
Abstract Algebra
Lecture 18

Monday, 11/8/2010

1 Category Theory

1.1 Classes

Big Idea: We’ve seen similar structures in Group Theory and Ring Theory so far this
semester. Groups, rings, subgroups, subrings, quotient groups, quotient rings, sums of
groups and rings, isomorphism theorems. Can we formalize the idea of having similar
structures in different settings? Maybe even not only for groups and rings, but also things
like “smooth manifolds”, “topological spaces”, vector spaces, etc.

We can describe relations between these different mathematical settings with category
theory.

The first danger of category theory is the Barber’s Paradox. Suppose there is a town
where the barber cuts the hair of everyone who doesn’t cut their own hair. So who cuts
the barber’s hair? This paradox is similar to the paradox that shows that there is no set of
all sets. So we know we can’t use set theory to describe these settings – we can’t have a
set of all groups, since groups are sets.

Defn: A class is a mathematical collection which is not necessarily a set. A proper class is
a class which is not a set.
We just defined our way out of the Barber’s Paradox – a class doesn’t need to follow set
theory axioms.

Ex: The class of all sets is a proper class.
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1.2 Categories

Defn: A category C consists of
(1) a class whose elements are called the objects of C,
(2) a second class whose elements are called morphisms,
(3) two functions which assign to every morphism α a domain and codomain, which

are objects of C,
(4) a partially defined function which assigns to some pairs (α, β) of morphisms the

product or composition αβ.
such that

(a) αβ is defined when dom(α) = codom(β). Then dom(αβ) = dom(β) and
codom(αβ) = codom(α).

(b) For all A ∈ Ob(C), there exists an identity morphism 1A : A → A such that:
α1A = α for all morphisms α such that dom(α) = A, and 1Aβ = β for all β such that
codom(β) = A.

(c) If αβ, βγ are defined, then α(βγ) = (αβ)γ are defined.

Ex: The category Sets has objects which are sets, morphisms are maps of sets.

Ex: The category Groups has Ob(G) = groups, Mor(G) = group homomorphisms.

Ex: The categoryRings has Ob(R) = rings, and Mor(R) = ring homomorphisms.

Note: Note that each morhpism can only have on domain and one codomain. In sets,
1Z : Z→ Z, ι : Z ↪→ Q.

Defn: A category is small if its objects and morphisms form sets.

Remark: If Mor(C) is a set, then Cis small

Ex: A preordered set is a set together with a reflexive transitive relation ≤. Every pre-
ordered set I forms a category. Ob(I): elements of I. The morphisms are ordered pairs
(i, j) such that i ≤ j, in other words (i, j) : i→ j. Also, (j, k)(i, j) = (i, k).

Ex: A directed graph Γ is (1) a set V(Γ) of vertices, (2) a set EΓ of edges, which is also (3)
two mappings assigning to each edge an origin and a destination.

Fact: every small category is a directed graph.
It the converse true? Yes, and the proof is in our homework.

Theorem: When Γ is a directed graph, the vertices and paths are the objects and morh-
pisms of a category Γ̂.
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Defn: Γ̂ is the free category on Γ, or the category of paths.

1.3 Types of Morphisms

Defn: A monomorphism is a morphism µ such that µα = µβ⇒ α = β.

Defn: An epimorphism is a morphism σ such that ασ = βα⇒ α = β.

Defn: An isomorphism is a morphism α : A→ B having an inverse β : B→ A such that
αβ = 1B and βα = 1A.

Note: Note that monomorphism is in some ways similar to injectivity, and epimorphism
is similar to surjectivity. In fact, if α is injective, then α is a monomorphism, and if β is
surjective, then β is an epimorphism, though the converses are not quite always true.

Proof: Let µ be injective. Suppose µα = µβ for some α, β : A → B (so we also have
µ : B → C). Then for al a ∈ A, we have µ(α(a)) = µ(β(a)), so α(a) = β(a). Thus α = β.
etc. �
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