U , there exist a finite number of the Kα’s whose intersection lies in U .
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Exercise 6.7. If A and B are compact subsets of X , then A ∪ B is compact. Suggest and prove a general-

ization.
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Theorem 6.8. Let A be a closed subspace of a compact space. Then A is compact.
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Theorem 6.9. Let A be a compact subspace of a Hausdorff space X . Then A is closed.
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Exercise 6.10. Construct an example of a compact subset of a topological space that is not closed.
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Exercise 6.11. Must the intersection of two compact sets be compact? Add hypotheses, if necessary. Extend

any theorems you discover, if possible.
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Theorem 6.12. Every compact, Hausdorff space is normal.
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Theorem 6.13. Let B be a basis for a space X . Then X is compact if and only if every cover of X by basic

open sets in B has a finite subcover.
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Theorem 6.14. For any a ≤ b in R, the subspace [a, b] is compact.
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Heine-Borel Theorem 6.15. Let A be a subset of Rstd. Then A is compact if and only if A is closed and

bounded.
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Exercise 6.16. Consider the rationals Q with the subspace topology inherited from R. Find a set A in Q
that is closed and bounded but not compact.
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Theorem 6.17. Every compact subset C of R contains a maximum in the set C, i.e., there is an m ∈ C
such that for any x ∈ C, x ≤ m.
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Theorem 6.18 (The tube lemma). Let X × Y be a product space with Y compact. If U is an open set of

X × Y containing the set x0 × Y , then there is some open set W in X containing x0 such that U contains

W × Y (called a “tube” around x0 × Y ).
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Theorem 6.19. Let X and Y be compact spaces. Then X × Y is compact.
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Heine-Borel Theorem 6.20. Let A be a subset of Rn with the standard topology. Then A is compact if

and only if A is closed and bounded.
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Alexander Subbasis Theorem 6.21. Let S be a subbasis for a space X . Then X is compact if and only if

every subbasic open cover has a finite subcover.
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Exercise 6.22. Use the Alexander Subbasis Theorem to prove that the space 2X is compact for every X .

208



Tychonoff’s Theorem 6.23. Any product of compact spaces is compact.
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Exercise 6.24. Consider the set [0, 1]ω and show that the Tychonoff Theorem is not true if the box topology

is used instead of the product topology.
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Theorem 6.25. Every countably compact and Lindelöf space is compact.
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Theorem 6.26. Let X be a T1 space. Then X is countably compact if and only if every infinite subset of X

has a limit point.

212



Theorem 6.27. If X is a Lindelöf space, then every uncountable subset of X has a limit point.
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Exercise 6.28. Formulate and prove theorems about Lindelöf and countably compact spaces analogous to

the theorems you proved relating compactness with collections of closed sets with the finite intersection

property.
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Theorem 6.29. If A is a closed subspace of a countably compact (respectively, Lindelöf) space, then A is

countably compact (respectively, Lindelöf).
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Theorem 6.30. Every regular, Lindelöf space is normal.

216



Theorem 6.31. Let B be a basis for a space X . Then X is Lindelöf if and only if every cover of X by basic

open sets in B has a countable subcover.

217



Corollary 6.32. Every 2nd countable space is Lindelöf.
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Exercise 6.33. Can you think of a topological space in which every countable open cover by basic open sets

has a finite subcover and yet not every countable open cover has a finite subcover?
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Exercise 6.34. Show that RLL is Lindelöf, but RLL × RLL is not Lindelöf.
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Theorem 6.35. The space ω1 of countable ordinals is countably compact but not compact.
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Theorem 6.36. The space ω1 + 1, which includes all countable ordinals together with the ordinal ω1, is

compact.

222



Exercise 6.37. Extend your table of spaces and properties by adding new rows for the properties compact,

Lindelöf, and countably compact and determining those properties for each of your spaces.
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Theorem 6.38. Let B = {Bα}α∈λ be a locally finite collection of subsets of a space X . Then

(
⋃
α∈λ

Bα) =
⋃
α∈λ

Bα.
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Theorem 6.39. Let A be a closed subspace of a paracompact space. Then A is paracompact.
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Theorem 6.40. Every paracompact space is normal.
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Theorem 6.41. Every regular, T1, Lindelöf space is paracompact.
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Chapter 7

Continuity: When Nearby Points Stay
Together

Theorem 7.1. Let X and Y be topological spaces and let f : X → Y be a function. Then the following are

equivalent:

1. The function f is continuous.

2. For every closed set K in Y , the inverse image f−1(K) is closed in X .

3. For every limit point p of a set A in X , the image f(p) belongs to f(A).

4. For every x ∈ X and open set V containing f(x), there is an open set U containing x such that

f(U) ⊂ V .
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Theorem 7.2. Let X,Y be topological spaces and y0 ∈ Y . The constant map f : X → Y defined by

f(x) = y0 is continuous.
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Theorem 7.3. Let X ⊂ Y be topological spaces. The inclusion map i : X → Y defined by i(x) = x is

continuous.
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Theorem 7.4. Let f : X → Y be a continuous map between topological spaces, and let A be a subset of X .

Then the restriction map f |A : A→ Y defined by f |A(a) = f(a) is continuous.
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Theorem 7.5. A function f : Rstd → Rstd is continuous if and only if for every point x in R and ε > 0,

there is a δ > 0 such that for every y ∈ R with d(x, y) < δ, then d(f(x), f(y)) < ε.
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Theorem 7.6. Let X be a 1st countable space and Y be a topological space. Then a function f : X → Y is

continuous if and only if for each convergent sequence xn → x in X , f(xn) converges to f(x) in Y .
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Theorem 7.7. LetX be a space with a dense setD, and let Y be Hausdorff. Let f : X → Y and g : X → Y

be continuous functions such that for every d in D, f(d) = g(d). Then for all x in X , f(x) = g(x).
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Theorem 7.8. The cardinality of the set of continuous functions from R to R is the same as the cardinality

of R.
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Theorem 7.9. If f : X → Y and g : Y → Z are continuous, then their composition g ◦ f : X → Z is

continuous.
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Theorem 7.10 (pasting lemma). Let X = A ∪ B, where A,B are closed in X . Let f : A → Y and

g : B → Y be continuous functions that agree on A ∩ B. Then the function h : A ∪ B → Y such that

h = f on A and h = g on B is continuous.
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Theorem 7.11 (pasting lemma). Let X = A ∪ B, where A,B are open in X . Let f : A → Y and

g : B → Y be continuous functions which agree on A ∩ B. Then the function h : A ∪ B → Y such that

h = f on A and h = g on B is continuous.
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Exercise 7.12. Is the pasting lemma true when A and B in the preceding theorems are arbitrary sets?

240



Theorem 7.13. Let f : X → Y be a function and let B be a basis for Y . Then f is continuous if and only

if for every open set B in B, f−1(B) is open in X .
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Theorem 7.14. Let f : X → Y be a function and let B be a subbasis for Y . Then f is continuous if and

only if for every open set B in B, f−1(B) is open in X .
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Theorem 7.15. If X is compact, and f : X → Y is continuous and surjective, then Y is compact.
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Theorem 7.16. If X is Lindelöf and f : X → Y is continuous and surjective, then Y is Lindelöf.
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Theorem 7.17. If X is countably compact and f : X → Y is continuous and surjective, then Y is

countably compact.
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Theorem 7.18. Let D be a dense set of a topological space X and let f : X → Y be continuous and

surjective. Then f(D) is dense in Y .
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Corollary 7.19. Let X be a separable space and let f : X → Y be continuous and surjective. Then Y is

separable.
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Exercise 7.20. 1. Find an open function that is not continuous.

2. Find a closed function that is not continuous.

3. Find a continuous function that is neither open nor closed.

4. Find a continuous function that is open but not closed.

5. Find a continuous function that is closed but not open.
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Theorem 7.21. If X is normal and f : X → Y is continuous, surjective, and closed, then Y is normal.
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Theorem 7.22. If {Bα}α∈λ is a basis for X and f : X → Y is continuous, surjective, and open, then

{f(Bα)}α∈λ is a basis for Y .
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Corollary 7.23. If X is 2nd countable and f : X → Y is continuous, surjective, and open, then Y is 2nd

countable.
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Theorem 7.24. Let X be compact and Y be Hausdorff. Then any continuous function f : X → Y is

closed.

252



Theorem 7.25. Let X be compact and 2nd countable and let Y be Hausdorff. If f : X → Y is continuous

and surjective, then Y is 2nd countable.
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Theorem 7.26. Being homeomorphic is an equivalence relation on topological spaces.
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Exercise 7.27. Let a and b be points in R1 with a < b. Show that (a, b) with the subspace topology from

R1
std is homeomorphic to R1

std.
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Theorem 7.28. If f : X → Y is continuous, the following are equivalent:

a) f is a homeomorphism.

b) f is a closed bijection.

c) f is an open bijection.
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Theorem 7.29. Suppose f : X → Y is a continuous bijection where X is compact and Y is Hausdorff.

Then f is a homeomorphism.
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Exercise 7.30. Construct some examples to show why the compactness and Hausdorff assumptions in the

previous theorem are necessary.
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Corollary 7.31. Let X be a compact space and let Y be Hausdorff. If f : X → Y is a continuous, injective

map, then f is an embedding.
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Theorem 7.32. Let X and Y be topological spaces. The projection maps πX , πY on X×Y are continuous,

surjective, and open.
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Theorem 7.33. LetX and Y be topological spaces. The product topology onX×Y is the coarsest topology

on X × Y that makes the projection maps πX , πY on X × Y continuous.
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Exercise 7.34. Find an example of X and Y that shows that the projection map πX : X × Y → X is not

necessarily a closed map.
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Theorem 7.35. Let X and Y be topological spaces. For every y ∈ Y , the subspace X × {y} of X × Y is

homeomorphic to X .
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Theorem 7.36. Let X , Y , and Z be topological spaces. A function g : Z → X × Y is continuous if and

only if πX ◦ g and πY ◦ g are both continuous.
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Exercise 7.37. What about maps out of a product space, i.e., f : X × Y → Z? Do you think f is

continuous if it is continuous in each coordinate?
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Theorem 7.38. Let
∏
α∈λXα be the product of topological spaces {Xα}α∈λ. The projection map πβ :∏

α∈λXα → Xβ is a continuous, surjective, and open map.
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Theorem 7.39. The product topology is the coarsest (smallest) topology on
∏
α∈λXα that makes each

projection map continuous.
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Theorem 7.40. Let
∏
α∈λXα be the product of topological spaces {Xα}α∈λ and let Z be a topological

space. A function g : Z →
∏
α∈λXα is continuous if and only if πβ ◦ g is continuous for each β in λ.
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Exercise 7.41. Let Rω be the countably infinite product of R with itself. Let f : R → Rω be defined by

f(x) := (x, x, x, ...). Then f is continuous if Rω is given the product topology, but not if given the box

topology. (This strange result once again shows why the box topology would be a poor choice as the standard

topology for infinite products.)
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Theorem 7.42. The Cantor set is homeomorphic to the product
∏
n∈N{0, 1} where {0, 1} has the discrete

topology.
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Exercise 7.43. The cylinder C from our example above did not need to be embedded in R3 to be defined; it

could have been defined as an identification space of X = [0, 1] × [0, 1], using the partition whose sets are

either singletons or pairs:

C∗ =

{
{(x, y)} : x ∈ (0, 1), y ∈ [0, 1]

}
∪
{
{(0, y) ∪ (1, y)} : y ∈ [0, 1]

}
.

What is the identification map f : X → C∗? What is a basis for the topology on C∗?
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Exercise 7.44. A Möbius band is obtained by taking a strip of paperX and gluing two opposite sides with

a “twist”. Sometimes this gluing is notated by drawing X with arrows on two parallel sides that point in

opposite directions. Construct a Möbius band explicitly as an identification space of X = [0, 8]× [0, 1].
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Exercise 7.45. A torus is the surface of a doughnut. Construct a torus explicitly as:

1. an identification space of C, the cylinder.

2. an identification space of X = [0, 1]× [0, 1].

3. an identification space of R2.

273



Exercise 7.46. Describe the 2-dimensional sphere (the boundary of a 3-dimensional ball in R3) as an iden-

tification space of two discs in R2 by drawing a figure.
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Theorem 7.47. The quotient topology actually defines a topology.
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Theorem 7.48. Let X be a topological space, Y be a set, and f : X → Y be a surjective map. The quotient

topology on Y is the finest (largest) topology that makes f continuous.
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Theorem 7.49. Let X and Y be topological spaces. A surjective, continuous map f : X → Y that is an

open map is a quotient map.
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Theorem 7.50. Let X and Y be topological spaces. A surjective, continuous map f : X → Y that is a

closed map is a quotient map.
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Exercise 7.51. Show with examples that not all quotient maps are open maps, and not all quotient maps

are closed maps.
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Exercise 7.52. Is π : R2 → R defined by π(x, y) = x a quotient map?
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Theorem 7.53. Let f : X → Y be a quotient map. Then a map g : Y → Z is continuous if and only if

g ◦ f is continuous.
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Exercise 7.54. Let the cylinders C∗ and C be defined as at the beginning of this Section. Prove that C∗ is

homeomorphic to C by constructing a map h : C∗ → C and showing it is a continuous bijection from a

compact space into a Hausdorff space.
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Exercise 7.55. Suppose X is a subspace of Rn for some n. View Rn as a subset of Rn+1 in the usual way

(that is, Rn is the space of the first n coordinates of Rn+1 where the final coordinate is 0). Choose a point

x0 ∈ Rn+1 − Rn. Let C be the subspace of Rn+1 consisting of the union of all the line segments from x0 to

points in X . Show that C is homeomorphic to the cone over X as defined above, thus justifying the name

”cone.”
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Lemma 7.56. Let A and B be disjoint closed sets in a normal space X . Then for each rational r ∈ [0, 1],

there exists an open set Ur such that A ⊂ U0, B ⊂ (X − U1), and for r < s, Ur ⊆ Us.
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Urysohn’s Lemma 7.57. A topological space X is normal if and only if for each pair of disjoint closed sets

A and B in X , there exists a continuous function f : X → [0, 1] such that A ⊂ f−1(0) and B ⊂ f−1(1).
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Lemma 7.58. Let X be a normal space, and let A be a closed subset of X . Let f : A → [0, 1] be a

continuous function and let r ∈ (0, 1). Then there exist disjoint open setsUr and Vr such that f−1([0, r)) ⊂
Ur and f−1((r, 1]) ⊂ Vr. Or equivalently, there exists an open set Ur such that f−1([0, r)) ⊂ Ur and

Ur ∩ f−1((r, 1]) = ∅.
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Tietze Extension Theorem 7.59. A space X is normal if and only if for every closed set A ⊂ X and

continuous function f : A → [0, 1], there exists a continuous function F : X → [0, 1] such that F (x) =

f(x) for every x ∈ A.
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Theorem 7.60. A space X is normal if and only if for every closed set A ⊂ X and continuous function

f : A→ (0, 1), there exists a continuous function F : X → (0, 1) such that F (x) = f(x) for every x ∈ A.
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Theorem 7.61. A space X is normal if and only if for every closed set A ⊂ X and continuous function

f : A→ [0, 1), there exists a continuous function F : X → ([0, 1) such that F (x) = f(x) for every x ∈ A.
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Theorem 7.62. A space X is normal if and only if for every closed set A ⊂ X and continuous function

f : A → [0, 1] × [0, 1], there exists a continuous function F : X → [0, 1] × [0, 1] such that F (x) = f(x)

for every x ∈ A.
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Theorem 7.63. A space X is normal if and only if for every closed set A ⊂ X and continuous function

f : A →
∏
α∈λ[0, 1]α, where each [0, 1]α is a copy of [0, 1] in the usual topology, there exists a continuous

function F : X →
∏
α∈λ[0, 1]α such that F (x) = f(x) for every x ∈ A.
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Theorem 7.64. LetX be a normal space and letA be a closed subspace ofX homeomorphic to [0, 1] with the

usual topology. Then there exists a continuous function r : X → A such that for every x ∈ A, r(x) = x.
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Theorem 7.65. Let X be a normal space and let A be a closed subspace of X homeomorphic to S1 with the

usual topology. Then there exists an open set U containing A and a continuous function r : U → A such

that for every x ∈ A, r(x) = x.
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Exercise 7.66. Think of (many) other possible alternatives to S1 in the preceding theorem that would allow

you to draw the same conclusion.
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Theorem 7.67. Suppose X is perfectly normal. Then for each pair of disjoint closed sets A and B in X ,

there exists a continuous function f : X → [0, 1] such that A = f−1(0) and B = f−1(1).
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Theorem 7.68. Every perfectly normal space is completely normal.
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Theorem 7.69. Let X be a normal, T1 space. Then X is homeomorphic to a subspace of
∏
α∈λ[0, 1]α for

some λ, where each factor is the unit interval with the standard topology.
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Scholium 7.70. A space X is completely regular and T1 if and only if X can be embedded in
∏
α∈λ[0, 1]α

for some λ, where each factor is the unit interval with the standard topology.
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Theorem 7.71. Given a locally finite open cover {Uα}α∈λ of a normal, T1 space X , there is a collection of

corresponding continuous functions φα : X → [0, 1] such that (i) each φα is zero outside Uα, and (ii) the

φα pointwise add to 1. The collection {φα}α∈λ is called a partition of unity.
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Chapter 8

Connectedness: When Things Don’t Fall
into Pieces

Theorem 8.1. The following are equivalent:

1. X is connected.

2. there is no continuous function f : X → Rstd such that f(X) = {0, 1}.

3. X is not the union of two disjoint non-empty separated sets.

4. X is not the union of two disjoint non-empty closed sets.

5. the only subsets of X that are both closed and open in X are the empty set and X itself.

6. for every pair of points p and q and every open cover {Uα}α∈λ of X there exist a finite number of the

Uα’s, {Uα1 , Uα2 , Uα3 , ..., Uαn} such that p ∈ Uα1 , q ∈ Uαn and for each i < n, Uαi ∩ Uαi+1 6= ∅.
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Exercise 8.2. Which of the following spaces are connected?

1. R with the discrete topology?

2. R with the indiscrete topology?

3. R with the finite complement topology?

4. RLL?

5. Q as a subspace of Rstd?

6. R−Q as a subspace of Rstd?
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Theorem 8.3. The space Rstd is connected.
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Theorem 8.4. Let A,B be separated subsets of a space X . If C is a connected subset of A ∪B, then either

C ⊂ A or C ⊂ B.
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Theorem 8.5. Let {Cα}α∈λ be a collection of connected subsets of X and E be another connected subset of

X such that for each α in λ, E ∩ Cα 6= ∅. Then E ∪
(⋃

α∈λCα
)

is connected.
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Theorem 8.6. Let C be a connected subset of the topological space X . If D is a subset of X such that

C ⊂ D ⊂ C, then D is connected.

306



Exercise 8.7. Show that the closure of the topologist’s sine curve in R2
std is connected.
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Theorem 8.8. Let X be a connected space, C a connected subset of X , and X − C = A | B. Then A ∪ C
and B ∪ C are each connected.
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Theorem 8.9. For topological spaces X and Y , X × Y is connected if and only if each of X and Y is

connected.
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Theorem 8.10. For spaces {Xα}α∈λ,
∏
α∈λXα is connected if and only if for each α in λ,Xα is connected.
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Exercise 8.11. Show that the box product of countably infinitely many copies of Rstd is not connected.
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Theorem 8.12. Let f : X → Y be a continuous, surjective function. If X is connected, then Y is

connected.
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Theorem 8.13. (Intermediate Value Theorem) Let f : Rstd → Rstd be a continuous map. If a, b ∈ R and

r is a point of R such that f(a) < r < f(b) then there exists a point c in (a, b) such that f(c) = r.
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Theorem 8.14. LetX be a countable, regular, T1 space with more than one point. ThenX is not connected.
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Exercise 8.15. Show that Bing’s Sticky Foot Topology is a countable, connected, Hausdorff space.
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Theorem 8.16. If X is a normal, T1 space with more than one point and |X| < |R|, then X is not

connected.
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Exercise 8.17. Let A be a countable subset of Rn for n ≥ 2. Show that Rn − A is connected. In fact, if

the cardinality of A is any cardinality less than the cardinality of R, then Rn − A will still be connected.

Actually, for any two points p and q in Rn − A, p can be connected to q by two intersecting straight line

segments in Rn −A.
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Theorem 8.18. Each component of X is connected, closed, and not contained in any strictly larger con-

nected subset of X .
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Theorem 8.19. The set of components of a space X is a partition of X .
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Lemma 8.20. Let X be a topological space and let {Hα}α∈λ be the set of subsets of X that are both open

and closed. Then the following are equivalent:

1. For every two components A and B of X , there exists a separation of X into two disjoint closed sets

such that A is in one and B is in the other.

2. For every component A of X ,
⋂
{Hα | A ⊂ Hα} = A.
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Lemma 8.21. Let X be a compact space and let U be an open set in X . Let {Hα}α∈λ be closed subsets of

X such that
⋂
α∈λHα ⊂ U . Then there exist a finite number of the Hα’s whose intersection lies in U .
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Lemma 8.22. Let A and B be components of a compact, Hausdorff space X . Then X = H | K where

A ⊂ H and B ⊂ K.
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Theorem 8.23. Let X be a compact, Hausdorff space. Let X∗ be the partition of X into its components.

Then the identification space X∗ is a compact, Hausdorff space.
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Theorem 8.24. Let A and B be closed subsets of a compact, Hausdorff space X such that no component

intersects both A and B. Then X = H | K where A ⊂ H and B ⊂ K.
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Theorem 8.25. Let U be a proper, open subset of a continuum X . Then each component of U contains a

point of ∂U , the boundary of U . (Recall: ∂U = U − U .)
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Theorem 8.26. Let U be a proper, open subset of a continuum X . Then each component of U has a limit

point on ∂U .
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Theorem 8.27. No continuum X is the union of a countable number (> 1) of disjoint, non-empty closed

subsets.
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Exercise 8.28. Show that in Figure ??, X is connected and is the union of a countable number of disjoint

closed sets.
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Theorem 8.29. Let {Ci}i∈ω be a collection of continua such that for each i, Ci+1 ⊂ Ci. Then
⋂
i∈ω Ci is a

continuum.
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Theorem 8.30. Let {Cα}α∈λ be a collection of continua indexed by a well-ordered set λ such that if α < β,

then Cβ ⊂ Cα. Then
⋂
α∈λCα is a continuum.
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Lemma 8.31. Let X be a continuum, p be a point of X , and X − {p} = H | K. Then H ∪ {p} is a

continuum and if q 6= p is a non-separating point of H ∪ {p}, then q is a non-separating point of X .
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Theorem 8.32. Let X be a separable continuum with more than one point. Then X has at least two

non-separating points.
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Theorem 8.33. Let X be a continuum with more than one point. Then X has at least two non-separating

points.

333



Theorem 8.34. The bucket handle continuum is indecomposable.
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Theorem 8.35. A path connected space is connected.
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Exercise 8.36. The flea and comb space is connected but not path connected.
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Exercise 8.37. The closure of the topologist’s sine curve is connected but not path connected.
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Theorem 8.38. The product of path connected spaces is path connected.
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Exercise 8.39. 1. What are the path components of the closure of the topologist’s sine curve?

2. What are the path components of the closure of the topologist’s comb?
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Exercise 8.40. Must every non-empty open connected subset U of Rn be path connected?
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Theorem 8.41. Let p and q be two points in a Hausdorff space X such that there exists a continuous

function f : [0, 1]→ X with f(0) = p and f(1) = q. Then there exists an embedding h : [0, 1]→ X with

h(0) = p and h(1) = q.
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Theorem 8.42. The following are equivalent:

1. X is locally connected.

2. X has a basis of connected open sets.

3. For each x ∈ X and open set U with x ∈ U , the component of x in U is open.

4. For each x ∈ X and open setU with x ∈ U , there is a connected setC such that x ∈ Int C ⊂ C ⊂ U .

5. For each x ∈ X and open set U with x ∈ U , there is an open set V containing x and V ⊂ (the

component of x in U).
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Exercise 8.43. 1. Show that the closure of the topologist’s comb is not locally connected.

2. Construct a space that is connected but not locally connected at any point.

3. Find an example of a space that is locally connected but not connected.
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Theorem 8.44. The product of two locally connected spaces is locally connected.
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Exercise 8.45. 1. Find an example of an infinite number of locally connected spaces where the infinite

product space is not connected.

2. Prove that an arbitrary box product of locally connected spaces is locally connected.
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Theorem 8.46. Let X be a locally connected space and let f : X → Y be a continuous, surjective, closed

or open map. Then Y is locally connected.
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Exercise 8.47. Construct an example of a locally connected space X and a continuous, surjective function

f : X → Y such that Y is not locally connected.

347



Theorem 8.48. A locally path connected space is locally connected.
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Theorem 8.49. The following are equivalent:

1. X is locally arcwise connected.

2. For each x ∈ X and open set U with x ∈ U , there is an arcwise connected open set V such that

x ∈ V ⊂ U .

3. X has a basis of connected, arcwise connected open sets.
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Theorem 8.50. A Hausdorff space X is a Peano Continuum if and only if it is the image of [0, 1] under a

continuous map.
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Theorem 8.51. Let f : [0, 1]→ X be a continuous surjective map whereX is Hausdorff. ThenX is locally

arcwise connected. Equivalently, every Peano Continuum is locally arcwise connected.
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Theorem 8.52. Let X be a 0-dimensional, T1 space. Then X is totally disconnected.
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Exercise 8.53. Create a Hausdorff space that is totally disconnected but is not 0-dimensional.
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Theorem 8.54. The standard Cantor set is precisely those real numbers in [0, 1] that can be written using

only 0’s or 2’s in their ternary (that is, base 3) expansion.
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Exercise 8.55. Show that every real number in [0, 2] is the sum of two numbers in the standard Cantor set.
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Exercise 8.56. Let C be the Cantor set. Create a continuous function f : C → [0, 1] that is surjective.
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Exercise 8.57. Let C be the Cantor set. Create an embedding h : C → [0, 1] × [0, 1] such that for every

x ∈ [0, 1], ({x} × [0, 1]) ∩ h(C) 6= ∅.
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Exercise 8.58. Let C be the Cantor set. Create an embedding h : C → [−1, 1] × [−1, 1] − {(0, 0)} such

that every ray from (0, 0) straight out to infinity intersects h(C).
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Exercise 8.59. Let C be the Cantor set. Create an embedding h : C → [0, 1] × [0, 1] such that for every

continuous function f : [0, 1]→ [0, 1], Gf ∩ h(C) 6= ∅, where Gf is the graph of f .
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Exercise 8.60. Let C be the Cantor set, let h : C → R2 be an embedding, and let p and q be points in

R2 − h(C). Show that you can find a polygonal path from p to q in R2 − h(C).
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Theorem 8.61. Let C be the standard Cantor set and let h : C → R2 be an embedding. Then there exists

a homeomorphism H : R2 → R2 such that for every x ∈ C, H(h(x)) = x.
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Theorem 8.62. Let C be the standard Cantor set. There exists an embedding h : C → R3 such that no

homeomorphism H : R3 → R3 exists where H(h(C)) = C.
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Theorem 8.63. Let C be the standard Cantor set and let X be a 2nd countable, compact, Hausdorff space.

Then there exists a continuous, surjective function f : C → X .
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Chapter 9

Metric Spaces: Getting Some Distance

Exercise 9.1. Verify that the following are all metrics on Rn.

1. The Euclidean metric on Rn is defined by d(x,y) =
√∑n

i=1(xi − yi)2.

2. The box metric on Rn is defined by d(x,y) = maxi{|xi − yi|}.

3. The taxi-cab metric on Rn is defined by d(x,y) =
∑

i{|xi − yi|}.

Show that when n ≥ 2, these metrics are different.
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Exercise 9.2. Let X be a compact topological space. Let C(X) denote the set of continuous functions

f : X → R. We can endow C(X) with a metric:

d(f, g) = sup
x∈X
|f(x)− g(x)|

and this distance is also sometimes denoted ‖f − g‖. Check that d is a well-defined metric on C(X).
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Theorem 9.3. Let d be a metric on the set X . Then the collection of all open balls

B = {B(p, ε) = {y ∈ X|d(p, y) < ε} for every p ∈ X and every ε > 0}

forms a basis for a topology on X.
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Exercise 9.4. On Rn, show that the Euclidean metric, box metric, and taxi-cab metric generate the same

topology as the product topology on n copies of Rstd.
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Exercise 9.5. Now find a metric on Rn that does not induce the product topology on n copies of Rstd.
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Theorem 9.6. For any metric space (X, d), there exists a metric d̄ such that d and d̄ generate the same

topology, yet for each x, y ∈ X , d̄(x, y) < 1.
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Theorem 9.7. If X is a metric space and Y ⊂ X , then Y is a metric space.
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Theorem 9.8. A metric space is Hausdorff, regular, and normal.
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Theorem 9.9. A metric space is completely normal and perfectly normal.
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Theorem 9.10. A metric space is a 1st countable space.
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Theorem 9.11. In a metric space X , the following are equivalent:

1. X is separable,

2. X is 2nd countable,

3. X is Lindelöf,

4. every uncountable set in X has a limit point,
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Exercise 9.12. If you’ve read about the Souslin property in Section ??, then a fifth property can be added

to the above theorem: a metric space X has the Souslin property if and only if it has the other properties

mentioned in Theorem 9.11.

376



Theorem 9.13. Let (X, d) and (Y, e) be metric spaces. Then X × Y is a metric space.
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Theorem 9.14. Let {(Xi, di)}i∈ω0 be a countable collection of metric spaces. Then
∏
i∈ω0

Xi is metrizable.
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Exercise 9.15. Show that if {Xα}α∈λ is an uncountable collection of non-degenerate spaces, then
∏
α∈λXα

is not metrizable.
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Exercise 9.16. Consider the set Rω with the box topology, and show that it is not metrizable.
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Theorem 9.17. A metric space is compact if and only if it is countably compact.
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Theorem 9.18. A metric space is compact if and only if every infinite subset of X has a limit point.
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Theorem 9.19. A function f from a metric space (X, dX) to a metric space (Y, dY ) is continuous at the

point x (in the topological sense) if and only if for every ε > 0 there exists a δ > 0 such that for every y ∈ X ,

if dX(x, y) < δ, then dY (f(x), f(y)) < ε. The function f is continuous if and only if it is continuous at

every point x ∈ X .
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Exercise 9.20. Give an example of a continuous function from R1 to R1 with the standard topology that is

not uniformly continuous.
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Theorem 9.21. Let f : X → Y be a continuous function from a compact metric space to a metric space Y .

Then f is uniformly continuous.
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Exercise 9.22. Find a sequence of continuous functions fi : [0, 1]→ [0, 1] (i ∈ N) such that for each point

x ∈ [0, 1], the points fi(x) converge to a point px in [0, 1] and yet the function L : [0, 1]→ [0, 1] defined by

L(x) = px is not continuous.
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Theorem 9.23. LetX be a topological space and let Y be a compact metric space. If a sequence of continuous

functions fi : X → Y converges uniformly, then f : X → Y defined by f(x) = lim fi(x) for each x ∈ X
exists and is continuous.
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Lebesgue Number Theorem 9.24. Let {Uα}α∈λ be an open cover of a compact set A in a metric space

X . Then there exists a δ > 0 such that for every point p in A, B(p, δ) ⊂ Uα for some α. This number δ is

called a Lebesgue number of the cover.
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Theorem 9.25. Let γ : [0, 1] → X be a path: a continuous map from [0, 1] into the space X . Given an

open cover {Uα} of X , show that [0, 1] can be divided into N intervals of the form Ii = [ i−1N , iN ] such that

each γ(Ii) lies completely in one set of the cover.
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Exercise 9.26. 1. The space Rn is complete.

2. There is a metric that generates the standard topology on R1 that is not a complete metric.
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Theorem 9.27. Let X be a compact metric space. Then every metric for X is a complete metric.
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Theorem 9.28 (The Baire Category Theorem). Let X be a complete metric space and {Ui}i∈N be a

collection of dense open sets. Then
⋂
i∈N Ui is a dense set.
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Theorem 9.29 (The Baire Category Theorem). Let X be a complete metric space. Then X is not the

union of countably many nowhere dense sets.
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Theorem 9.30. Let X be a topological space and let Y be a complete metric space. If a sequence of contin-

uous functions fi : X → Y converges uniformly, then f : X → Y defined by f(x) = lim fi(x) for each

x ∈ X exists and is continuous.
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Theorem 9.31. If X and Y are complete metric spaces, then X × Y is complete.
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Theorem 9.32. Every closed subset of a complete metric space is complete.
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Theorem 9.33. Let U be an open subset of a complete metric space X . Then U is topologically complete,

that is, there is a complete metric on U that generates the relative topology of U .
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Theorem 9.34. If {Xi}i∈N is a collection of complete metric spaces, then
∏
i∈NXi is complete.
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Theorem 9.35. Let {Ui}i∈N be a countable collection of open sets in a complete space X . Then Y =⋂
i∈N Ui is complete.
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Theorem 9.36. Let X be a complete space. Then Y ⊂ X is complete if and only if there exists a countable

collection of open sets {Ui}i∈N such that Y =
⋂
i∈N Ui.
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Theorem 9.37. A Hausdorff space X is a Peano Continuum if and only if X is the image of [0, 1] under a

continuous, surjective function.
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Theorem 9.38. A Peano Continuum is path connected and locally path connected.
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Theorem 9.39. An open, connected subset of a Peano Continuum is path connected.
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Theorem 9.40. Let X be a metric continuum with exactly two non-separating points. Then X is homeo-

morphic to [0, 1].
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Theorem 9.41. Let X be a non-degenerate metric continuum where no point separates X but every pair of

points separates X . Then X is homeomorphic to S1.
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Theorem 9.42. Let X be a metric continuum with more than one point where no pair of points separates

X , but every subset of X homeomorphic to S1 separates X . Then X is homeomorphic to S2.
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Exercise 9.43. 1. Is the space R with the discrete topology metrizable?

2. Is the space RLL metrizable?
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Exercise 9.44. Take your chart of examples and properties and add metric space as an example and add

metrizable as a property and fill in the chart.
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Urysohn’s Metrization Theorem 9.45. Every regular, T1, 2nd countable space is metrizable.
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Theorem 9.46. Let X be a compact Hausdorff space that is 2nd countable. Then X is metrizable.
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Theorem 9.47. LetX be a compact metric space, Y be a Hausdorff space, and f : X → Y be a continuous,

surjective function. Then Y is a compact metric space.
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Theorem 9.48. Let X be a Hausdorff space, and let C be the standard Cantor set. Then X is a compact

metric space if and only if there exists a continuous surjective function f : C → X .
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Theorem 9.49. Every separable metric space can be embedded in a countable product of [0, 1]’s.
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Exercise 9.50. Show that a hedgehog is a metric space where the distance between two points can be de-

scribed as taking the distance from one point to the 0 on its spine and then adding the distance out to the

second point on the other point’s spine.
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Theorem 9.51. The countable product of hedgehogs is metrizable.
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Theorem 9.52. A regular space with a σ-discrete basis is normal. In fact, given a discrete collection of

closed sets {Cα}α∈λ, there exists a discrete collection of open sets {Uα}α∈λ such that for each α, Cα ⊂ Uα.
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Theorem 9.53. A regular, T1 space X with a σ-discrete basis is metrizable.
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Lemma 9.54. Let {Ui}i∈N be a countable open cover of a metric space X . For each point x ∈ X let m(x)

be the natural number such that x ∈ Ui but x 6∈ Uj for j < i. Then for every n ∈ N there exists a discrete

collection of closed sets {Ci,n} such that

1. for each i, Ci,n ⊂ Ui;

2. for each x ∈ Ci,n, B(x, 1n) ⊂ Ui;

3. for each i, Ci,n does not intersect Uj for j < i; and

4. for each i, Ci,n contains every point x ∈ Ui for which m(x) = i and for which d(x,X − Ui) > 1
n .

Then
⋃
Ci,n = X and for each n, the collection of 1

3n neighborhoods of the Ci,n’s, that is, ⋃
x∈Ci,n

B(x,
1

3n
)


i∈N

,

is a discrete collection of open sets.
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Lemma 9.55. Let {Uα}α∈λ be an open cover of a metric space X where the index set λ is well-ordered. For

each point x ∈ X let m(x) be the ordinal number α such that x ∈ Uα but x 6∈ Uβ for β < α. Then for

every n ∈ N there exists a discrete collection of closed sets {Cα,n} such that

1. for each α, Cα,n ⊂ Uα;

2. for each x ∈ Cα,n, B(x, 1n) ⊂ Uα;

3. for each α, Cα,n does not intersect Uβ for β < α; and

4. for each α, Cα,n contains every point x ∈ Uα for which m(x) = α and for which d(x,X −Uα) > 1
n .

Then
⋃
Cα,n = X and for each n, the collection of 1

3n neighborhoods of the Cα,n’s, that is, ⋃
x∈Cα,n

B(x,
1

3n
)


α∈λ

,

is a discrete collection of open sets.
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The Bing Metrization Theorem 9.56. A regular, T1 space X is metrizable if and only if X has a σ-

discrete basis.
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Theorem 9.57. A regular space with a σ-locally finite basis is normal. In fact, given a discrete collection of

closed sets {Cα}α∈λ, there exists a discrete collection of open sets {Uα}α∈λ such that for each α, Cα ⊂ Uα.
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The Nagata-Smirnov Metrization Theorem 9.58. A regular, T1 space X is metrizable if and only if X

has a σ-locally finite basis.

422



Lemma 9.59. Let X be a space with a σ-locally finite basis {{Bα,n}α∈λi}n∈N. Let {Uα}α∈λ be a locally

finite collection of open sets in a space X where the index set λ is well-ordered. (In the application, this

collection of Uα’s will be one of the locally finite collections of basis elements.) For each point x ∈
⋃
α∈λ Uα

let m(x) be the ordinal number α such that x ∈ Uα but x 6∈ Uβ for β < α. Then for every n ∈ N there

exists a discrete collection of closed sets {Cα,n} such that

1. for each α, Cα,n ⊂ Uα;

2. for each α, Cα,n does not intersect Uβ for β < α; and

3. for each α, Cα,n contains every point x ∈ Uα for which m(x) = α and for which x ∈ {Bα,n}.

Then

1. for each n, {Cα,n}α∈λ is a discrete collection of closed sets;

2.
⋃
α∈λ;n∈NCα,n =

⋃
α∈λ Uα; and

3. for each n, there exists a discrete collection of open sets {Vα,n}α∈λ such that for each α ∈ λ, Cα,n ⊂
Vα,n ⊂ Vα,n ⊂ Uα.
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Lemma 9.60. Let {Bi}i∈N be a countable basis of a regular space X . Let {Uα}α∈λ be an open cover of

X . Let {Ci}i∈N be the set of all Bi’s such that each Ci lies in some Uα in the open cover. Then {Ci}i∈N is

an open refinement of the open cover {Uα}α∈λ; however, it is not locally finite. Let {Di}i∈N be the set of

all Bi’s such that each Di is a subset of some Ck. For each i ∈ N let Ei = Ci −
⋃
{Dj |j < i and Dj ⊂

Ck for some k < i}. Then {Ei}i∈N is a locally finite refinement of {Uα}α∈λ.
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Theorem 9.61. Metric spaces are paracompact.
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Part II

Algebraic and Geometric Topology
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Chapter 11

Classification of 2-Manifolds:
Organizing Surfaces

Exercise 11.1. Show that the torus T 2 is homeomorphic to S1 × S1.
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Exercise 11.2. For a given number of holes, demonstrate that the n-holed torus where the holes are lined

up is homeomorphic to an n-holed torus where the holes are arranged in a circle.

430



Exercise 11.3. 1. Show that RP2 ∼= S2/〈x ∼ −x〉, that is, the projective plane is homeomorphic to the

2-sphere with diametrically opposite points identified.

2. Show that RP2 is also homeomorphic to a disk with two edges on its boundary (called a bigon),

identified as indicated in Figure 11.1.

Figure 11.1: RP2.

3. Show that the Klein bottle can be realized as a square with certain edges identified.
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Theorem 11.4. Suppose M is a compact, connected 1-manifold. Then M is triangulable. That is, M is

homeomorphic to a subset C of Rn consisting of a finite collection of straight line segments where any two

segments of C are either disjoint or meet at an endpoint of each.

432



Exercise 11.5. Provide a complete classification of compact, connected 1-manifolds. That is, describe a col-

lection of topological spaces such that every compact, connected 1-manifold is homeomorphic to one member

of the collection.
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Exercise 11.6. Provide a complete classification of compact 1-manifolds.
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Theorem 11.7. Every compact 2-manifold is triangulable, that is, it is homeomorphic to a subset C of Rn

consisting of a finite collection T = {σi}ki=1 of rectilinear triangles (a fancy word for a rectilinear triangle

is a 2-simplex) where each pair of triangles are disjoint or they meet in one vertex of each or they share a

single edge. Since the space C is homeomorphic to a 2-manifold, each edge of each triangle making up C is

shared by exactly two triangles, and around each vertex is a circle of triangles whose union is a disk.
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Exercise 11.8. The boundary of a tetrahedron is naturally triangulated with a triangulation T consisting

of four 2-simplexes, having six edges and four vertices.

1. On the boundary of a tetrahedron draw the first and second barycentric subdivisions of T .

2. Locate the edges of the four triangles in T .

3. Draw the regular neighborhood of the union of all the edges of T .

4. Draw the regular neighborhood of a single edge of a triangle in T .

436



Exercise 11.9. In the second barycentric subdivisions of a triangulation of the torus (Figure ??), find

regular neighborhoods of various subsets of the edges.
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Exercise 11.10. Consider the triangulation of the torus in Figure ??. Describe those graphs created from

edges in the 1-skeleton of T that have regular neighborhoods homeomorphic to a disk.
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Theorem 11.11. LetM2 be a compact, triangulated 2-manifold with triangulation T . Let S be a tree whose

edges are 1-simplices in the 1-skeleton of T . Then N(S), the regular neighborhood of S, is homeomorphic to

D2.
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Theorem 11.12. Let M2 be a compact, triangulated 2-manifold with triangulation T . Let S be a tree equal

to a union of ’edges’ in the dual 1-skeleton of T . Then ∪{σ′′j | σ′′j ∈ T ′′ and σ′′j ∩ S 6= ∅} is homeomorphic

to D2.
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Theorem 11.13. Let M2 be a connected, compact, triangulated 2-manifold with triangulation T . Let S be

a tree in the 1-skeleton of T . Let S′ be the subgraph of the dual 1-skeleton of T whose ’edges’ do not intersect

S. Then S′ is connected.
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Theorem 11.14. Let M2 be a connected, compact, triangulated 2-manifold. Then M2 = D0 ∪ D1 ∪(⋃k
i=1Hi

)
where D0, D1, and each Hi is homeomorphic to D2, Int D0 ∩ D1 = ∅, the Hi’s are disjoint,⋃k

i=1 Int Hi ∩ (D0 ∪D1) = ∅, and for each i, Hi ∩D1 equals 2 disjoint arcs each arc on the boundary of

each of Hi and D1.
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Theorem 11.15. Let M2 be a connected, compact, triangulated 2-manifold. Then:

1. There is a disk D0 in M2 such that M2 − (IntD0) is homeomorphic to the following subset of R3:

a disk D1 with a finite number of disjoint strips, Hi for i ∈ {1, . . . n}, attached to boundary of D1

where each strip has no twist or a 1/2 twist. (See Figure 11.2.)

2. Furthermore, the boundary of the disk with strips, D1 ∪
(⋃k

i=1Hi

)
, is connected.

Figure 11.2: A disk with four handles attached.
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Exercise 11.16. In the conclusion of the previous theorem, any strip Hi divides the boundary of D1 into

two arcs, e1i and e2i , whereHi is not attached, that is, the two arcs that make up (D1
⋂
Hi) are disjoint from

the two arcs e1i and e2i except at their endpoints. Show that if a strip Hj is attached to D1 with no twists,

then there must be a strip Hk that is attached to both e1j and e2j .
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Theorem 11.17. Let M2 be a connected, compact, triangulated 2-manifold. Then there is a disk D0 in M2

such that M2 − Int D0 is homeomorphic to a disk D1 with strips attached as follows: first come a finite

number of strips with 1/2 twist each of whose attaching arcs are consecutive along BdD1, and next come a

finite number of pairs of untwisted strips, each pair with attaching arcs entwined as pictured with the four

arcs from each pair consecutive along BdD1.
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Theorem 11.18. Let X be the union of a disk with three strips attached as follows: a disk E0 with one

strip attached with a 1/2 twist with its attaching arcs consecutive along BdE0 and one pair of untwisted

strips with attaching arcs entwined as pictured with the four arcs consecutive along BdE0. Let Y again be

a union of a disk with three strips attached, but the three are attached differently. The set Y consists of a

disk E1 with three strips with a 1/2 twist each whose attaching arcs are consecutive along BdE1. Then X

is homeomorphic to Y .

Figure 11.3: These spaces are homeomorphic.
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Theorem 11.19. Let M2 be a connected, compact, triangulated 2-manifold. Then there is a disk D0 in M2

such that M2 − IntD0 is homeomorphic to one of the following:

a) a disk D1,

b) a disk D1 with k 1
2 -twisted strips with consecutive attaching arcs, or

c) a disk D1 with k pairs of untwisted strips, each pair in entwining position with the four attaching

arcs from each pair consecutive.
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Theorem 11.20. Suppose M1 and M2 are compact, triangulated, connected 2-manifolds and M is a con-

nected sum of M1 and M2 (that is, we can select triangulations of M1 and M2, apply the process above and

arrive at a space homeomorphic to M ). Then M is a compact, connected, triangulable 2-manifold.

448



Exercise 11.21. Suppose M is a compact, connected, triangulated 2-manifold. What is S2 #M?
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Exercise 11.22. Sketch
n
#
i=1

T2.
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Theorem 11.23 (Classification of compact, connected 2-manifolds). Any connected, compact, trian-

gulated 2-manifold is homeomorphic to the 2-sphere S2, a connected sum of tori, or a connected sum of

projective planes.
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Exercise 11.24. Identify the following spaces and give justification.

(a) (b) (c)
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Theorem 11.25. Let P be a polygonal presentation. Then P is a 2-manifold.
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Theorem 11.26. Suppose M is a compact, connected, triangulable 2-manifold. Then M is homeomorphic

to a polygonal presentation.
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Theorem 11.27. Let P be a polygonal presentation. Then P is a compact, connected, triangulable 2-

manifold.
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Theorem 11.28. LetAbb−1C be a string of 2n letters where each letter occurs twice, neglecting superscripts

(and there is at least one pair other than b and b−1). Then the 2-manifold obtained from the word Abb−1C

is homeomorphic to that obtained from AC.
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Theorem 11.29. Suppose P is a polygonal presentation not homeomorphic to S2. Then there is a home-

omorphic polygonal presentation where all the vertices are in the same equivalence class, that is, all the

vertices are identified to each other.
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Theorem 11.30. Suppose P is a polygonal presentation not homeomorphic to S2. Then P is homeomorphic

to a polygonal presentation where all the vertices are identified and for every pair of edges with the same

orientation, the two edges of that pair are consecutive.
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Theorem 11.31. Suppose P is a polygonal presentation not homeomorphic to S2. Then P is homeomorphic

to a polygonal presentation where all the vertices are identified, every pair of edges with the same orientation

are consecutive, and all other edges are grouped in disjoint sets of two intertwined pairs following the pattern

aba−1b−1.
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Theorem 11.32. If A and C are (possibly empty) words, then the polygonal presentation Aaba−1b−1ccC

is homeomorphic to that represented by AddeeffC.
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Theorem 11.33. Any compact, connected, triangulated 2-manifold M is homeomorphic to the polygonal

presentation given by one of the following words: aa−1, a1a1 . . . anan (where n ≥ 1) or a1a2a−11 a−12 . . . an−1ana
−1
n−1a

−1
n

(where n ≥ 2 is even).
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Exercise 11.34. Suppose that we have two compact, connected 2-manifolds represented by the words w1

and w2, respectively. Suppose in addition that w1 and w2 have no letters in common. What can you say

about the 2-manifold corresponding to the concatenated word w1w2 in terms of the connected sum?
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Exercise 11.35. Re-state Theorem 11.32 above in the case that A and C are empty, in terms of connected

sum.
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Theorem 11.36 (Classification of compact, connected 2-manifolds). Any compact, connected, trian-

gulated 2-manifold is homeomorphic to exactly one of the following:

1. S2,

2. a connected sum of n tori, and

3. a connected sum of n projective planes.
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Exercise 11.37. Describe heuristically a strategy by which you would define a consistent clockwise direction

on the standard embedding of the 2-sphere in R3. What is the relevant property?
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Exercise 11.38. Show that the induced orientation is well defined; in other words, that it is independent of

the choice of positive equivalence class representative for the original 2-simplex.
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Theorem 11.39. Show that the following are equivalent for a 2-manifold M .

1. Every triangulation of M is not orientable (that is if KT is a simplicial complex to which M is

homeomorphic, KT is not orientable).

2. M admits a triangulation that is not orientable.

3. M admits a triangulation that contains a collection of simplices whose union is homeomorphic to the

Möbius band.

4. M admits an embedding of a Möbius band.

5. There is a map F : S1 × [0, 1] → M such that F (·, t) is an embedding for each t and such that

F (·, 1) = F (r(·), 0), where r is a reflection map of S1 about some line through its center.
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Theorem 11.40. Let M1, . . . ,Mn be connected, compact, triangulated 2-manifolds. Let M be a connected

sum of M1, . . . ,Mn. Then M is orientable if and only if Mi is orientable for each i ∈ {1, . . . , n}.
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Exercise 11.41. State and prove which compact, connected, triangulated 2-manifolds are orientable and

which are not.
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Exercise 11.42. Calculate the Euler characteristic of the following spaces.

1. S2

2. T2

3. K2

4. RP2

470



Lemma 11.43. Suppose M1 and M2 are compact 2-manifolds. If M1 #M2 is any choice for the connect

sum of M1 and M2, then χ(M1 #M2) = χ(M1) + χ(M2)− 2.
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Exercise 11.44. 1. Calculate the Euler characteristic of
n
#
i=1

RP2.

2. Calculate the Euler characteristic of
n
#
i=1

T2.
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Theorem 11.45. The combination of Euler characteristic and orientability is a complete invariant of com-

pact, connected 2-manifolds.
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Exercise 11.46. Identify the following 2-manifolds as a sphere, a connected sum of n tori (specifying n), or

a connected sum of n projective planes (specifying n).

a. T#RP

b. K#RP

c. RP#T#K#RP

d. K#T#T#RP#K#T
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Exercise 11.47. Identify the surface obtained by identifying the edges of the decagon as indicated in Figure

11.4.

Figure 11.4: The decagon with edges identified in pairs.
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Exercise 11.48. Notice that the edge (or boundary) of a Möbius band is a simple close curve. Construct

a space by gluing a disk to the Möbius band along their respective boundaries. Show that this space is

homeomorphic to the projective plane.
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Chapter 12

Fundamental Group: Capturing Holes

Theorem (Fundamental Theorem of Algebra). A polynomial p(z) = anz
n+...+a1z+a0 with complex

coefficients and degree n > 1 has at least one root.
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Exercise 12.1. A polynomial p(x) = anx
n + ... + a1x + a0 with real coefficients where an 6= 0 and n is

odd has at least one real root.

478



Theorem 12.2. Given topological spaces X and Y with S ⊂ X , homotopy relative to S is an equivalence

relation on the set of all continuous functions from X to Y . In particular, if S = ∅, homotopy is an

equivalence relation on the set of all continuous functions from X to Y .
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Theorem 12.3. If α, α′, β, and β′ are paths in a space X such that α ∼ α′, β ∼ β′, and α(1) = β(0), then

α · β ∼ α′ · β′.
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Theorem 12.4. Given paths α, β, and γ where the following products are defined, then (α·β)·γ ∼ α·(β ·γ)

and ([α] · [β]) · [γ] = [α] · ([β] · [γ]).
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Theorem 12.5. Let α be a path with α(0) = x0. Then α · α−1 ∼ ex0 , where ex0 is the constant path at x0.
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Theorem 12.6. The fundamental group π1(X,x0) is a group. The identity element is the class of homo-

topically trivial loops based at x0.
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Theorem 12.7. If X is path connected, then π1(X, p) ∼= π1(X, q) for any points p, q ∈ X .
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Corollary 12.8. Suppose X is a topological space and there is a path between points p and q in X . Then

π1(X, p) is isomorphic to π1(X, q).
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Exercise 12.9. Let α be a loop into a topological space X . Then α = β ◦ ω|[0,1] where ω is the standard

wrapping map and β is some continuous function from S1 into X . This relationship gives a correspondence

between loops in X and continuous maps from S1 into X .
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Theorem 12.10. Let X be a topological space and let p be a point in X . Then a loop α = β ◦ ω|[0,1] (where

ω is the standard wrapping map and β is a continuous function from S1 into X) is homotopically trivial if

and only if β can be extended to a continuous function from the unit disk D2 to X .
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Theorem 12.11. Show the following (1 denotes the trivial group):

1. π1([0, 1]) ∼= 1.

2. π1(Rn) ∼= 1 for n ≥ 1.

3. π1(X) ∼= 1, if X is a convex set in Rn.

4. π1(X) ∼= 1, if X is a cone.

5. π1(X) ∼= 1 if X is a star-like space in Rn (a subset X of Rn is called star-like if there is a fixed point

x0 ∈ X such that for any y ∈ X , the line segment between x0 and y lies in X ; a five pointed ‘star’ is

an example of a star-like space that is not convex).
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Exercise 12.12. Show the following:

1. π1(S0, 1) ∼= 1 where S0 is the zero-dimensional sphere {−1, 1}, the set of points unit distance from

the origin in R1.

2. π1(S2) ∼= 1.

3. π1(Sn) ∼= 1 for n ≥ 3.
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Exercise 12.13. Show that the cone over the Hawaiian earring is simply connected. Can you generalize

your insight?
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Theorem 12.14. 1. Any loop α : [0, 1] → S1 with α(0) = 1 can be written α = ω ◦ α̃, where

α̃ : [0, 1]→ R1 satisfies α̃(0) = 0 and ω is the standard wrapping map.

2. If α : [0, 1]→ S1 is a loop, then α̃(1) is an integer.

3. Loops α1 and α2 are equivalent in S1 if and only if α̃1(1) = α̃2(1).

4. π1(S1) ∼= Z.
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Theorem 12.15. Let (X,x0), (Y, y0) be path connected spaces. Then

π1(X × Y, (x0, y0)) ∼= π1(X,x0)× π1(Y, y0)

via the canonical map that takes a loop γ inX×Y to (p◦γ, q◦γ) where p : X×Y → X and q : X×Y → Y

are the projection maps.
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Exercise 12.16. Find:

1. π1(X) where X is a solid torus.

2. π1(S2 × S1)

3. π1(S2 × S2 × S2)

4. π1(X), where X is a direct product of kn copies of Sn, with kn = 0 for n sufficiently large.
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Exercise 12.17. The fundamental group of the torus π1(T2) is Z2. Moreover, if µ is a meridian and λ is a

longitude, then {[µ], [λ]} is a Z-basis for π1(T2).
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Exercise 12.18. Check that for a continuous function f : X → Y , the induced homomorphism f∗ is well-

defined (that is, the image of an equivalence class is independent of the chosen representative). Show that it

is indeed a group homomorphism.
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Theorem 12.19. The following are true:

1. If f : (X,x0)→ (Y, y0) and g : (Y, y0)→ (Z, z0) are continuous maps, then (g ◦ f)∗ = g∗ ◦ f∗.

2. If id : (X,x0) → (X,x0) is the identity map, then id∗ : π1(X,x0) → π1(X,x0) is the identity

homomorphism.
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Theorem 12.20. If h : X → Y is a homeomorphism then

h∗ : π1(X,x0)→ π1(Y, h(x0))

is a group isomorphism. Thus homeomorphic path-connected spaces have isomorphic fundamental groups.
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Theorem 12.21. Fix a torus with chosen meridian µ and longitude λ. Suppose p, q ∈ Z. Then there is a

homeomorphism of the torus to itself which takes a representative of the class q[µ] + p[λ] ∈ π(T2) to µ if

and only if p and q are relatively prime.
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Theorem 12.22. If f, g : (X,x0) → (Y, y0) are continuous functions and f is homotopic to g relative to

x0, then f∗ = g∗.
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Lemma 12.23. Homotopy equivalence of spaces is an equivalence relation.
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Theorem 12.24. If f : X → Y is a homotopy equivalence and y0 = f(x0), then f∗ : π1(X,x0) →
π1(Y, y0) is an isomorphism. In particular, if X ∼ Y , then π1(X) ∼= π1(Y ).
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Exercise 12.25. Show that for n ≥ 0, Rn+1 − {0} can be strong deformation retracted onto Sn.
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Lemma 12.26. If A is a strong deformation retract of X , then A and X are homotopy equivalent.

503



Theorem 12.27. R2 is not homeomorphic to Rn for any n 6= 2.

504



Exercise 12.28. Let x and y be two points in R2. Show that R2 − {x, y} strong deformation retracts onto

the figure eight. In addition, show that R2 − {x, y} strong deformation retracts onto a theta space.
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Theorem 12.29. If r : X → A is a strong deformation retraction and a ∈ A, then π1(X, a) ∼= π1(A, a).
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Exercise 12.30. Calculate the fundamental group of the following spaces.

1. An annulus.

2. A cylinder.

3. The Möbius Band.

4. An open 3-ball with a diameter removed.
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Exercise 12.31. Find an example of a space X with a subspace A such that if i : A → X is the inclusion

map, i∗ : π1(A)→ π1(X) is not injective.
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Theorem 12.32. Let A be a retract of X via the inclusion i : A ↪→ X and retraction r : X ↪→ A. Then for

a ∈ A, i∗ : π1(A, a)→ π1(X, a) is injective and r∗ : π1(X, a)→ π1(A, a) is surjective.

509



Theorem 12.33 (No Retraction Theorem for D2). There is no retraction from D2 to its boundary.
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Theorem 12.34 (Brouwer Fixed Point Theorem for D2). Let f : D2 → D2 be a continuous map. Then

there is some x ∈ D2 for which f(x) = x.
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Lemma 12.35. A space is contractible if and only if it is homotopy equivalent to a point.
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Theorem 12.36. A contractible space is simply connected.
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Theorem 12.37. A retract of a contractible space is contractible.
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Corollary 12.38. The house with two rooms is contractible.
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Corollary 12.39. The Dunce’s Hat is contractible.

516



Theorem 12.40. LetX = U∪V , whereU and V are open and path connected andU∩V is path-connected,

simply connected, and non-empty. Then π1(X) is isomorphic to the free product of π1(U) and π1(V ), that

is, π1(X) ∼= π1(U) ∗ π1(V ).
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Question 12.41. Let X be the bouquet of n circles. What is π1(X)?
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Exercise 12.42. Find a path-connected space X with open, path-connected subsets U and V of X such that

X = U ∪ V such that U and V are both simply connected, but X is not simply connected. Conclude that

the hypothesis that U ∩ V is path connected is necessary.
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Lemma 12.43. Let X = U ∪V , where U and V are open and U ∩V is path connected, and let p ∈ U ∩V .

Then any element of π1(X, p) has a representative α1β1α2β2 · · ·αnβn, where each αi is a loop in U based

at p and each βi is a loop in V based at p.
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Theorem 12.44. Let X be a wedge of two cones over two Hawaiian earrings, where they are identified at

the points of tangency of the circles of each Hawaiian earring, as in Figure ??. Then π1(X) 6∼= 1.
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Theorem 12.45. Let X = U ∪ V where U, V are open, path connected, and simply connected and U ∩ V
is nonempty and path connected. Then X is simply connected.
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Theorem 12.46. Let X = U ∪ V where U, V are open and path connected and U ∩ V is path connected,

x ∈ U ∩ V , and π1(U, x) ∼= 1. Let i : U ∩ V → V be the inclusion map. Then

π1(X,x) ∼=
π1(V, x)

N

where N is the smallest normal subgroup of π1(V, x) containing the subgroup i∗(π1(U ∩ V, x)).
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Theorem 12.47 (Van Kampen’s Theorem). Let X = U ∪ V where U, V are open and path connected

and U ∩ V is path connected and x ∈ U ∩ V . Let i : U ∩ V → U and j : U ∩ V → V be the inclusion

maps. Then

π1(X,x) ∼=
π1(U, x) ∗ π1(V, x)

N

where N is the smallest normal subgroup containing {i∗(α)j∗(α
−1)}α∈π1(U∩V,x) (so N contains elements

created by taking a finite sequence of products and conjugates starting with elements of the form i∗(α)j∗(α
−1)).
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Theorem 12.48 (Van Kampen’s Theorem; group presentations version). Let X = U ∪ V where U, V

are open and path connected andU∩V is path connected and x ∈ U∩V . Let i : U∩V → U and j : U∩V →
V be the inclusion maps. Suppose π1(U, x) = 〈g1, . . . , gn|r1, . . . , rm〉, π1(V, x) = 〈h1, . . . , ht|s1, . . . , su〉
and π1(U ∩ V, x) = 〈k1, . . . , kv|t1, . . . , tw〉 then

π1(X,x) = 〈g1, . . . , gn, h1, . . . , ht | r1, . . . , rm, s1, . . . , su,

i∗(k1) = j∗(k1), . . . , i∗(kv) = j∗(kv)〉 .
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Exercise 12.49. Let P be a polygonal representation of a compact, connected 2-manifold such that the all

the vertices of P are identified in the corresponding quotient. Give a presentation for π1(P ).
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Exercise 12.50. Give presentations of the fundamental groups for our canonical polygonal presentations of
n
#
i=1

T2 and
n
#
i=1

RP2.
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Theorem 12.51. Each 2-manifold in the following infinite list is topologically different from all the others

on the list: S2,
n
#
i=1

RP2, and
n
#
i=1

T2.
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Theorem 12.52. Suppose G is a finitely presented group. Then there exists a 2-complex (K,T ) such that

π1(K) ∼= G.
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Theorem 12.53. The fundamental group of the Hawaiian earring is not finitely generated. In fact, it is not

countably generated.
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Lemma 12.54. If p, q ∈ N are relatively prime, the line described in the above process will eventually

intersect the upper-right vertex of the square. Moreover, the line will not intersect itself until it does.
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Lemma 12.55. Let p and q be relatively prime integers and let ρp,q be the simple closed curve constructed

above. Then there is a homeomorphism of the square (with the standard identifications made for the torus)

that takes ρp,q to our canonical meridian.
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Theorem 12.56. For p, q ∈ Z relatively prime, the lens space L(p, q) is triangulable.
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Exercise 12.57. Let p, q ∈ Z be relatively prime. Calculate the fundamental group of the Lens spaceL(p, q).
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Lemma 12.58. Every loop in MK is homotopic in MK to a product of ai’s. In other words, the loops {ai}
generate π1(MK).
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Lemma 12.59. At every crossing, such as that illustrated in Figure ??, the following relation holds:

acb−1 = c or acb−1c−1 = 1.
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Theorem 12.60. Let K be a knot in S3 and let {ai} be the set of loops consisting of one loop for each arc in

a knot projection of K as described above. Then π1(MK) = {a1, a2, . . . , an|aiaja−1k a−1j where there is one

relation of the form aiaja
−1
k a−1j for each crossing in the knot projection}.
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Figure 12.1: The unknot.

Exercise 12.61. Find the fundamental group of the complement of the unknot (See Figure 12.1).
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Exercise 12.62. Find the fundamental group of the complement of the trefoil knot.
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Exercise 12.63. Find the fundamental group of the complement of the figure-8 knot, shown in Figure ??.
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Exercise 12.64. The collection of homotopy classes of continuous maps of the type f : (Dn, ∂Dn) →
(X,x0), with the product defined above, forms a group.
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Theorem 12.65. Homotopy equivalent spaces have the same homotopy groups.
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Chapter 13

Covering Spaces: Layering It On

Theorem 13.1. Let (X̃, p) be a covering space of X . If x, y ∈ X , then |p−1(x)| = |p−1(y)|.
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Exercise 13.2.

1. Describe two non-homeomorphic 2-fold covers of the Klein bottle.

2. Describe all non-homeomorphic 2-fold covers of the figure eight.

3. Describe all non-homeomorphic 3-fold covers of the figure eight.

544



Theorem 13.3. Let (R1, ω) be the standard wrapping map covering of S1. Then any path f : [0, 1] → S1

has a lift f̃ : [0, 1]→ R1.
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Theorem 13.4. If (X̃, p) is a cover of X , Y is connected, and f̃ , g̃ : Y → X̃ are continuous functions such

that p ◦ f̃ = p ◦ g̃, then {y | f̃(y) = g̃(y)} is empty or all of Y .
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Theorem 13.5. Let (X̃, p) be a cover of X and let f be a path in X . Then for each x0 ∈ X̃ such that

p(x0) = f(0), there exists a unique lift f̃ of f satisfying f̃(0) = x0.
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Exercise 13.6. Let p be a k-fold covering of S1 by itself and α a loop in S1 which when lifted to R1 by the

standard lift satisfies α̃(0) = 0 and α̃(1) = n. What are the conditions on n under which α will lift to a

loop?
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Theorem 13.7 (Homotopy Lifting Lemma). Let (X̃, p) be a cover of X and α, β be two paths in X . If

α̃, β̃ are lifts of α, β satisfying α̃(0) = β̃(0), then α̃ ∼ β̃ if and only if α ∼ β.
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Theorem 13.8. If (X̃, p) is a cover of X , then p∗ is a monomorphism (i.e. an injective homomorphism)

from π1(X̃) into π1(X).

550



Theorem 13.9. Let (X̃, p) be a cover of X , α a loop in X , and x̃0 ∈ X̃ such that p(x̃0) = α(0). Then α

lifts to a loop based at x̃0 if and only if [α] ∈ p∗(π1(X̃, x̃0)).
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Exercise 13.10. Recast a proof of the fact that π1(S1) ∼= Z using the language of covering spaces.
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Theorem 13.11. Let (X̃, p) be a covering space of X and let x0 ∈ X . Fix x̃0 ∈ p−1(x0). Then a subgroup

H of π1(X,x0) is in {p∗(π1(X̃, x̃))}p(x̃)=x0 if and only if H is a conjugate of p∗(π1(X̃, x̃0)).
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Theorem 13.12. Let (X̃, p) be a covering space of X . Choose x ∈ X , then |p−1(x)| = [π1(X) :

p∗(π1(X̃))], where the equation has the obvious interpretation if either side is infinite.
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Exercise 13.13. Give a covering space of S1 that corresponds to a subgroup of index 3. If p is the covering

map, describe p∗.

555



Theorem 13.14. Let (X̃, p) be a covering space of X and x̃0 ∈ X̃ , x0 ∈ X with p(x̃0) = x0. Also

let f : Y → X be continuous where Y is connected and locally path connected and y0 ∈ Y such that

f(y0) = x0. Then there is a lift f̃ : Y → X̃ such that p ◦ f̃ = f and f(y0) = x̃0 if and only if

f∗(π1(Y, y0)) ⊆ p∗(π1(X̃, x̃0)). Furthermore, f̃ is unique.
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Exercise 13.15. Let X = S1, X̃ = R, (X̃, ω) be the covering space of X given by the standard wrapping

map, and Y as in Figure ??. When does a map f : Y → X not have a lift? Why is this example here?
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Exercise 13.16. Show that π2(T2) = 0, i.e., every map of a sphere S2 into T2 is null homotopic.
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Theorem 13.17. Let (X̃1, p1) and (X̃2, p2) be covering spaces of X . Let x̃1 ∈ X̃1 and x̃2 ∈ X̃2 such

that p1(x̃1) = p2(x̃2). Then there is a cover isomorphism f : X̃1 → X̃2 with f(x̃1) = x̃2 if and only if

p∗(π1(X̃1, x̃1)) = p∗(π1(X̃2, x̃2)).
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Figure 13.1: A covering of the figure eight.

Exercise 13.18. What is C(X̃, p) for the covering space of the figure eight shown in Figure 13.1?
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Theorem 13.19. If (X̃, p) is a covering space of X and f ∈ C(X̃, p), then f = Id
X̃

if and only if f has a

fixed point.
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Exercise 13.20. Consider the second three-fold covering space of the figure eight discussed in Exercise

13.18. Find an element of p∗(π1(X̃)) which, when conjugated, is not in p∗(π1(X̃)). Conclude that the

covering space is not regular.

562



Theorem 13.21. If (X̃, p) is a regular covering space of X and x1, x2 ∈ X̃ such that p(x1) = p(x2), then

there exists a unique h ∈ C(X̃, p) such that h(x1) = x2.
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Exercise 13.22. Do such covering transformations necessarily exist in irregular covering spaces?
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Theorem 13.23. A covering space is regular if and only if for every loop in the base space either all its lifts

are loops or all its lifts are paths that are not loops.
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Exercise 13.24. Find a covering space p : X̃ → X and generators e1, . . . , en of π1(X) such that each ei
satisfies the criteria of the previous theorem but the cover is not regular.
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Exercise 13.25.

1. Describe all regular 3-fold covering spaces of the figure eight.

2. Describe all irregular 3-fold covering spaces of the figure eight.

3. Describe all regular 3-fold covering spaces of the bouquet of 3 circles.
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Theorem 13.26. Let (X̃, p) be a regular covering space of X . Then C(X̃, p) ∼= π1(X)/p∗(π1(X̃)). In

particular, C(X̃, p) ∼= π1(X) if X̃ is simply connected.
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Exercise 13.27. Observe that the standard wrapping map is a regular covering map of S1 by R1. Describe

the covering transformations for this covering space. Describe the covering map that maps R2 to the torus

T2 and describe the covering transformations for this covering space.
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Theorem 13.28 (Existence of covering spaces). Let X be connected, locally path connected, and semi-

locally simply connected. Then for every G < π1(X,x0) there is a covering space (X̃, p) of X and x̃0 ∈ X̃
such that p∗(π1(X̃, x̃0)) = G. Furthermore, (X̃, p) is unique up to isomorphism.
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Corollary 13.29. Let X be connected, locally path connected, and semi-locally simply connected. Then

there is a one-to-one correspondence between the subgroups of π1(X) and the collection of isomorphism

classes of covering spaces of X where the covering space p : X̃ → X corresponds to p∗(π1(X̃)).
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Corollary 13.30. Every connected, locally path connected, semi-locally simply connected space admits a

unique universal covering space.
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Exercise 13.31. Find a universal cover X̃ for each of the Klein bottle, the torus, and the projective plane.

In each case, show explicitly that C(X̃, p) ∼= π1(X).
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Theorem 13.32. A finite tree is contractible.
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Theorem 13.33. Let G be a finite graph, and T be a maximal tree in G. Then if {e1, . . . en} is the set of

edges that are not in T , π1(G) = Fn, the free group on n generators; and there is a system of generators

that are in one-to-one correspondence with the edges {e1, . . . en}.
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Lemma 13.34. Let X be the bouquet of n circles. Every finite cover of X is homeomorphic to a finite graph.
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Theorem 13.35. Let Fn be the free group on n letters. Then every subgroup of Fn of finite index is

isomorphic to a free group on finitely many letters.
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Lemma 13.36. Suppose that G is a graph and that K ⊂ G is compact. Then K is contained in a finite

subgraph of G.
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Theorem 13.37. Every tree is simply connected.
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Theorem 13.38. Let G be a graph, then π1(G) is free.
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Exercise 13.39. Show that the free group of rank 2 has finite index subgroups that are isomorphic to free

groups of arbitrarily large rank.

581



Lemma 13.40. Let X be the bouquet of n circles. Then every cover of X is homeomorphic to a graph.
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Corollary 13.41 (Nielsen-Schreier Theorem). Let Fn be the free group on n letters. A subgroup of Fn is

always free.
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Exercise 13.42. Describe a regular k-fold cover X̃ of a bouquet of n-circles. What (in terms of k and n) is

the rank of the free group π1(X̃)? What does this insight tell us about the normal subgroups of finite index

of the free group on n letters?
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Exercise 13.43.

1. Let F be a free group on n letters. Let G < F be of finite index k and contain 7 free generators. What

can the value of n be?

2. Let F be a free group on n letters. Let G < F be of finite index k and contain 4 free generators. What

can the value of n be?

3. Let F be a free group on n letters. Let G < F be of finite index k and contain 24 free generators.

What can the value of n be?
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Theorem 13.44. Let F be a 2-manifold and (F̃ , p) be a covering space of F . Then F̃ is a 2-manifold.
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Theorem 13.45. Let F be a compact connected surface and pn : F̃ → F be an n-fold covering of F (for

n <∞). Then F̃ is a compact surface and χ(F̃ ) = nχ(F ). Moreover, if F is orientable, then F̃ is as well.
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Exercise 13.46.

1. Describe all non-homeomorphic 3-fold covers of the Klein bottle.

2. Describe all non-homeomorphic 2-fold covers of T2 #T2.

3. Describe all non-homeomorphic 3-fold covers of T2 #T2 #T2.

4. Describe all non-homeomorphic 3-fold covers of RP2.
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Exercise 13.47. Given a compact, connected 2-manifold and a natural number n, describe all non-homeomorphic

n-fold covers of that surface.
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Chapter 14

Manifolds, Simplexes, Complexes, and
Triangulability: Building Blocks

Exercise 14.1. Show that the standard n-ball and the standard n-cube are homeomorphic spaces and each

is compact and connected.
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Exercise 14.2. Show that for n ≥ 1, the n-sphere is compact and connected.
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Exercise 14.3. Consider S0, S1, and S2. Is any pair of them homeomorphic? If not, are there properties that

allow you to distinguish them?
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Theorem 14.4. For a separable, metric space Mn, the following are equivalent:

1. Mn is an n-manifold;

2. for each point p ∈ Mn, p has a neighborhood base of open sets each homeomorphic to the interior of

an n-ball;

3. for every point p ∈Mn, p ∈ U where U is an open set homeomorphic to Rn.
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Exercise 14.5. If you are comfortable with ordinal numbers, construct a topological space where every point

has an open set containing it that is homeomorphic to R1, and yet the space is not metrizable. You might

call your space the long line.
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Exercise 14.6. Show that a locally Euclidean space is Hausdorff and second countable if and only if it is

separable and metrizable.

596



Exercise 14.7. Show that Sn is an n-manifold.
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Theorem 14.8. If M is an n-manifold and U is an open subset of M , then U is also an n-manifold.
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Theorem 14.9. If M is an m-manifold and N is an n-manifold, then M ×N is an (m+ n)-manifold.
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Theorem 14.10. LetMn be an n-dimensional manifold with boundary. Then ∂Mn is an (n−1)-manifold.
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Exercise 14.11. Show that if σ is a simplex and τ is one of its faces, then τ ⊂ σ.
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Exercise 14.12. Show that an n-simplex is homeomorphic to a closed n-dimensional ball.
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Exercise 14.13. Exhibit a collection of simplices that satisfies condition (1) but not (2) in the definition of

a simplicial complex.
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Exercise 14.14. Let K be the simplicial complex in R2:

K = {σ, e1, e2, e3, e4, e5, v1, v2, v3, v4}

where σ = {(0, 0)(0, 1)(1, 0)}, e1 = {(0, 0)(0,−1)}, e2 = {(0,−1)(1, 0)}, e3 = {(0, 0)(0, 1)}, e4 =

{(0, 1)(1, 0)}, e5 = {(1, 0)(0, 0)}, v1 = {(0, 0)}, v2 = {(0, 1)}, v3 = {(1, 0)}, and v4 = {(0,−1)}. Draw

K and its underlying space.

604



Exercise 14.15. Show that the space shown in Figure ?? is triangulable by exhibiting a simplicial complex

whose underlying space it is homeomorphic to.
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Exercise 14.16. For each n, Sn is triangulable.
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Theorem 14.17. A simplicial map from K to L is determined by the images of the vertices of K.
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Theorem 14.18. A composition of simplicial maps is a simplicial map.
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Theorem 14.19. If two complexes are simplicially homeomorphic, then there are 1-1 correspondences be-

tween their k-simplices for each k ≥ 0.
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Theorem 14.20. A simplicial map f : K → L is continuous as a map on the underlying spaces. In

particular, simplicially homeomorphic complexes have homeomorphic underlying spaces.
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Theorem 14.21. A composition of PL maps is PL. A PL homeomorphism is an equivalence relation.
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Theorem 14.22. PL homeomorphic complexes are homeomorphic as topological spaces.
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Exercise 14.23. Let K is a complex consisting of the boundary of a triangle (three vertices and three edges)

and L be an isomorphic complex. Both |K| are |L| are topologically circles. There is a continuous map that

takes the circle |K| and winds it twice around the circle |L|; however, show that there is no simplicial map

from K to L that winds the circle |K| twice around the circle |L|.
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Exercise 14.24. How many n-simplices are there in the first barycentric subdivision of an n-simplex?
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Exercise 14.25. Convince yourself that the barycentric subdivision of a complexK is, in fact, a subdivision

of K.
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Theorem 14.26. Let K be a finite simplicial complex and let an be the maximum among the diameters of

simplices in sdnK. Then limn→∞ an = 0.
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Exercise 14.27. The star of a vertex v in a complex K is an open set of |K|, and the collection of all vertex

stars covers |K|.
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Exercise 14.28. If the simplex σ = {v0, . . . , vk} in K is the minimal face of a point x ∈ |K|, then

x ∈ St(v0) ∩ · · · ∩ St(vk).
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Theorem 14.29. Suppose K and L are simplicial complexes. Then a continuous function f : |K| → |L|
satisfies the star condition with respect to K and L if and only if f has a simplicial approximation g : K →
L.
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Theorem 14.30. If g, g′ : K → L are both simplicial approximations to a continuous function f : |K| →
|L|, then for any point x ∈ |K|, if σ is the minimal face of x in K, the point f(x) and the simplices g(σ)

and g′(σ) all lie in a single simplex of L.
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Theorem 14.31. Let K and L be simplicial complexes. If f : |K| → |L| has a simplicial approximation

g : K → L, then f is homotopic to g : |K| → |L|.
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Theorem 14.32. Suppose K and L are finite simplicial complexes and f : |K| → |L| is a continuous

function between their underlying spaces. Then there exists m ≥ 1 such that the function f : | sdmK| →
|L| satisfies the star condition with respect to sdmK and L.
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Theorem 14.33. Suppose K and L are simplicial complexes and f : |K| → |L| is a continuous function

between their underlying spaces. Then there exists m ≥ 1 such that f has a simplicial approximation

g : sdmK → L.
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Theorem 14.34 (Simplicial Approximation Theorem). Let K and L be simplicial complexes, let f :

|K| → |L| be a continuous function between their underlying spaces, and let ε > 0. Then there exist

m,n ≥ 1 and a simplicial map g : sdnK → sdm L such that f is homotopic to g and for every x ∈ |K|,
d(f(x), g(x)) < ε.
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Theorem 14.35. Let K be a subdivision of a 1-simplex σ. Label every vertex of K with a 0 or a 1 such that

one of the two vertices of σ is labeled with a 0 and the other is labeled with a 1. Then there is a 1-simplex τ

in K such that one vertex of τ is labeled 0 and the other vertex of τ is labeled 1.
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Theorem 14.36. Let K be a subdivision of a 2-simplex σ. Label every vertex of K with 0, 1, or 2 such that

the three vertices of σ are labeled with different numbers. Then there is a 2-simplex τ in K such that its

vertices are labeled with all different numbers.

626



Theorem 14.37 (Sperner’s Lemma). Let K be a subdivision of a n-simplex σ. Label every vertex of K

with one of {0, 1, . . . , n} such that the (n+ 1) vertices of σ are labeled with different numbers. Then there

is an n-simplex τ in K such that its vertices are labeled with all different numbers.
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Theorem 14.38. Let σ be an n-simplex with boundary ∂σ. There does not exist a continuous function

r : σ → ∂σ such that for every x ∈ ∂σ, r(x) = x.

628



Theorem 14.39 (n-dimensional Brouwer Fixed Point Theorem). Let σn be an n-simplex. For every

continuous function f : σn → σn there exists a point x ∈ σn such that f(x) = x.
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Theorem 14.40. Let h : S1 → R2 be an embedding that is a polygon, that is, h(S1) consists of a finite

number of straight line intervals. Then h(S1) separates R2 into two components and each point of h(S1) is

a limit point of each component.
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Theorem 14.41. Let h : S1 → R2 be an embedding that is a polygon, that is, h(S1) consists of a finite

number of straight line intervals. Then there is a homeomorphism H : R2 → R2 such that H(h(S1)) is the

unit circle.
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Theorem 14.42. Let A and B be disjoint closed subsets of [0, 1] × [0, 1] such that A ∩ ([0, 1] × {0, 1} ∪
{1} × [0, 1]) = ∅ and B ∩ ([0, 1] × {0, 1} ∪ {0} × [0, 1]) = ∅. Then there exists a path in [0, 1] × [0, 1]

from (1/2, 0) to (1/2, 1) that misses A ∪B.
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Theorem 14.43. Suppose h : [0, 1] → R2 is an embedding and suppose p and q are points in R2 not

contained in h([0, 1]). Then there exists a path f : [0, 1] → R2 such that f(0) = p, f(1) = q, and

f([0, 1]) ∩ h([0, 1]) = ∅.
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Theorem 14.44. Suppose g, h : [0, 1] → R2 are embeddings such that g([0, 1]) is a straight line segment,

g(0) = h(0), g(1) = h(1), and g((0, 1)) ∩ h((0, 1)) = ∅. Then g([0, 1]) ∪ h([0, 1]) separates R2 into two

components and each point of g([0, 1]) ∪ h([0, 1]) is a limit point of each component.
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Theorem 14.45. Let h : S1 → R2 be an embedding. Then h(S1) separates R2 into two components and

each point of h(S1) is a limit point of each component.
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Exercise 14.46. 1. Let C0 be a disk with two holes. Construct a subset C1 of C0 such that C1 is also

homeomorphic to a disk with two holes, and for which each point x ∈ C1 is within distance 1 of points

in each of the three components of R2 − C1.

2. Construct a continuum C ⊂ R2 such that R2 − C has three components and each point x ∈ C is a

limit point of each component of R2 − C.

3. Construct a continuum C ⊂ R2 such that R2 − C has infinitely many components and each point

x ∈ C is a limit point of each component of R2 − C.

636



Theorem 14.47. Let h : S1 → R2 be an embedding. Let p be a point in the bounded component of

R2 − h(S1) and let ε > 0. Then there exists an embedding g : S1 → R2 such that g(S1) is a polygonal

simple closed curve in the bounded component of R2−h(S1), g(S1) lies in the ε-neighborhood of h(S1), and

p is in the bounded component of R2 − g(S1).
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Theorem 14.48. Let h : S1 → R2 be an embedding. Let ε > 0 and let A be an arc on S1 with endpoints

a and b such that the diameter of h(A) is less than ε and let p be a point in the bounded component of

R2 − h(S1). Then there exists an embedding g : S1 → R2 such that g(S1) is a polygonal simple closed

curve in the bounded component of R2−h(S1), p is in the bounded component of R2− g(S1), and for every

x ∈ A, d(g(x), h(x)) < ε.
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Theorem 14.49. Let h : S1 → R2 be an embedding, let U be the bounded component of R2 − h(S1), and

let D be the closed unit ball in R2. Then there is a homeomorphism H : (U ∪ h(S1)→ D.
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Theorem 14.50. Let h : S1 → R2 be an embedding. Then there is a homeomorphism H : R2 → R2 such

that H(h(S1)) is the unit circle.
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Theorem 14.51. Let h : [0, 1] → R2 be an embedding of [0, 1] in the plane and let ε > 0. Then there

exists an embedding g : [0, 1] → R2 such that h(0) = g(0), h(1) = g(1), and for every x ∈ [0, 1],

d(h(x), g(x)) < ε.
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Theorem 14.52. Let f, g : [0, 1] → R2 be two embeddings of [0, 1] in the plane such that f(0) = g(0)

and f(1) = g(1). Let ε > 0. Suppose for every x ∈ [0, 1], d(f(x), g(x)) < ε. Then there exists a

homeomorphism h : R2 → R2 such that for every t ∈ [0, 1], h(f(t)) = g(t) and for every x ∈ R2,

d(x, h(x)) < ε.
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Theorem 14.53. Every compact 2-manifold is triangulable, that is, it is homeomorphic to a subset C of Rn

consisting of a finite collection T = {σi}ki=1 of (rectilinear) 2-simplices where each pair of 2-simplices are

disjoint or they meet in one vertex of each or they share a single edge. Since the space C is homeomorphic to

a 2-manifold, each edge of each 2-simplex making up C is shared by exactly two triangles, and around each

vertex is a circle of triangles whose union is a disk.
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Theorem 14.54. Every 2-manifold is triangulable.
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Lemma 14.55. Let M1 and M2 be two rectilinearly triangulated 2-manifolds in Rn. Let h : M1 →M2 be

a topological homeomorphism. Then there exists a homeomorphism g : M1 → M2 such that the image of

every edge in the triangulation of M1 is a polyhedral arc in M2.
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Theorem 14.56. Let M1 and M2 be two rectilinearly triangulated 2-manifolds in Rn. Let h : M1 → M2

be a topological homeomorphism. Then there exists a homeomorphism g : M1 →M2 such that the image of

every triangle in a triangulation of M1 is a rectilinear triangle in M2.
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Theorem 14.57. Any two triangulations of a compact 2-manifold are equivalent.

647



Theorem 14.58. The Euler characteristic is well-defined for compact 2-manifolds.
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Theorem 14.59. Orientability is well-defined for compact 2-manifolds.
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Chapter 15

Simplicial Z2-Homology: Physical
Algebra

Exercise 15.1. Check that Cn(K) is an abelian group.
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Exercise 15.2. Verify that ∂ is a homomorphism, and use the definition to compute the Z2-boundary of

σ1 + σ2 in Figure ??.
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Exercise 15.3. Explore:

1. Which 2-chains of Figure ?? are cycles?

2. Which 1-chains of Figure ?? are cycles?

3. Which 1-chains of Figure ?? are boundaries?

4. Which 0-chains of Figure ?? are cycles?

5. Which 0-chains of Figure ?? are boundaries?
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Theorem 15.4. Both Zn(K) and Bn(K) are subgroups of Cn(K). Moreover,

∂ ◦ ∂ = 0,

in other words, ∂n ◦ ∂n+1 = 0 for each index n ≥ 0. Hence, Bn(K) ⊂ Zn(K).
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Exercise 15.5. List all the equivalence classes of 0-cycles, 1-cycles and 2-cycles in the complex in Figure ??.
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Exercise 15.6. List all the equivalence classes of 0-cycles, 1-cycles and 2-cycles in a triangulated 2-sphere

with its standard triangulation as the faces of a 3-simplex.
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Theorem 15.7. If K is a one-point space, Hn(K) ∼= 0 for n ≥ 0 and H0(K) ∼= Z.
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Theorem 15.8. If K is connected, then H0(K) is isomorphic to Z2. If K has r connected components, then

H0(K) is isomorphic to Zr2.
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Exercise 15.9. Let K be a triangulation of a 3-dimensional ball that consists of a 3-simplex together with

its faces. Compute Hn(K) for each n.
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Exercise 15.10. Let K be a triangulation of a 2-sphere that consists of the proper faces of a 3-simplex.

Compute Hn(K) for each n.
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Theorem 15.11. For x seeing K, and σ a simplex of K,

∂ Conex(σ) + Conex(∂σ) = σ.
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Corollary 15.12. For any complex K and x seeing K, the complex x ∗K is acyclic.
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Theorem 15.13. The complex K consisting of an n-simplex together with all its faces is acyclic.
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Exercise 15.14. Let f : K → L be a simplicial map. Carefully write out the definition of the natural

induced map from n-chains of K to n-chains of L: f#n : Cn(K)→ Cn(L) and show that it is a homomor-

phism.
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Exercise 15.15. If the simplicial map f : K → L maps an n-simplex σ to an (n − 1)-simplex τ , what is

f#n(σ)?
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Theorem 15.16. Let f : K → L be a simplicial map, and let f# be the induced map f# : Cn(K)→ Cn(L).

Then for any chain c ∈ Cn(K),

∂(f#(c)) = f#(∂(c)).

In other words, the diagram:

Cn(K)
f#−−−−→ Cn(L)

∂

y y∂
Cn−1(K)

f#−−−−→ Cn−1(L)

commutes.
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Theorem 15.17. Let f : K → L be a simplicial map. Then the induced homomorphism f∗ : Hn(K) →
Hn(L) is a well-defined homomorphism.
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Exercise 15.18. Let K be a complex comprising the proper faces of a hexagon: six edges and six vertices

v0, . . . , v5. Let L be the complex comprising the proper faces of a triangle: three edges and three vertices

w0, w1, w2. Let f be a simplicial map that sends vi to w(i mod 3). Compute the homology groups of K and

L and describe the simplicial map f and the induced homomorphism f∗.
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Exercise 15.19. Suggest a homomorphism from Cn(K) to Cn(sdK) that commutes with ∂. Could its

induced homomorphism on homology be an inverse for λ∗?
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Theorem 15.20. The subdivision operator commutes with the boundary operator, that is, if c is a chain in

K, then SD(∂c) = ∂ SD(c).
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Exercise 15.21. Show that λ# ◦ SD = id, the identity map on Cn(K), and therefore λ∗ ◦ SD∗ = id∗, the

identity map on Hn(K).
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Exercise 15.22. Show that SD ◦λ# and id, the identity map on Cn(sdK), induce the same homomorphism

on homology.
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Exercise 15.23. If σ ∈ sdK is contained in τ ∈ K, then SD ◦λ#(σ) and id(σ) both lie inside τ .
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Theorem 15.24. Let K be a simplicial complex. Then Hn(K) is isomorphic to Hn(sdK). In fact, if the

simplicial map λ : sdK → K is defined by taking each vertex in sdK to any vertex of the simplex in K of

which it is the barycenter, then

λ∗ : Hn(K)→ Hn(sdK)

is an isomorphism. Also, the induced homomorphism of the subdivision operator

SD∗ : Hn(K)→ Hn(sdK)

is an isomorphism and is the inverse of λ∗.
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Theorem 15.25. Let sd`K and sdmK be barycentric subdivisions of K. Suppose g : sd`K → L and

h : sdmK → L are simplicial approximations to a continuous function f : |K| → |L|. Then g∗ ◦ SD`∗ :

Hn(K)→ Hn(L) is the same homomorphism as h∗ ◦ SDm∗ .
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Lemma 15.26. If K, L, and M are simplicial complexes and f : |K| → |L| and g : |L| → |M | are

continuous maps, then (g ◦ f)∗ = g∗ ◦ f∗.
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Lemma 15.27. If i : |K| → |K| is the identity map, then i∗ is the identity homomorphism on each

homology group.
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Theorem 15.28. Let K and L be simplicial complexes. If f : |K| → |L| is a homeomorphism, then f

induces an isomorphism between the Z2-homology groups of K and L.
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Theorem 15.29. Let K and L be simplicial complexes. If f : |K| → |L| is a homotopy equivalence, then f

induces an isomorphism between the Z2-homology groups of K and L.

679



Corollary 15.30. If K is a strong deformation retract of L. Then K and L have isomorphic Z2-homologies.
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Exercise 15.31. If K is a finite simplicial complex, verify that the intersection of two subcomplexes of K is

a subcomplex.

681



Exercise 15.32. Note that a cycle in A ∩B is still a cycle in A, B, and K. Then answer:

1. Can a trivial cycle in A ∩B be non-trivial in A?

2. Can a non-trivial cycle in A ∩B be trivial in A?

3. Can a non-trivial cycle in A ∩B that’s also non-trivial in A and in B be trivial in K?
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Theorem 15.33. Let K be a finite simplicial complex and A and B be subcomplexes such that K = A∪B.

If α, β are k-cycles in A and B respectively, and if α ∼Z2 β in K, then there is a k-cycle c in A ∩ B such

that α ∼Z2 c in A and β ∼Z2 c in B.
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Theorem 15.34. Let K be a finite simplicial complex and A and B be subcomplexes such that K = A∪B.

Let z be a k-cycle in K. Then there exist k-chains α and β in A and B respectively such that:

1. z = α+ β and

2. ∂α = ∂β is a (n− 1)-cycle c in A ∩B.

Furthermore, if z = α′ + β′, a sum of n-chains in A and B respectively, and c′ = ∂α′ = ∂β′ is a

(n− 1)-cycle, then c′ is homologous to c in A ∩B.
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Exercise 15.35. Let K be a simplicial complex and A and B be subcomplexes such that K = A ∪ B.

Construct natural homomorphisms φ, ψ, δ among the groups below and show that ψ ◦φ = 0 and δ ◦ψ = 0.

1. φ : Hn(A ∩B)→ Hn(A)⊕ Hn(B).

2. ψ : Hn(A)⊕ Hn(B)→ Hn(K).

3. δ : Hn(K)→ Hn−1(A ∩B).

685



Theorem 15.36 (Z2 Mayer-Vietoris). Let K be a finite simplicial complex and A and B be subcomplexes

such that K = A ∪B. The sequence

· · · → Hn(A ∩B)→ Hn(A)⊕ Hn(B)→ Hn(K)→ Hn−1(A ∩B)→ . . .

using the homomorphisms φ, ψ, δ above, is exact.
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Exercise 15.37. Let C,D,E be groups, and arrows represent homomorphisms below.

1. 0→ C
φ→ D is exact at C if and only if φ is one-to-one.

2. D ψ→ E → 0 is exact at E if and only if ψ is onto.

3. 0→ C
φ→ D → 0 is exact if and only if φ is an isomorphism.
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Exercise 15.38. Compute the Z2-homology groups for each complex K below.

1. The bouquet of k circles (the union of k circles identified at a point).

2. A wedge of a 2-sphere and a circle (the two spaces are glued at one point).

3. A 2-sphere union its equatorial disk.

4. A double solid torus.
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Exercise 15.39. Compute the Z2-homology groups of a torus using Mayer-Vietoris in two different ways

(with two different decompositions).
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Exercise 15.40. Use the Mayer-Vietoris Theorem to compute Hn(M) for every compact, triangulated

2-manifold M . What compact, triangulated 2-manifolds are not distinguished from one another by Z2-

homology? What does H2(M) tell you?
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Exercise 15.41. Let p, q ∈ Z be relatively prime. Calculate Hn(L(p, q)), the homology of the lens space

L(p, q).
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Exercise 15.42. Use the Mayer-Vietoris Theorem to compute Hn(K) for the complexes K pictured in

Figure 15.1.

Figure 15.1: Two interesting spaces.
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Exercise 15.43. Use the Mayer-Vietoris Theorem to find the Z2-homology groups for each of the following

spaces.

1. Sn.

2. A cone over a finite simplicial complex K.

3. A suspension over a finite simplicial complex K (that is, the finite simplicial complex created by

gluing two cones over K along K).

4. RPn (which is Sn with antipodal points identified).
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Theorem 15.44. Let K be a simplicial complex where T = {σi}ki=1. Then

K =

k⊔
i=1

Int(σi),

where t denotes disjoint union.
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Exercise 15.45. Let K be a 3-simplex with triangulation shown (a tetrahedron). Find an open cell de-

composition of K with one vertex, one open 2-cell, and one open 3-cell. This example shows that it is not

necessary to have every dimension less then the dimension of K represented.
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Theorem 15.46. Both Zcn(Kc) and Bcn(Kc) are subgroups of Ccn(Kc). Moreover, Bcn(Kc) ⊂ Zcn(Kc).
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Theorem 15.47. Let Kc be an open cell decomposition of the finite simplicial complex K. Then for each n,

the obvious homomorphism Hcn(Kc)→ Hn(K) is an isomorphism.
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Exercise 15.48. For each space below, describe a triangulationK and an open cell decompositionKc. Then

use cellular homology to compute Hn(K) for each n:

1. The sphere.

2. The torus.

3. The projective plane.

4. The Klein bottle.

5. The double torus.

6. Any compact, connected, triangulated 2-manifold.

7. The Möbius band.

8. The annulus.

9. Two (hollow) triangles joined at a vertex.
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Exercise 15.49. What is Hn(Sk) for n = 0, 1, 2, . . . and k = 0, 1, 2, . . .?
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Exercise 15.50. What is Hn(T) for n = 0, 1, 2, . . . for a solid torus T?
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Chapter 16

Applications of Z2-Homology: A
Topological Superhero

Theorem 16.1 (No Retraction Theorem). Let Mn be a connected triangulated n-manifold with ∂Mn 6=
∅. Then there is no retraction r : Mn → ∂Mn, i.e., no continuous function r : Mn → ∂Mn such that for

each x ∈ ∂Mn, r(x) = x.
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Theorem 16.2 (n-dimensional Brouwer Fixed Point Theorem). Let Bn be the n-dimensional ball. For

every continuous function f : Bn → Bn there exists a point x ∈ Bn such that f(x) = x.
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Lemma 16.3. Let Mn be a triangulated, connected n-manifold. Let f : Mn → Mn be a simplicial map.

Then f∗ : Hn(Mn)→ Hn(Mn) is surjective if and only if f#(Mn) = Mn.

703



Theorem 16.4. Let f : S1 → S1 be an antipode preserving continuous map (that is, for every x ∈ S1,

f(−x) = −f(x). Then f∗ : H1(S1)→ H1(S1) is surjective.
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Theorem 16.5 (Borsuk-Ulam Theorem for S2). Let f : S2 → R2 be a continuous map. Then there exists

an x ∈ S2 such that f(−x) = f(x).
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Theorem 16.6. Let f : Sn → Sn be an antipode preserving map (that is, for every x ∈ Sn, f(−x) =

−f(x)). Then f∗ : Hn(Sn)→ Hn(Sn) is surjective.
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Theorem 16.7 (Borsuk-Ulam). Let f : Sn → Rn be a continuous function. Then there is an x ∈ Sn such

that f(−x) = f(x).
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Theorem 16.8 (Ham Sandwich Theorem). LetA1, A2, ..., An be measurable sets of finite measure in Rn.

Then there exists an (n− 1)-dimensional hyperplane H in Rn that simultaneously cuts each Ai in half.
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Exercise 16.9. Draw a sequence of pictures to demonstrate a sequence of elastic moves with no tricks, no

cutting, and no gluing that takes the left hand picture of Figure ?? and turns it into the right hand picture.
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Theorem 16.10. If m 6= n then Rm is not homeomorphic to Rn.
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Theorem 16.11 (Invariance of Domain or Invariance of Dimension). A space cannot be both an n-

manifold and an m-manifold if n 6= m.
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Exercise 16.12. Describe a continuous function from [0, 1] to [0, 1] that is nowhere differentiable.
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Theorem 16.13. Let B be the set of all nowhere differentiable continuous functions from [0, 1] to [0, 1].

Then B is the intersection of countably many dense open sets in C.
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Exercise 16.14. Describe an embedding of [0, 1] into the plane that has infinite length. In fact, you might

choose the graph of a differentiable function.
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Exercise 16.15. Describe an embedding of [0, 1] into the unit square and two points x and y in the unit

square not on the embedded arc such that to connect x to y by a polygonal path missing the embedded arc

requires a polygonal path of length at least a mile.

715



Lemma 16.16. Let h : [0, 1]→ R2 be an embedding and let p and q be points in R2 − h([0, 1]). If p and q

are connected in R2 − h([0, 12 ]) and p and q are connected in R2 − h([12 , 1]), then p and q are connected in

R2 − h([0, 1]).
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Theorem 16.17. Let h : [0, 1]→ R2 be an embedding. Then h([0, 1]) does not separate R2.
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Lemma 16.18. For any natural number n, let h : [0, 1] → Rn be an embedding and let p and q be points

in Rn − h([0, 1]). If p and q are connected in Rn − h([0, 12 ]) and p and q are connected in Rn − h([12 , 1]),

then p and q are connected in Rn − h([0, 1]).
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Theorem 16.19. For any natural number n, let h : [0, 1]→ Rn be an embedding. Then h([0, 1]) does not

separate Rn.
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Lemma 16.20. For any natural number n, let h : [0, 1] → Rn be an embedding and let Z be a Z2 1-cycle

in Rn − h([0, 1]). If Z bounds a 2-chain in Rn − h([0, 12 ]) and Z bounds a 2-chain in Rn − h([12 , 1]), then

Z bounds a 2-chain in Rn − h([0, 1]).
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Theorem 16.21. For any natural number n, let h : [0, 1]→ Rn be an embedding and let Z be a Z2 1-cycle

in Rn − h([0, 1]). Then Z bounds a 2-chain in Rn − h([0, 1]).
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Theorem 16.22. For any natural numbers n and k with k < n, let h : [0, 1] → Sn be an embedding and

let Z be a Z2 k-cycle in Sn − h([0, 1]). Then Z bounds a (k + 1)-chain in Sn − h([0, 1]).
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Theorem 16.23 (Jordan-Brouwer Separation Theorem). Let h : Sn−1 → Sn be a topological embedding.

Then h(Sn−1) separates Sn into precisely two components and is the boundary of each.

723



Theorem 16.24 (Two Chains Theorem). Let f : Sn−1 → Sn be a simplicial map. Then there exist Z2

n-chains An and Cn such that ∂(An) = ∂(Cn) = f#(Sn−1) and An ∪ Cn = Sn.
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Theorem 16.25 (Absolute Neighborhood Retract Theorem). For every k, Sk is an absolute neighbor-

hood retract.
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Theorem 16.26. Let h : Sn−1 → Sn be a topological embedding and let U be a neighborhood of h : Sn−1

that retracts to it. Then U 6= Sn.
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Corollary 16.27. Let h : Sn−1 → Sn be a topological embedding and let U be a neighborhood of h : Sn−1

with retraction r : U → h(Sn−1). Then there exists an open set V ⊂ U such that for every point v ∈ V ,

the straight line between v and r(v) is contained in U .
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Lemma 16.28. Let h : Sn−1 → Sn be a topological embedding. Then there exists an ε > 0 such that if

f : Sn−1 → Sn is a simplicial map such that d(f(x), h(x)) < ε for all x ∈ Sn−1, then f#(Sn−1) does not

bound an n-chain in the ε-neighborhood of h(Sn−1).
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Lemma 16.29. Let h : Sn−1 → Sn be a topological embedding and let ε > 0. Then there exists a δ > 0

such that if f, g : Sn−1 → Sn are simplicial maps such that d(f(x), h(x)) < δ and d(g(x), h(x)) < δ for

all x ∈ Sn−1, then f#(Sn−1) and g#(Sn−1) bound an n-chain in the ε-neighborhood of h(Sn−1).
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Lemma 16.30. Let h : Sn−1 → Sn be a topological embedding, U be a neighborhood that retracts to

h(Sn−1), let f : Sn−1 → Sn be a simplicial map such that for each point x ∈ Sn−1, the straight line segment

between h(x) and f(x) lies in U . Let An and Cn be Z2 n-chains such that ∂(An) = ∂(Cn) = f#(Sn−1)
and An ∪ Cn = Sn. Then there exists a point a ∈ (A− U) and a point c ∈ (C − U).
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Lemma 16.31. Let h : Sn−1 → Sn be a topological embedding, U be a neighborhood that retracts to

h(Sn−1), let f, g : Sn−1 → Sn be simplicial maps such that for each point x ∈ Sn−1, the straight line

segments between h(x) and f(x) and h(x) and g(x) lie in U . Let Anf and Cnf be Z2 n-chains (from the Two

Chains Theorem) such that ∂(Anf ) = ∂(Cnf ) = f#(Sn−1) and Anf ∪ Cnf = Sn and let a ∈ (A − U) and

c ∈ (C − U). Let Ang and Cng be Z2 n-chains such that ∂(Ang ) = ∂(Cng ) = g#(Sn−1) and Ang ∪ Cng = Sn

where a ∈ Ag. Then c /∈ Ag.
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Lemma 16.32. Let h : Sn−1 → Sn be a topological embedding, U be a neighborhood such that there is a

retract r : U → h(Sn−1, and V be an open set in U such that for each x ∈ V , the straight line segment

from x to r(x) is in U . Let a /∈ U and let T be a standard triangulation of Sn with simplexes so small that

for any simplex σ ∈ T , if σ ∩ (Sn − V ) 6= ∅, then σ ∩ h(Sn−1 = ∅. Let τ0 be an n-simplex in T such that

a ∈ τ0. Let A be the union of all n-simplexes τk in T such that there are n-simplexes {τi}i=0,··· ,k such that

(1) each τi contains a point in Sn − V , and (2) for each i, τi and τi+1 share an (n− 1)-face. Then ∂A ⊂ V
and h−1(r(∂A)) is the non-trivial element of Hn−1(Sn−1). Also, r(∂A) = h(Sn−1).
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Lemma 16.33. Let h : Sn−1 → Sn be a topological embedding, let {Ui}i∈N be open sets each containing

h(Sn−1) and each contained in the 1
n -neighborhood of h(Sn−1) with retract r : U1 → h(Sn−1) and such

that for every i ∈ N and every point x ∈ Ui+1, the straight line homotopy between x and r(x) lies in Ui.

Let {Ti}i∈N be a sequence of triangulations of Sn where each triangulation Ti+1 is a subdivision of Ti with

simplices so small that any simplex of Ti that intersects h(Sn−1) lies entirely in Ui. Let a ∈ (Sn −U1). Let

Ai be the component containing a of the union of all n-simplices of Ti that miss h(Sn−1). Then ∂(Ai+1)

and ∂(Ai+2) co-bound an n-chain in Ui, ∪i∈NAi ∩ h(Sn−1) =, each point x ∈ h(Sn−1) is a limit point of

∪i∈NAi, there exists a point c in (Sn − ∪i∈NAi − U1), and if we do the same process that we did for a for c

creating Ci’s, then Sn = (∪i∈NAi) ∪ h(Sn−1) ∪ (∪i∈NCi).
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Theorem 16.34 (Jordan-Brouwer Separation Theorem). Let h : Sn−1 → Sn be a topological embedding.

Then h(Sn−1) separates Sn into precisely two components and is the boundary of each.
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Corollary 16.35 (Jordan-Brouwer Separation Theorem). Let h : Sn−1 → Rn be a topological embed-

ding. Then h(Sn−1) separates Rn into precisely two components and is the boundary of each. The two

components are distinguished topologically by the fact that one has a compact closure and the other does

not.
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Theorem 16.36. Every connected, compact topologically embedded (n − 1)-manifold in Rn separates Rn

into two components and is the topological boundary of each.
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Theorem 16.37. The Klein Bottle cannot be embedded in R3.
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Chapter 17

Simplicial Z-Homology: Getting
Oriented

Exercise 17.1. Check that this boundary map is well-defined: it does not depend on the oriented represen-

tative chosen for the definition.
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Exercise 17.2. Find the boundary of the oriented 2-simplex τ = [v0v1v2] and the boundary of the oriented

3-simplex σ = [w0w1w2w3]. Repeat the procedure for −τ and −σ. What is the relationship between

the boundary of τ and the boundary of −τ? What is the relationship between the boundary of σ and the

boundary of −σ?
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Theorem 17.3. For any n-simplex σ

∂(−σ) = −∂(σ).
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Theorem 17.4. For all n ≥ 0,

∂n ◦ ∂n+1 = 0.
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Theorem 17.5. For any simplicial complex K, both Zn(K) and Bn(K) are subgroups of Cn(K), and

Bn(K) ⊂ Zn(K).
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Exercise 17.6. Create a triangulation of a Möbius band such that the central circle forms a 1-cycle γ. Show

that the Möbius band’s boundary 1-cycle α is equivalent to either 2γ or −2γ (depending on the orientation

you give the two cycles).
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Theorem 17.7. For a finite simplicial complex K, Hn(K) is a finitely generated abelian group.
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Theorem 17.8. If K is a connected simplicial complex, then H0(K) is isomorphic to Z. If K has r con-

nected components, then H0(K) is a free abelian group of rank r.
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Theorem 17.9. If K is a one-point space, Hn(K) ∼= 0 for n ≥ 0 and H0(K) ∼= Z.
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Theorem 17.10. Let x see a complex K, and let c ∈ Cn(K) be a chain. Then

∂ Conex(c) + Conex(∂c) = c.
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Corollary 17.11. For any complex K and x seeing K, the complex x ∗K is acyclic.
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Theorem 17.12. The complex K consisting of an n-simplex together with all its faces is acyclic.
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Theorem 17.13. Let f : K → L be a simplicial map, and let f# be the induced map f# : Cn(K)→ Cn(L).

Then for any chain c ∈ Cn(K), ∂(f#(c)) = f#(∂(c)). In other words, the diagram:

Cn(K)
f#−−−−→ Cn(L)

∂

y y∂
Cn−1(K)

f#−−−−→ Cn−1(L)

commutes.
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Theorem 17.14. Let f : K → L be a simplicial map. Then the induced homomorphism f∗ : Hn(K) →
Hn(L) is a well-defined homomorphism.
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Exercise 17.15. Check that Cn(K,K ′) is a free abelian group.
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Theorem 17.16. There is a boundary map

∂n : Cn(K,K ′)→ Cn−1(K,K
′)

such that ∂n ◦ ∂n+1 = 0 for all n ≥ 0.
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Exercise 17.17. Check that if K ′ = ∅, the empty set, then Hn(K,K ′) = Hn(K) for all n, the usual

homology groups.
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Exercise 17.18. Show that H̃n(K) ∼= Hn(K) for n > 0 and H0(K) ∼= H̃0(K)⊕ Z.
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Exercise 17.19. Let K be the complex consisting of a triangle and all its faces. Determine Hn(K,K ′) for

all n ≥ 0.
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Exercise 17.20. Let K be a triangulation of an annulus, and let K ′ be the subcomplex consisting of the

inner and outer edges of the annulus. Find a relative 1-cycle in C1(K,K
′) that is not a relative 1-boundary.
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Exercise 17.21. Let K be a triangulation of a Möbius band, and let K ′ be its boundary. Determine

Hn(K,K ′) for n ≥ 0.
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Theorem 17.22 (Excision). Suppose K ′ is a subcomplex of K. Remove an open set U from K ′ such that

what remains is a subcomplex L′ of K ′, and remove U from K so that what remains is a subcomplex L of

K. Then

Hn(L,L′) ∼= Hn(K,K ′).
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Theorem 17.23. Given a simplicial map f : (K,K ′) → (L,L′) there is an associated chain map f# :

Cn(K,K ′)→ Cn(L,L′) and induced homomorphism f∗ : Hn(K,K ′)→ Hn(L,L′).
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Exercise 17.24. There are natural maps between chain groups:

Cn(K ′)
i−−−−→ Cn(K)

π−−−−→ Cn(K,K ′)

What are the maps i and π, and what do you notice about them and their relationship with each other?
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Theorem 17.25. The boundary map ∂ : Cn(K)→ Cn−1(K
′) induces a well-defined map

∂∗ : Hn(K,K ′)→ Hn−1(K
′).
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Theorem 17.26 (Long Exact Sequence of a Pair). If K ′ is a subcomplex of a simplicial complex K, then

there is a long exact sequence:

· · · ∂∗−−−−→ Hn(K ′)
i∗−−−−→ Hn(K)

π∗−−−−→ Hn(K,K ′)
∂∗−−−−→ Hn−1(K

′)
i∗−−−−→ · · ·
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Theorem 17.27 (Zig-Zag Lemma). Suppose C = {Cn, ∂Cn },D = {Dn, ∂
D
n },E = {En, ∂En } are chain

complexes, and φ : C → D and ψ : D → E are chain maps such that

0 −−−−→ C
φ−−−−→ D

ψ−−−−→ E −−−−→ 0

is a short exact sequence of chain complexes. Then there is a long exact sequence:

· · · ∂∗−−−−→ Hn(C)
φ∗−−−−→ Hn(D)

ψ∗−−−−→ Hn(E)
∂∗−−−−→ Hn−1(C)

i∗−−−−→ · · ·

where ∂∗ is induced by ∂D.
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Theorem 17.28. Given the commutative diagram of chain maps α, β, γ between the chain complexes of

two short exact sequences:

0 −−−−→ C
i−−−−→ D

π−−−−→ E −−−−→ 0

α

y β

y γ

y
0 −−−−→ C′

i−−−−→ D′
π−−−−→ E′ −−−−→ 0

there are corresponding induced homomorphisms between the associated long exact sequences, such that the

following diagram is commutative:

· · · ∂∗−−−−→ Hn(C)
φ∗−−−−→ Hn(D)

ψ∗−−−−→ Hn(E)
∂∗−−−−→ Hn−1(C)

i∗−−−−→ · · ·

α∗

y β∗

y γ∗

y α∗

y
· · · ∂∗−−−−→ Hn(C′)

φ∗−−−−→ Hn(D′)
ψ∗−−−−→ Hn(E′)

∂∗−−−−→ Hn−1(C
′)

i∗−−−−→ · · ·
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Lemma 17.29 (The Five Lemma). Consider the following commutative diagram of groups and homomor-

phisms, where the rows are exact.

A
q−−−−→ B

r−−−−→ C
s−−−−→ D

t−−−−→ E

α

y β

y γ

y δ

y ε

y
A′

q′−−−−→ B′
r′−−−−→ C ′

s′−−−−→ D′
t′−−−−→ E′

If the rows are exact and α, β, δ, ε are isomorphisms, then γ is also an isomorphism.
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Exercise 17.30. In the proof of the Five Lemma, not all of α, β, δ, ε are required to be isomorphisms for the

conclusion to still hold. Which isomorphisms can be relaxed?
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Exercise 17.31 (The Snake Lemma). Consider the following commutative diagram where the rows are

short exact sequences.
0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0

α

y β

y γ

y
0 −−−−→ A′ −−−−→ B′ −−−−→ C ′ −−−−→ 0

Show there is an exact sequence

0→ Kerα→ Kerβ → Ker γ → Cokerα→ Cokerβ → Coker γ → 0

where Coker stands for the cokernel of a homomorphism: the quotient of its codomain by its image.
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Corollary 17.32 (Long Exact Sequence of a Pair). If K ′ is a subcomplex of a simplicial complex K, then

there is a long exact sequence:

· · · ∂∗−−−−→ Hn(K ′)
i∗−−−−→ Hn(K)

π∗−−−−→ Hn(K,K ′)
∂∗−−−−→ Hn−1(K

′)
i∗−−−−→ · · ·

where the maps are induced by the inclusion maps i : K ′ → K and π : (K,∅) → (K,K ′) and the

boundary map ∂ : Cn(X)→ Cn−1(X).
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Theorem 17.33. Given a simplicial map f : (K,K ′)→ (L,L′), there is chain map between the long exact

sequences:

· · · ∂∗−−−−→ Hn(K ′)
i∗−−−−→ Hn(K)

π∗−−−−→ Hn(K,K ′)
∂∗−−−−→ Hn−1(K

′)
i∗−−−−→ · · ·

f∗

y f∗

y f∗

y f∗

y
· · · ∂∗−−−−→ Hn(L′)

i∗−−−−→ Hn(L)
π∗−−−−→ Hn(L,L′)

∂∗−−−−→ Hn−1(L
′)

i∗−−−−→ · · ·
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Theorem 17.34 (Mayer-Vietoris). Let K be a finite simplicial complex and A and B be subcomplexes

such that K = A ∪B. Then there is a long exact sequence

· · · δ−−−−→ Hn(A ∩B)
φ∗−−−−→ Hn(A)⊕Hn(B)

ψ∗−−−−→ Hn(K)
∂∗−−−−→ Hn−1(A ∩B)

φ−−−−→ · · ·
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Exercise 17.35. Compute the Z-homology of the Klein bottle, and compare it to the the Z2-homology of the

Klein bottle.
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Exercise 17.36. Compute the Z-homology of every compact, triangulated 2-manifold.
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Theorem 17.37. Let K be a finite, connected simplicial complex. Then

H1(K;Z) ' (π1(K))/[π1(K), π1(K)],

that is, the first homology group of K is isomorphic to the abelianization of the fundamental group of K.
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Lemma 17.38. If f : Sn → Sn is continuous, then deg f is well-defined. That is, it does not depend on the

way in which we identify Hn(Sn) with Z.

776



Theorem 17.39. Let f, g : Sn → Sn be continuous maps.

1. If f and g are homotopic, they have the same degree.

2. deg(f ◦ g) = (deg f) · (deg g)
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Theorem 17.40. The identity map on Sn has degree 1. The antipodal map has degree (−1)n+1.
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Theorem 17.41 (Hairy Ball Theorem). There exists a non-vanishing vector field on Sn if and only if n is

odd.
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Exercise 17.42. In the definition above and using a little linear algebra, show that Tr(hfree) does not

depend on the choice of basis for Gfree.
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Exercise 17.43. Construct a simple example of a map homotopic to the identity map on the triangulated

circle whose induced chain map does not have the same trace as the identity chain map.
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Theorem 17.44. Suppose 0 → A → B → C → 0 is a short exact sequence of finitely generated abelian

groups and fA : A→ A and fB : B → B are homomorphisms such that i ◦ fA = fB ◦ i. Then there is an

induced homomorphism fC : C → C that makes the following diagram commutative:

0 −−−−→ A
i−−−−→ B

π−−−−→ C −−−−→ 0

fA

y fB

y fC

y
0 −−−−→ A

i−−−−→ B
π−−−−→ C −−−−→ 0

Moreover,

Tr(fB) = Tr(fA) + Tr(fC)
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Theorem 17.45. (The Hopf Trace Formula) Let K be a finite simplicial complex and let f : K → K be a

simplicial map. Then ∑
(−1)i Tr(f#n) =

∑
(−1)i Tr(f∗n).
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Theorem 17.46. (Lefschetz Fixed Point Theorem) Let f : |K| → |K| be a continuous map on a simplicial

complex K. If Λ(f) 6= 0, then f has a fixed point.
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Exercise 17.47. Compute the Lefschetz number of the “mirror-reversing” self-map of a circle: g : S1 → S1

defined by g(x, y) = (−x, y) viewing S1 as a subset of R2. Argue that any reversing map of a circle must

have a fixed point.
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Chapter 18

Singular Homology: Abstracting Objects
to Maps

Theorem 18.1 (Eilenberg-Steenrod). Fix a groupG. Any two homology theories on compact triangulable

pairs with coefficient group G are isomorphic.
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Exercise 18.2. Let X ⊂ E∞ be star-convex with respect to a point x. Verify that Φn+1
0 ◦ Conex is the

identity map on Sn(X).
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Theorem 18.3. For all n ≥ 0,

∂n ◦ ∂n+1 = 0.

Hence Im ∂n+1 ⊂ Ker ∂n.
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Theorem 18.4 (Dimension Axiom). If P is a point, Hn(P ) ∼= 0 for all n > 0, and H0(P ) ∼= Z.
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Theorem 18.5. Let X ⊂ E∞ be star convex with respect to x ∈ X . For any singular n-simplex σ,

∂n+1(Conex σ) + Conex(∂nσ) = σ.

791



Theorem 18.6. Show that any star-convex space is acyclic.
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Theorem 18.7. For a space X , show that H0(X) is a free abelian group with a generator for every path-

connected component of X .
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Theorem 18.8. Let f : X → Y be a continuous map. Then for any chain c ∈ Sn(X), ∂(f#(c)) =

f#(∂(c)). In other words, the diagram:

Sn(X)
f#−−−−→ Sn(Y )

∂

y y∂
Sn−1(X)

f#−−−−→ Sn−1(Y )

commutes.
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Exercise 18.9. Check that the induced homomorphism is well-defined and a homomorphism.
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Theorem 18.10. The identity map i : X → X induces the identity homomorphism on each homology

group.
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Theorem 18.11. If f : X → Y and g : Y → Z are continuous maps between topological spaces, then

(g ◦ f)∗ = g∗ ◦ f∗
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Theorem 18.12. If f : X → Y is a homeomorphism, then f∗ : Hn(X) → Hn(Y ) is an isomorphism

between singular homology groups.
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Theorem 18.13 (Homotopy Axiom). If f and g are homotopic maps from X to Y , then they induce the

same homomorphism in homology.
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Theorem 18.14. There is a boundary map

∂ : Sn(X,A)→ Sn−1(X,A)

such that ∂n ◦ ∂n+1 = 0 for all n ≥ 0.
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Exercise 18.15. Check that if A = ∅, the empty set, then Hn(X,A) = Hn(X), the usual homology.
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Exercise 18.16. Let X be the complex consisting of a triangle and all its faces. Determine Hn(X,A) for all

n ≥ 0.
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Exercise 18.17. Let K be a triangulation of an annulus, and let K ′ be the subcomplex consisting of the

inner and outer edges of the annulus. Find a relative 1-cycle in C1(X,A) that is not a relative 1-boundary.
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Exercise 18.18. Let K be a triangulation of a Möbius band, and let K ′ be its boundary. Determine

Hn(X,A) for n ≥ 0.
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Theorem 18.19. Given a continuous map f : (X,A) → (Y,B) there is an associated chain map f# :

Sn(X,A)→ Sn(Y,B) and induced homomorphism f∗ : Hn(X,A)→ Hn(Y,B).
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Theorem 18.20 (Long Exact Sequence of a Pair). Let A be a subspace of X . Then there is a long exact

sequence:

· · · ∂∗−−−−→ Hn(A)
i∗−−−−→ Hn(X)

π∗−−−−→ Hn(X,A)
∂∗−−−−→ Hn−1(A)

i∗−−−−→ · · ·

where the maps are induced by the inclusion maps i : A→ X and π : (X,∅)→ (X,A) and the boundary

map ∂ : Sn(X)→ Sn−1(X).
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Exercise 18.21. Verify that SD is a chain map, commuting with ∂, and verify that it is natural, which

means that for any continuous map f : X → Y , the following diagram commutes.

Sn(X)
f#−−−−→ Sn(Y )

SD

y ySD

Sn(X)
f#−−−−→ Sn(Y )

.
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Theorem 18.22. Let U be an open cover of a space X . For any singular simplex σ, there exists an m such

that each term of SDm(σ) has an image that lies within one of the elements of U.
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Theorem 18.23. There is a chain homotopy between SDm and the identity map on Sn(X); in other words,

there exists a homomorphism DX : Sn(X)→ Sn+1(X) such that

∂DXσ +DX∂σ = SDm σ − σ

for every singular simplex σ of X . Moreover, this chain homotopy is natural, meaning it commutes with

maps of spaces: if f : X → Y , then f# ◦DX = DY ◦ f#.
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Theorem 18.24. For each n ≥ 0, the induced homomorphism

SDm∗ : Hn(X)→ Hn(X)

is an isomorphism.
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Theorem 18.25. Suppose U and A are subspaces of X such that U ⊂ IntA. Then the inclusion map of

(X − U,A− U) in (X,A) induces an isomorphism

Hn(X − U,A− U) ∼= Hn(X,A).
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Theorem 18.26. For the n ≥ 1, show that Hn(Sn) ∼= Z and Hn(Sk) ∼= 0 if n 6= k.
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Chapter 19

The End: A Beginning—Reflections on
Topology and Learning

813
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Appendix A

Appendix - Group Theory Background

Exercise A.1.

1. Show that the set of all permutations on n elements forms a group with the group operation of function

composition.

2. Show that any permutation can be written as a composition of disjoint cycles.

3. Show that any m-cycle can be written as a composition of transpositions.
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Exercise A.2. What is the order of Sn?

816



Exercise A.3.

1. Show that an n-cycle can be written as the composition of n− 1 transpositions. Thus a 3-cycle is an

even permutation and a 4-cycle is an odd permutation!

2. Show that the group of even permutations is a subgroup of Sn.

817



Exercise A.4. What is the order of An?

818



Exercise A.5. Show that if we let a represent a reflection along a line passing through the polygon’s center

and a vertex, and b a rotation of 2π/n around its center, then

Dn = {1, b, . . . , bn−1, ab, . . . , abn−1}
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Exercise A.6. Show that in Dn as above, we have ab = bn−1a, and thus Dn is not abelian for n > 2.
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Exercise A.7. Show that Dn is isomorphic to a proper subgroup of Sn.
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Exercise A.8. Under what conditions, if ever, is Dn is isomorphic to a subgroup of An?
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Exercise A.9. Let g, g′ ∈ G. Then either gH = g′H or gH ∩ g′H = ∅.
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Theorem A.10 (Lagrange’s Theorem). Let G be a finite group, and H a subgroup. Then the cardinality

|H| of H divides the cardinality |G|of G and

[G : H] =
|G|
|H|
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Theorem A.11. Let H �G be a normal subgroup. Then its left and right cosets coincide for all g ∈ G, in

other words gH = Hg for all g ∈ G.
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Theorem A.12. An onto homomorphism f : G→ H is an isomorphism if and only if Ker f = {1G}.
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Theorem A.13. Let f : G → H be a homomorphism from a group G to a group H , then Ker f � G and

f(G) < H .
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Theorem A.14 (First isomorphism theorem). Let f : G → H be a homomorphism with Ker f = N .

Then f(H) ∼= G/N .
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Theorem A.15. A cyclic group that is infinite is isomorphic to Z.
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Theorem A.16. A finite cyclic group of order n is isomorphic to Zn, the integers with addition mod n.
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Exercise A.17.

1. Verify that the dihedral group Dn = {1, b, . . . , bn−1, ab, . . . , abn−1} is generated by {a, b}.

2. Show that the symmetric group Sn, for n ≥ 2, is generated by the set of 2-cycles: {(12), (23), . . . , (n−
1, n)}.

3. Show that the symmetric group Sn, for n ≥ 2, is generated by the pair of cycles (12) and (12 . . . n).
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Theorem A.18 (Classification of Finitely Generated Abelian Groups). Let G be a finitely generated

abelian group. Then G is isomorphic to:

H0 ⊕H1 ⊕ . . .⊕Hm

where H0 is a free abelian group, and Hi
∼= Zpi (i = 1, . . . , n) where pi is a power of a prime. The rank of

H0 is unique and is called the rank of G. The orders p1, . . . , pm are also unique up to reordering.
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Theorem A.19. G′ � G, and is the smallest subgroup for which G/G′ is abelian. In other words, if there

is a subgroup N �G such that G/N is abelian, then G′ ⊂ N .
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Theorem A.20. Isomorphic groups have isomorphic abelianizations.
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Exercise A.21. Confirm that the lists of generators and relations given above completely determine the

groups.
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Theorem A.22. Suppose that L is a set and R is a collection of words in L. Then there is a group whose

presentation is 〈L|R〉.
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Exercise A.23. What is a group presentation for an arbitrary finitely generated abelian group? for the

symmetric group?
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Theorem A.24. For m 6= n, Fm 6= Fn.
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Lemma A.25. We have a natural injections G→ G ∗H and H → G ∗H so that G and H may be viewed

as subgroups of G ∗H .

839



Theorem A.26. Let G and H be disjoint groups. Each element in G ∗ H has a unique expression of the

form g1h1 · · · gnhn where g1, . . . , gn ∈ G, h1, . . . , hn ∈ H , and g1 and hn are allowed to be the identity,

but no other letter is.
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