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Abstract

We present a proof of Ky Fan’s combinatorial lemma on labellings of triangulated spheres that
differs from earlier proofs in that it is constructive. We slightly generalize the hypotheses of Fan’s
lemma to allow for triangulations ofSn that contain a flag of hemispheres. As a consequence, we can
obtain a constructive proof of Tucker’s lemma that holds for a more general class of triangulations
than the usual version.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Tucker’s lemma is a combinatorial analogue of the Borsuk–Ulam theorem with many
useful applications. For instance, it can provide elementary routes to proving the Borsuk–
Ulam theorem[1] and the Lusternik–Schnirelman–Borsuk set covering theorem[6],
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Kneser-type coloring theorems[13], and “fair division” theorems in game theory[9]. More-
over, anyconstructiveproof of Tucker’s lemma provides algorithmic interpretations of these
results.

Although Tucker’s lemma was originally stated for triangulations of ann-ball (for n = 2
in [11] and generaln in [7]), in this paper we shall consider an equivalent version on
triangulations of a sphere:

Tucker’s lemma (Tucker[11] Lefshetz[7] ). Let K be a symmetric barycentric subdivision
of the octahedral subdivision of the n-sphereSn. Suppose that each vertex of K is assigned
a label from{±1, ±2, . . . ± n} in such a way that labels at antipodal vertices sum to zero.
Then some pair of adjacent vertices of K have labels that sum to zero.

The original version on then-ball can be obtained from this by restricting the above
statement to a hemisphere ofK. This gives a triangulation of then-ball in which the antipodal
condition holds for vertices on the boundary of the ball. It is relatively easy to show that
Tucker’s lemma is equivalent to the Borsuk–Ulam theorem, which says that any continuous
function f : Sn → Rn must map some pair of opposite points to the same point in the
range[1]. In fact, this equivalence shows that the triangulation need not be a refinement of
the octahedral subdivision; it need only be symmetric.

However, all known constructive proofs of Tucker’s lemma seem to require some con-
dition on the triangulation. For instance, the first constructive proof, due to Freund and
Todd [6], requires the triangulation to be a refinement of the octahedral subdivision, and
the constructive proof of Yang[12] depends on theAS-triangulation that is closely related
to the octahedral subdivision.

In this paper, we give a constructive proof of Tucker’s lemma for triangulations with a
weaker condition: that it only contain aflag of hemispheres. Our proof (see Theorem2)
arises as a consequence of a constructive proof that we develop for the following theorem
of Fan:

Ky Fan’s combinatorial lemma (Fan[4] ). Let K be a symmetric barycentric subdivision
of the octahedral subdivision of the n-sphereSn. Suppose that each vertex of K is assigned
a label from{±1, ±2, . . . ± m} in such a way that(i) labels at antipodal vertices sum to
zero and(ii) labels at adjacent vertices do not sum to zero. Then there are an odd number of
n-simplices whose labels are of the form{k0, −k1, k2, . . . , (−1)nkn},where1�k0 < k1 <

· · · < kn �m. In particular, m�n + 1.

Our version of Fan’s lemma (see Theorem1) only requires that the triangulation contain
a flag of hemispheres, and our proof is constructive (in contrast to previous proofs which
were non-constructive or only partially constructive; see Section 3). We can use the con-
trapositive (withm = n) to obtain a constructive proof of Tucker’s lemma. This yields
an algorithm for Tucker’s lemma that is quite different in nature than that of Freund and
Todd[6].

Our approach may provide new techniques for developing constructive proofs of Kneser’s
conjecture (e.g., see[8]), certain generalized Tucker lemmas (e.g., theZp-Tucker lemma of
Ziegler [13] or the generalized Tucker’s lemma conjectured by Simmons–Su[9]), as well
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as provide new interpretations of algorithms that depend on Tucker’s lemma (see[9] for
applications to cake-cutting, Alon’s necklace-splitting problem, team-splitting, and other
fair division problems).

We comment here on the notion of a constructive proof. In a finite setting, one may
wonder what is meant by “constructive” when the finite number of possibilities can be
checked exhaustively. Byconstructiveproof, we mean one that (i) shows the existence of
the solutionand(ii) locates it by a method other than an exhaustive search. This is the sense
in which Freund–Todd[6] use the wordconstructive(this is called aneffectiveprocedure in
[9]). The distinction from an exhaustive search is important for two reasons. An exhaustive
search is an algorithm, but it cannot guarantee the existence of a solution without knowing
that existence by some other means. Secondly, for continuous results (such as the Borsuk–
Ulam theorem) that are obtained from Tucker’s lemma by taking limits as the mesh size of
the triangulation approaches zero, an exhaustive search is of no help in the limit. On the
other hand, a constructive proof of Tucker’s lemma for given mesh sizes might be adapted
by homotopy methods to yield algorithms that converge to solutions (such as Borsuk–Ulam
antipodal points) in a continuous fashion. See[10,12]for surveys of homotopy methods for
simplicial algorithms.

2. Terminology

Let Sn denote then-sphere, which we identify with the unitn-sphere{x ∈ Rn+1 : ‖x‖ =
1}. If A is a set inSn, let −A denote theantipodalset.

A flag of hemispheresin Sn is a sequenceH0 ⊂ · · · ⊂ Hn where eachHd is homeomor-
phic to ad-ball, and for 1�d �n, �Hd = �(−Hd) = Hd ∩−Hd = Hd−1∪−Hd−1�Sd−1,
Hn ∪ −Hn = Sn, and{H0, −H0} are antipodal points. One can think of a flag of hemi-
spheres in the following way: decomposeSn into two balls that intersect along an equatorial
Sn−1. Each ball can be thought of as a hemisphere. By successively decomposing equators
in this fashion (since they are spheres) and choosing one such ball in each dimension, we
obtain a flag of hemispheres.

A triangulationK of Sn is (centrally) symmetricif when a simplex� is inK, then−� is
in K. A symmetric triangulation ofSn is said to bealigned with hemispheresif we can find
a flag of hemispheres such thatHd is contained in thed-skeleton of the triangulation. The
carrier hemisphereof a simplex� in K is the minimalHd or −Hd that contains�.

A labelingof the triangulation assigns a non-zero integer to each vertex of the triangula-
tion. We will say that a symmetric triangulation has ananti-symmetriclabeling if each pair
of antipodal vertices have labels that sum to zero. We say an edge is acomplementary edge
if the labels at its endpoints sum to zero.

We call a simplex in a labelled triangulationalternatingif its vertex labels are distinct in
magnitude and alternate in sign when arranged in order of increasing magnitude, i.e., the
labels have the form

{k0, −k1, k2, . . . , (−1)nkn} or {−k0, k1, −k2, . . . , (−1)n+1kn},
where 1�k0 < k1 < · · · < kn �m. Thesignof an alternating simplex is the sign ofk0, that
is, the sign of the smallest label in magnitude. It is either positive or negative. For instance,
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9 4 5

-5 –5 –5
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Fig. 1. The first simplex is alternating and the other two are almost-alternating simplices. Their shaded facets are
the facets that are also alternating simplices. The last simplex has a complementary edge.

a simplex with labels{3, −5, −2, 9} is anegativealternating simplex, since the labels can
be reordered{−2, 3, −5, 9}. A simplex with labels{−2, 2, −5} is not alternating because
the vertex labels are not distinct in magnitude.

We also define a simplex to bealmost-alternatingif it is not alternating, but by deleting
one of the vertices, the resulting simplex (a facet) is alternating. Thesign of an almost-
alternating simplex is defined to be the sign any of its alternating facets (it is easy to
check that this is well-defined). For example, a simplex with labels{−2, 3, 4, −5} is not
alternating, but it is almost-alternating because deleting 3 or 4 would make the resulting
simplex alternating. Also, a simplex with labels{−2, 3, 3, −5} is almost-alternating because
deleting either 3 would make the resulting simplex alternating. Finally, a simplex with labels
{−2, 2, 3, −5} is almost-alternating because deleting 2 would make the resulting simplex
alternating. However, this type of simplex will not be allowed by the conditions of Fan’s
lemma (since complementary edges are not allowed). See Fig.1.

As the above examples show, in an almost-alternating simplex with no complementary
edge, when the labels are arranged in order of increasing absolute value, there must be
two adjacent labels (in this order) that have the same sign. Deleting either of these labels
makes the remaining labels alternate; hence deleting either of the corresponding vertices
yields alternating facets. (Deleting any other label cannot produce alternation because two
adjacent labels of the same sign remain.) Thus any almost-alternating simplex must have
exactly two facets that are alternating.

3. Fan’s combinatorial lemma

We now present a constructive proof of Fan’s lemma, stated here for more general trian-
gulations than Fan’s original version.

Theorem 1. Let K be a symmetric triangulation ofSn aligned with hemispheres. Suppose
Khas(i) an anti-symmetric labelling by labels{±1, ±2, . . .±m} and(ii) no complementary
edge(an edge whose labels sum to zero).
Then there are an odd number of positive alternating n-simplices and an equal number of

negative alternating n-simplices. In particular,m�n+1. Moreover, there is a constructive
procedure to locate an alternating simplex of each sign.
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Fan’s proof in[4] used a non-constructive parity argument and induction on the dimension
n. Freund and Todd’s constructive proof of Tucker’s lemma[6] does not appear to generalize
to a proof of Fan’s lemma, since their construction usesm = n in an inherent way. Cohen
[2] implicitly proves a version of Fan’s lemma forn = 2 and 3 in order to prove Tucker’s
lemma; his approach differs from our proof in that the paths of his search procedure can
pair up alternating simplices with non-alternating simplices (for instance,{1, −2, 3} can
be paired up with{1, −2, −3}). Cohen hints, but does not explicitly say, how his method
would extend to higher dimensions; moreover, such an approach would only be partially
constructive, since as he points out, finding one asserted edge in dimensionnwould require
knowing the location of “all relevant simplices” in dimensionn−1. Our approach does not
require this.

Our strategy for proving Theorem1constructively is to identify paths of simplices whose
endpoints are alternatingn-simplices or alternating 0-simplices (namely,H0 or−H0). Then
one can follow such a path fromH0 to locate an alternatingn-simplex.

Proof of Theorem 1. Suppose that the given triangulationKofSn is aligned with the flag of
hemispheresH0 ⊂ · · · ⊂ Hn. Call an alternating or almost-alternating simplexagreeable
if the sign of that simplex matches the sign of its carrier hemisphere. For instance, the
simplex with labels{−2, 3, −5, 9} in Fig.1 is agreeable if its carrier hemisphere is−Hd for
somed.

We now define a graphG. A simplex� carried byHd is a node ofG if it is one of the
following:

(1) an agreeable alternating(d − 1)-simplex,
(2) an agreeable almost-alternatingd-simplex, or
(3) an alternatingd-simplex.

Two nodes� and� are adjacent inG if all the following hold:

(a) one is a facet of the other,
(b) � ∩ � is alternating, and
(c) the sign of the carrier hemisphere of� ∪ � matches the sign of� ∩ �.

We claim thatG is a graph in which every vertex has degree 1 or 2. Furthermore, a vertex
has degree 1 if and only if its simplex is carried by±H0 or is ann-dimensional alternating
simplex. To see why, we consider the three kinds of nodes inG:

(1) An agreeable alternating(d −1)-simplex� with carrier±Hd is the facet of exactly two
d-simplices, each of which must be an agreeable alternating or an agreeable almost-
alternating simplex in the same carrier. These satisfy the adjacency conditions (a)–(c)
with �, hence� has degree 2 inG.

(2) An agreeable almost-alternatingd-simplex� with carrier±Hd is adjacent inG to its
two facets that are agreeable alternating(d − 1)-simplices. (Adjacency condition (c)
is satisfied because� is agreeable and an almost-alternatingd-simplex must have the
same sign as its alternating facets.)

(3) An alternatingd-simplex� carried by±Hd has one alternating facet�whose sign agrees
with the sign of the carrier hemisphere of�. That facet is obtained by deleting either
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the highest or lowest label (by magnitude) of� so that the remaining simplex satisfies
condition (c). Deleting the other label would give a facet with sign opposite that of the
carrier hemisphere and thus cannot satisfy (c). Deleting a label that is neither highest
nor lowest would give a facet that is necessarilyalmost-alternating. (For instance, the
first simplex in Figure1 has two alternating facets, but only one of them can have a
sign that agrees with the carrier hemisphere.) Thus� is adjacent to its facet� in G, and
� is not adjacent to any other of its facets.

Also, � is the facet of exactly two simplices, one inHd+1 and one in−Hd+1, but it
is adjacent inG to exactly one of them; which one is determined by the sign of�, since
the adjacency condition (c) must be satisfied.

Thus� has degree 2 inG, unlessd = 0 ord = n: if d = 0, then� is the point±H0
and it has no facets, so� has degree 1; and ifd = n, then� is not the facet of any other
simplex, and is therefore of degree 1.

Every node in the graph therefore has degree two with the exception of the points at
±H0 and all alternatingn-simplices. ThusG consists of a collection of disjoint paths with
endpoints at±H0 or in the top dimension.

Note that the antipode of any path inG is also a path inG. No path can have antipodal
endpoints (else the center edge or node of the path would be antipodal to itself); thus a path
is ever identical to its antipodal path. So all the paths inG must come in pairs, implying
that the number of endpoints of paths inG must be a multiple of four. Since exactly two
such endpoints are the nodes atH0 and−H0, there are twice an odd number of alternating
n-simplices. And, because every positive alternatingn-simplex has a negative alternating
n-simplex as its antipode, exactly half of the alternatingn-simplices are positive. Thus there
are an odd number of positive alternatingn-simplices (and an equal number of negative
alternatingn-simplices).

To locate an alternating simplex, follow the path that begins atH0; it cannot terminate
at−H0 (since a path is never its own antipodal path), so it must terminate in a (negative or
positive) alternating simplex. The antipode of this simplex will be an alternating simplex
of the opposite sign. �

Figs. 2 and 3 show an example of how a path may wind through the various hemi-
spheres of a triangulated 3-sphere. Note how the sign of each simplex agrees with the
sign of its carrier hemisphere (agreeability), unless the path connects ad-hemisphere
with a d + 1-hemisphere, in which case the sign of thed-simplex specifies which
(d + 1)-hemisphere the path should connect to. These facts follow from adjacency
condition (c).

Our approach is related to that of another paper of Fan[5], which studied labelled trian-
gulations of and-manifoldM and derived a set of paths that pair up alternating simplices in
the interior ofM with positive alternating simplices on the boundary ofM. WhenM = Hd ,
the paths of Fan coincide with the restriction of our paths inG to Hd . By itself, this is
only partially constructive, since finding one alternatingd-simplex necessitates locating all
positive alternating(d −1)-simplices on the boundary ofHd . To make Fan’s approach fully
constructive forSn, one might attempt to use Fan’s approach in eachd-hemisphere ofSn

and then glue all the hemispheres in each dimension together, thereby gluing all the paths.
But this results in paths that branch (where positive alternating simplices inHd are glued
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Fig. 2. A portion of a triangulation of a 3-sphere that yields the path shown in Fig.3. The surface of a 2-sphere
formed by the hemispheres−H2, +H2 is shown. The central line is the “equator” formed by−H1, +H1 (the
endpoints at−H0 are identified). The path begins at+H0. The two striped triangles are connected by a path in
the interior of−H3 (not shown). The black triangle connects to an alternating simplex{+4, −6, +7, −9} in the
interior of+H3 (not shown).
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Fig. 3. A schematic example of what sets of labels of simplices along a path inG could look like. This path
corresponds to the one shown in Fig.2.
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to paths inbothHd+1 and−Hd+1) or paths that terminate prematurely (where a path ends
in a negative alternatingd-simplex whered < n).

By contrast, the path we follow inG from the pointH0 to an alternatingn-simplex is well-
defined, has no branching, and need not pass through all the alternating(d−1)-simplices on
the boundary ofHd for eachd. In our proof, the use of the flag of hemispheres controls the
branching that would occur in paths ofG if one ignored the property of “agreeability” and
adjacency condition (c). In that sense, it serves a similar function in controlling branching
as the use of the flag of polytope faces in the constructive proof of the polytopal Sperner
lemma of DeLoera–Peterson–Su[3].

Note that the contrapositive of Theorem1 implies Tucker’s lemma, since ifm = n and
condition (i) holds, then condition (ii) must fail. In fact, if we remove condition (ii) in
the statement of Theorem1, the graphG can have additional nodes of degree 1, namely,
agreeable almost-alternating simplices with a complementary edge.

This gives a constructive proof for Tucker’s lemma by starting atH0 and following the
associated path inG. Becausem = n, there are not enough labels for the existence of
any alternatingn-simplices, so there must be an odd number of agreeable positive almost-
alternating simplices with a complementary edge. (Note that this says nothing about the
parity of the number of complementary edges, since several such simplices could share one
edge.)

It is of some interest that our constructive proof allows for a more general class of
triangulations than previous constructive proofs of Tucker’s lemma, so for completeness
we state it carefully here:

Theorem 2. Let K be a symmetric triangulation ofSn alignedwith hemispheres. SupposeK
has an anti-symmetric labelling by labels{±1, ±2, . . . ,±n}.Then there are an odd number
of positive(negative) almost-alternating simplices which contain a complementary edge.
Moreover, there is a constructive procedure to locate one such edge.

The hypothesis thatK can be aligned with hemispheres is more general than, for instance,
requiringK to refine the octahedral subdivision (e.g., Freund–Todd’s proof of Tucker’s
lemma). If a triangulation refines the octahedral subdivision, then the octahedral orthant
hyperplanes contain a natural flag of hemispheres. But there are symmetric triangulations
aligned with hemispheres that are not refinements of the octahedral subdivision. For exam-
ple, by projecting the face structure of the regular icosahedron onto the sphereS2, we obtain
a symmetric triangulation ofS2 that contains a flag of hemispheres but does not refine the
octahedral subdivision.

We remark that theAS-triangulation, used by Yang[12] to prove Tucker’s lemma, is
closely related to an octahedral subdivision and contains a natural flag of hemi-
spheres.

It is an interesting open question as to whether every symmetric triangulation ofSn can
be aligned with a flag of hemispheres, and if so, how to find such a flag. For instance, the
above icosahedral example does contain such a flag; one way to see this is by noting that
it is homeomorphicto a refinement of the octahedral subdivision, but this is not obvious.
We do not know if every symmetric triangulation ofSn is homemorphic to a refinement of
the octahedral subdivision, but if so, it would contain a flag of hemispheres and the open
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question would be settled. Together with our arguments this would yield a constructive
proof of Tucker’s lemma (and Fan’s lemma) for any symmetric triangulation.
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