Abstract Algebra
Lecture 4
Monday, 9/13/2010

1 Group Homomorphisms

Defn: Let (G, *),and (G/, x) be groups. A map of sets ¢ : G — G’ is a homomorphism if

¢axb) = ¢(a) x p(b)

foralla,b € G.

Ex: Let V, W be vector spaces, and let L : V. — W be a linear transformation. For any
v1,02 € V, we have L(v; + v2) = L(v1) + L(v2). So, for the groups (V,+) and (W, +), L
is a homomorphism.

Ex: Let G be a group. Define I = Ig by I(a) = a for all a € G. This is known as the
Identity map.

Ex: Let¢: Z — Z, be given by ¢(r) = r mod n. Then ¢ is a group homomorphism.
Note that, for a,b € Z, we have (a+b) mod n = (a mod n+b mod n) mod n. We
are allowed the additional “wrapper” mod n because the addition operation is modular
addition.

Theorem: Fact:
Vn € N,3a,b,c,d € Zsuch thatn = a® + b> + ¢ + d>

Question: can this be done with 3 squares?
Proposition: No. There are infinitely many positive integers which are not the sum of
three squares. In fact, this is true for all n such that n =7 mod 8.

Proof: Choose n such that n = 7 mod 8. If n = a?> + b*> + c?, then n mod 8 = (a?
mod 8 + b? mod 8 + ¢ mod 8) mod 8. If a is even, then a2 mod 8 = 0,4. If a is odd,
then 4> mod 8 = 1. The same holds for b and c. So our set of possible numbersis {0,1,4}.
There is no combination of these three numbers that can add to 7 mod 8. Our original
supposition must have been false, so 3 numbers is insufficient. n




Ex: Lety : S, — Z; be given by
0, oeven
plo) = { 1, ¢ odd

Where ¢ even means that o can be written as a composition of an even number of 2-cycles
(recall from last week).

plo-1) = p(@)y(7)
Note that we must be doing addition modulo 2 in Z;, because if we were doing multipli-
cation, we would have two identity elements, which just should not happen.

Defn: Let¢ : G — G’ be a homomorphism. Then G is the domain of ¢, and G’ is the
codomain of ¢.

Theorem: Let¢ : G — G’ be a homomorphism. For alla € G, n € Z, the following are
true:
1. ¢(1g) =1, ie. ¢p(1) =1
2. ¢(a) " =@(a”")
3. Vay,...,an € G, ¢(ay---ay) = ¢(ar) - - - ¢(an)
4. ¢(a)" = p(a™)
Proof:
1. ¢(1)-¢(1) = ¢p(1-1) = ¢(1). Now, 3p(1)~! € G’, s0 ¢(1) = 1 (Be very careful of
the domain / codomain distinction here.)
2. p(a)p(a! = ¢p(aa~1) = ¢(1) = 1. Because inverses are unique, it must be that
(p()~ = pa~L).
3. etc.
4. etc. some more

Theorem: Let¢: G — G, ¢ : G — G” be homomorphisms. Then po¢p : G — G" isa
homomorphism.

Proof: TLeta,b € G. Then (o ¢)(ab) = ¢(¢(ab)) = p(¢(a)p(b)) = p(¢(a))p(p(b)) =
(Y o¢)(a)(yoe) D). .

Defn: An isomorphism is a bijective homomorphism. We say that G = G’ if G is iso-
morphic to G'.

Theorem: Let ¢ : G — G’ be a homomorphism. Then the following are equivalent:
e ¢ is an isomorphism
e 3y : G’ — Gsuchthatyop =Igand po¢p = Ig.

If 1 is one such map of sets, then is ¢ a group homomorphism?
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Ex:
e GG
e exp: (R, +)=(R*, x). The two homomorphisms are e**? = ¢” - ¥, and the inverse
isln(a-b) = In(a) + In(b).
e D, = Dy, (Recall that the book uses Dy, to notate what Dagan calls D,,,.)
L 53 = D3.

Defn: An endomorphism of G is a homomorphism from G to itself. An automorphism
of G is an isomorphism from G to itself.

Theorem: The automorphisms of a group for a group themselves, under composition.
We denote this group Aut(G)

If G is not Abelian, then Aut(G) is not trivial.

Theorem: Let G be a group. Foralla € G, the map &, : G — G given by a,(x) = axa™!

for all x € G is an automorphism of G. Also, the map & : G — Aut(G) givenby a(a) — a,
is a group homomorphism.

Proof: We want to show that &, is a homomorphism. Let x,y € G. Inspect a,(xy) =

axya—! = ax(1)ya~! = axa—laya—! = alpha,(x)a,(y). Consider a,-1. We want to show
agn,1 = I = a,1a,. We compute aga,1(x) = az(a=txa) = a(a~'xa)a—! = x. Therefore
a, is an endomorphism with an inverse, so it is an automorphism.

Now, let a,b € G. Then a(ab) = ayy,. Let x € G. Then ay(x) = abx(ab) ™! = abxb~la~! =

ag(ap(x)) = g 0 ap(x), as desired. u



