
MATH 11 FALL 2008: LECTURE 11

ART BENJAMIN AND DAGAN KARP

1. ANNOUNCEMENTS

(1) Midterm Friday

2. THE EXPONENTIAL FUNCTION

Recall, we have defined e to be the number that satisfies ln e = 1.

Proposition 1.
2 < e < 4.

Proof. To see e > 2, note that ∫ 2
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2.1. Inverse functions. Suppose that f is a real function such that every real number y is
hit exactly once by f(x). Then f has an inverse function g defined as follows. Let x be a
number. Then there is some other real number a such that f(a) = x. Define

g(x) = a.

In other words, we can define the set f−1(x) as

f−1(x) = {a ∈ R : f(a) = x}.
Then f has an inverse function if f−1(x) consists of exactly one element for each real
number x.

Definition 2. The function g is an inverse function of f if f(g(x)) = x and g(f(x)) = x for all
x in the domain of g and f , respectively.

Example 3. Let f(x) = 5x. Then let y be a real number. Then there is exactly one x such that
f(x) = y, namely, let x = y/5. Therefore f has an inverse function. Let g(x) = x/5. Then

f(g(x)) = f(x/5) = 5 · x/5 = x,

and
g(f(x)) = g(5x) = (5x)/5 = x.

Therefore g is indeed the inverse function of f .
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Remark 4. Note that in the above, we solved for x in terms of y to discover the inverse
function. This is encoded in the geometry of f and f−1 in that the graph of f−1 is obtained
by reflecting the graph of f through the line y = x.

2.2. The inverse of the natural logarithm. Last time we discovered that every real num-
ber y is hit by exactly once by ln x. Thus, ln x has an inverse function.

Definition 5. The exponential function is the inverse of the natural logarithm, and is denoted
ex.

So, by definition we have for all real numbers x

ln(ex) = x,

and for all x > 0,

e(ln x) = x.

Theorem 6.
d

dx
(ex) = ex.

Proof. We use implicit differentiation. For all x we have

ln(ex) = x

⇐⇒ 1

ex

d

dx
(ex) = 1

⇐⇒ d

dx
(ex) = ex

�

Theorem 7.

ex+y = ex · ey

Proof. Note that x = ln(ex) and y = ln(ey). Thus

e(x+y) = e(ln ex+ln(ey)) = eln(exey) = exey.

3. GENERAL EXPONENTIAL FUNCTIONS

We can define numbers like 2
√

2 using the exponential function. (How could we do so
otherwise?)

Definition 8. For any a > 0 and x ∈ R,

ax = ex ln a.

Proposition 9.

ax+y = axay.
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Proof.
ax+y = e(x+y) ln a = ex ln a+y ln a = ex ln aey ln a = axay.

We can also use this to prove a general power rule. By definition,

xr = er ln x,

so
d

dx
(xr) =

d

dx
(er ln x)

= er ln x · d

dx
(r ln x)

= xr · r · 1
x

= rxr−1.

Corollary 10. For any real number r,

ln(xr) = r ln x.

Theorem 11.
(ab)c = abc

Proof.
(ab)c = ec ln ab

= ebc ln a = abc.

Theorem 12.
d

dx
(ax) = ax ln a.

Proof.
d

dx
(ax) =

d

dx
(ex ln a) = ex ln a ln a = ax ln a.

4. GENERAL LOGARITHMS

Definition 13. For a > 0,

loga x =
ln x

ln a
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