
Abstract Algebra
Lecture 4

Monday, 9/13/2010

1 Group Homomorphisms

Defn: Let (G, ∗), and (G′, ?) be groups. A map of sets φ : G → G′ is a homomorphism if

φ(a ∗ b) = φ(a) ? φ(b)

for all a, b ∈ G.

Ex: Let V, W be vector spaces, and let L : V → W be a linear transformation. For any
v1, v2 ∈ V, we have L(v1 + v2) = L(v1) + L(v2). So, for the groups (V, +) and (W, +), L
is a homomorphism.

Ex: Let G be a group. Define I = IG by I(a) = a for all a ∈ G. This is known as the
Identity map.

Ex: Let φ : Z→ Zn be given by φ(r) = r mod n. Then φ is a group homomorphism.
Note that, for a, b ∈ Z, we have (a + b) mod n = (a mod n + b mod n) mod n. We
are allowed the additional “wrapper” mod n because the addition operation is modular
addition.

Theorem: Fact:

∀n ∈N, ∃a, b, c, d ∈ Z such that n = a2 + b2 + c2 + d2

Question: can this be done with 3 squares?
Proposition: No. There are infinitely many positive integers which are not the sum of
three squares. In fact, this is true for all n such that n = 7 mod 8.

Proof: Choose n such that n = 7 mod 8. If n = a2 + b2 + c2, then n mod 8 = (a2

mod 8 + b2 mod 8 + c2 mod 8) mod 8. If a is even, then a2 mod 8 = 0, 4. If a is odd,
then a2 mod 8 = 1. The same holds for b and c. So our set of possible numbers is {0, 1, 4}.
There is no combination of these three numbers that can add to 7 mod 8. Our original
supposition must have been false, so 3 numbers is insufficient. �
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Ex: Let ψ : Sn → Z2 be given by

ψ(σ) =
{

0, σ even
1, σ odd

Where σ even means that σ can be written as a composition of an even number of 2-cycles
(recall from last week).

ψ(σ · τ) = ψ(σ)ψ(τ)

Note that we must be doing addition modulo 2 in Z2, because if we were doing multipli-
cation, we would have two identity elements, which just should not happen.

Defn: Let φ : G → G′ be a homomorphism. Then G is the domain of φ, and G′ is the
codomain of φ.

Theorem: Let φ : G → G′ be a homomorphism. For all a ∈ G, n ∈ Z, the following are
true:

1. φ(1G) = 1G′ , i.e. φ(1) = 1
2. φ(a)−1 = φ(a−1)
3. ∀a1, . . . , an ∈ G, φ(a1 · · · an) = φ(a1) · · · φ(an)
4. φ(a)m = φ(am)

Proof:
1. φ(1) · φ(1) = φ(1 · 1) = φ(1). Now, ∃φ(1)−1 ∈ G′, so φ(1) = 1 (Be very careful of

the domain / codomain distinction here.)
2. φ(a)φ(a−1 = φ(aa−1) = φ(1) = 1. Because inverses are unique, it must be that

(φ(a))−1 = φ(a−1).
3. etc.
4. etc. some more

�

Theorem: Let φ : G → G′, ψ : G′ → G′′ be homomorphisms. Then ψ ◦ φ : G → G′′ is a
homomorphism.

Proof: Let a, b ∈ G. Then (ψ ◦ φ)(ab) = ψ(φ(ab)) = ψ(φ(a)φ(b)) = ψ(φ(a))ψ(φ(b)) =
(ψ ◦ φ)(a)(ψ ◦ φ)(b). �

Defn: An isomorphism is a bijective homomorphism. We say that G ∼= G′ if G is iso-
morphic to G′.

Theorem: Let φ : G → G′ be a homomorphism. Then the following are equivalent:
• φ is an isomorphism
• ∃ψ : G′ → G such that ψ ◦ φ = IG and φ ◦ ψ = IG′ .

If ψ is one such map of sets, then is ψ a group homomorphism?
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Ex:
• G ∼= G
• exp: (R, +)→̃(R+,×). The two homomorphisms are ea+b = ea · eb, and the inverse

is ln(a · b) = ln(a) + ln(b).
• Dn ∼= D2n (Recall that the book uses D2n to notate what Dagan calls D2n.)
• S3

∼= D3.

Defn: An endomorphism of G is a homomorphism from G to itself. An automorphism
of G is an isomorphism from G to itself.

Theorem: The automorphisms of a group for a group themselves, under composition.
We denote this group Aut(G)

Note: If G is not Abelian, then Aut(G) is not trivial.

Theorem: Let G be a group. For all a ∈ G, the map αa : G → G given by αa(x) = axa−1

for all x ∈ G is an automorphism of G. Also, the map α : G → Aut(G) given by α(a)→ αa
is a group homomorphism.

Proof: We want to show that αa is a homomorphism. Let x, y ∈ G. Inspect αa(xy) =
axya−1 = ax(1)ya−1 = axa−1aya−1 = alphaa(x)αa(y). Consider αa−1 . We want to show
αaαa−1 = I = αa−1αa. We compute αaαa−1(x) = αa(a−1xa) = a(a−1xa)a−1 = x. Therefore
αa is an endomorphism with an inverse, so it is an automorphism.
Now, let a, b ∈ G. Then α(ab) = αab. Let x ∈ G. Then αab(x) = abx(ab)−1 = abxb−1a−1 =
αa(αb(x)) = αa ◦ αb(x), as desired. �
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