LECTURE 1: LINES IN \mathbb{R}^3

DAGAN KARP

ABSTRACT. In this first lecture, we'll review some necessary material and notation from linear algebra, and begin to explore geometry in \mathbb{R}^3 . In particular, we'll study lines in 3-space.

1. REVIEW: LINEAR ALGEBRA

Since we'll be working in \mathbb{R}^n , where n > 1, it's useful to have the language of linear algebra at hand. Since we've all seen this before, let's quickly review and standardize notation.

Definition 1. We define n-dimensional real space as follows.

$$\mathbb{R}^n = \{(x_1, \dots, x_n) : x_i \in \mathbb{R}\}$$

$$\mathbb{R} = \text{The set of real numbers}$$

It is important to note that we may think of elements of \mathbb{R}^n either as points or *vectors*. Similarly, we may think of elements of \mathbb{R} as numbers or as *scalars*. Let's keep both of these viewpoints in mind during our explorations; they each may come in handy.

With our vector viewpoint, we are pointing out that \mathbb{R}^n is in fact a real vector space. Hooray! Vectors have lots of nice properties. In particular, we have addition and scalar multiplication.

Definition 2. Let $\vec{a} = (a_1, \dots, a_n)$, $\vec{b} = (b_1, \dots, b_n)$ be vectors in \mathbb{R}^n . The (vector) addition of \vec{a} and \vec{b} is defined by

$$\vec{\alpha} + \vec{b} = (\alpha_1 + b_1, \alpha_2 + b_2, \dots, \alpha_n + b_n).$$

For any real number $k \in \mathbb{R}$, the scalar multiple of \vec{a} by k is

$$k\vec{\alpha}=(k\alpha_1,\ldots,k\alpha_n).$$

These are fine and dandy algebraic formulations of addition and scalar multiplication in n-space. But what the heck is going on geometrically? Can we find a geometric interpretation of addition and scalar multiplication? Yes indeed!

Date: March 9, 2009.

FIGURE 1. Geometric interpretation of vector addition (and subtraction)

1.1. **Basic Geometry of vectors.** Before we can discuss the geometry of a sum of vectors, let's recall the geometric interpretation of a single vector. Inspired by physical arguments, we may regard a vector as a *directed line segment* or a line segment with both *magnitude* (*length*) and direction.

How so? As follows.

Definition 3. Let $\vec{a} \in \mathbb{R}^n$. The position vector of \vec{a} is the directed line segment from the origin $\vec{0} \in \mathbb{R}^n$ to the point \vec{a} .

Thus the information of the vector \vec{a} is equivalent to the information of its position vector. This position vector is the geometric realization of \vec{a} .

Now we can explore the geometry of addition of vectors. The vector $\vec{a} + \vec{b}$ is, after all, the vector whose coordinates are the sums of coordinates of \vec{a} and \vec{b} . This is found geometrically by placing the position vector of \vec{b} at the end of the position vector of \vec{a} . Indeed, the result is a vector whose coordinates are the sums of \vec{a} and \vec{b} . See Figure 1.

This is called (not surprisingly) the *parallelogram law* of vector addition. We can use the parallelogram law to find the geometric realization of $\vec{a} - \vec{b}$. Indeed, since

$$\vec{a} - \vec{b} = \vec{a} + (-\vec{b}),$$

we construct the corresponding parallelogram for \vec{a} and $-\vec{b}$. Note that $-\vec{b}$ is simply the reflection of \vec{b} through the origin. The resulting vector is shown in Figure 1.

Remark 4. It is worth pointing out (no pun intended) that the vector $\vec{a} - \vec{b}$ points from \vec{b} to \vec{a} .

With this in mind, we make the following definition.

Definition 5. Let $\mathfrak{p}_1 = (x_1, y_1, z_1)$ and $\mathfrak{p}_2 = (x_2, y_2, z_2)$ be points in \mathbb{R}^3 . The displacement vector from \mathfrak{p}_1 to \mathfrak{p}_2 is

$$\overrightarrow{\mathfrak{p}_1\mathfrak{p}_2} = \mathfrak{p}_2 - \mathfrak{p}_1 = (x_2 - x_1, y_2 - y_1, z_2 - z_1).$$

1.2. **Bases.** The last notion from linear algebra that is of immediate need is the notion of *basis* of a vector space.

Definition 6. A basis of \mathbb{R}^n is a collection B of n vectors

$$B = {\{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}}$$

such that any vector $\vec{v} \in \mathbb{R}^n$ may be uniquely written as a scalar linear combination of the elements of B, i.e. there exists a unique choice of numbers $k_1, \ldots, k_n \in RR$ such that

$$\overrightarrow{v} = k_1 \overrightarrow{b}_1 + k_2 \overrightarrow{b}_2 + \dots + k_n \overrightarrow{b}_n.$$

Example 7. The standard basis of \mathbb{R}^n is the collection

$$\vec{e_1} = (1, 0, 0, \dots, 0)$$

$$\vdots$$

$$\vec{e_i} = (0, \dots, 0, 1, 0, \dots, 0)$$

$$\vdots$$

$$\vec{e_n} = (0, 0, \dots, 0, 1)$$

Here the i^{th} vector is zero is all but the i^{th} position.

Example 8. For \mathbb{R}^2 and \mathbb{R}^3 , we use even more specialized notation. Let i = (1,0) and j = (0,1) be the standard basis vectors in the plane. We abuse notation by using the same symbols in 3-space: Let i = (1,0,0), j = (0,1,0) and k = (0,0,1) denote the standard basis of \mathbb{R}^3 . Then, for example,

$$(1,0,-\pi) = i - k\pi.$$

2. LINES IN SPACE

We now have sufficient background to discuss some basic spacial geometry. Let's study lines? What is a line in space? How can we describe it? What is the equation of a line? Let's study these questions.

First, a line $L \subset \mathbb{R}^3$ in space is uniquely determined by a point $\mathfrak{p}_0 \in L$ and a vector $\vec{\mathfrak{a}}$ parallel to L.

FIGURE 2. Derivation of parametric equation of a line in \mathbb{R}^3

This characterization will allow us to write the equation of L. Indeed, suppose we are given $p_0 \in L$ and $\vec{\alpha}$. The equation of L is merely a way to describe the set of points in \mathbb{R}^3 which live on L. Let $p \in L$ be any such point. Then the displacement vector from p_0 to p must be parallel to $\vec{\alpha}$ and hence it is a multiple of $\vec{\alpha}$: there exists $t \in \mathbb{R}$ such that

$$\overrightarrow{p_0p} = t\vec{a}$$

Moreover, the point p is obtained by moving along $t\vec{\alpha}$ from p_0 . See Figure 2. By the parallelogram law, we have

$$p = p_0 + t\vec{a}$$
.

Thus we have a complete description of L.

$$L = \{p_0 + t\vec{a} : t \in RR\}.$$

Consider the associated map $r(t):\mathbb{R}\to\mathbb{R}^3$ given by

$$r(t) = p_0 + t\vec{a}.$$

By the above, the image of this map is L. Thus, we have found an equation for L.

2.1. **Parametric equations.** In order to elaborate on this discussion, let's unpack Equation 1 in terms of coordinates. Let

$$\vec{a} = (a_1, a_2, a_3)$$
 $p_0 = (b_1, b_2, b_3).$

Then

$$r(t) = (a_1t + b_1, a_2t + b_2, a_3t + b_3).$$

But for any $t \in \mathbb{R}$, $r(t) \in \mathbb{R}^3$. Hence r(t) = (x(t), y(t), z(t)). Therefore we have

$$x(t) = a_1t + b_1$$

$$y(t) = a_2t + b_2$$

$$z(t) = a_3t + b_3.$$

Definition 9. *The above equations are called the* parametric equations *for the line* L.

Remark 10. We have shown that a line L in \mathbb{R}^3 is the image of a map

$$r:\mathbb{R}\to\mathbb{R}^3$$

$$\mathbf{r}(\mathsf{t}) = (\mathsf{x}(\mathsf{t}), \mathsf{y}(\mathsf{t}), \mathsf{z}(\mathsf{t}))$$

where x, y and z are *linear* functions of t!