
LECTURE 1: LINES IN R3

DAGAN KARP

ABSTRACT. In this first lecture, we’ll review some necessary material and notation from
linear algebra, and begin to explore geometry in R3. In particular, we’ll study lines in
3-space.

1. REVIEW: LINEAR ALGEBRA

Since we’ll be working in Rn, where n > 1, it’s useful to have the language of linear
algebra at hand. Since we’ve all seen this before, let’s quickly review and standardize
notation.

Definition 1. We define n-dimensional real space as follows.

Rn = {(x1, . . . , xn) : xi ∈ R}

R = The set of real numbers

It is important to note that we may think of elements of Rn either as points or vectors.
Similarly, we may think of elements of R as numbers or as scalars. Let’s keep both of these
viewpoints in mind during our explorations; they each may come in handy.

With our vector viewpoint, we are pointing out that Rn is in fact a real vector space.
Hooray! Vectors have lots of nice properties. In particular, we have addition and scalar
multiplication.

Definition 2. Let ~a = (a1, . . . , an), ~b = (b1, . . . , bn) be vectors in Rn. The (vector) addition of
~a and ~b is defined by

~a+ ~b = (a1 + b1, a2 + b2, . . . , an + bn).

For any real number k ∈ R, the scalar multiple of ~a by k is

k~a = (ka1, . . . , kan).

These are fine and dandy algebraic formulations of addition and scalar multiplication
in n-space. But what the heck is going on geometrically? Can we find a geometric inter-
pretation of addition and scalar multiplication? Yes indeed!
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FIGURE 1. Geometric interpretation of vector addition (and subtraction)

1.1. Basic Geometry of vectors. Before we can discuss the geometry of a sum of vectors,
let’s recall the geometric interpretation of a single vector. Inspired by physical arguments,
we may regard a vector as a directed line segment or a line segment with both magnitude
(length) and direction.

How so? As follows.

Definition 3. Let ~a ∈ Rn. The position vector of ~a is the directed line segment from the origin
~0 ∈ Rn to the point ~a.

Thus the information of the vector ~a is equivalent to the information of its position
vector. This position vector is the geometric realization of ~a.

Now we can explore the geometry of addition of vectors. The vector ~a + ~b is, after
all, the vector whose coordinates are the sums of coordinates of ~a and ~b. This is found
geometrically by placing the position vector of ~b at the end of the position vector of ~a.
Indeed, the result is a vector whose coordinates are the sums of ~a and ~b. See Figure 1.

This is called (not surprisingly) the parallelogram law of vector addition. We can use the
parallelogram law to find the geometric realization of ~a− ~b. Indeed, since

~a− ~b = ~a+ (−~b),

we construct the corresponding parallelogram for ~a and −~b. Note that −~b is simply the
reflection of ~b through the origin. The resulting vector is shown in Figure 1.
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Remark 4. It is worth pointing out (no pun intended) that the vector ~a− ~b points from ~b

to ~a.

With this in mind, we make the following definition.

Definition 5. Let p1 = (x1, y1, z1) and p2 = (x2, y2, z2) be points in R3. The displacement
vector from p1 to p2 is

−−→p1p2 = p2 − p1 = (x2 − x1, y2 − y1, z2 − z1).

1.2. Bases. The last notion from linear algebra that is of immediate need is the notion of
basis of a vector space.

Definition 6. A basis of Rn is a collection B of n vectors

B = {~b1,~b2, . . . ,~bn}

such that any vector~v ∈ Rn may be uniquely written as a scalar linear combination of the elements
of B, i.e. there exists a unique choice of numbers k1, . . . , kn ∈ RR such that

−→v = k1
~b1 + k2

~b2 + · · ·+ kn
~bn.

Example 7. The standard basis of Rn is the collection

~e1 = (1, 0, 0, . . . , 0)

...

~ei = (0, . . . , 0, 1, 0, . . . , 0)

...

~en = (0, 0, . . . , 0, 1)

Here the ith vector is zero is all but the ith position.

Example 8. For R2 and R3, we use even more specialized notation. Let i = (1, 0) and j = (0, 1)

be the standard basis vectors in the plane. We abuse notation by using the same symbols in 3-
space: Let i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1) denote the standard basis of R3. Then, for
example,

(1, 0,−π) = i− kπ.

2. LINES IN SPACE

We now have sufficient background to discuss some basic spacial geometry. Let’s study
lines? What is a line in space? How can we describe it? What is the equation of a line?
Let’s study these questions.

First, a line L ⊂ R3 in space is uniquely determined by a point p0 ∈ L and a vector ~a

parallel to L.
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FIGURE 2. Derivation of parametric equation of a line in R3

This characterization will allow us to write the equation of L. Indeed, suppose we are
given p0 ∈ L and ~a. The equation of L is merely a way to describe the set of points in R3

which live on L. Let p ∈ L be any such point. Then the displacement vector from p0 to p
must be parallel to ~a and hence it is a multiple of ~a: there exists t ∈ R such that

−−→p0p = t~a

Moreover, the point p is obtained by moving along t~a from p0. See Figure 2. By the
parallelogram law, we have

p = p0 + t~a.

Thus we have a complete description of L.

L = {p0 + t~a : t ∈ RR}.

Consider the associated map r(t) : R→ R3 given by

(1) r(t) = p0 + t~a.

By the above, the image of this map is L. Thus, we have found an equation for L.

2.1. Parametric equations. In order to elaborate on this discussion, let’s unpack Equa-
tion 1 in terms of coordinates. Let

~a = (a1, a2, a3) p0 = (b1, b2, b3).

Then
r(t) = (a1t+ b1, a2t+ b2, a3t+ b3).
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But for any t ∈ R, r(t) ∈ R3. Hence r(t) = (x(t), y(t), z(t)). Therefore we have

x(t) = a1t+ b1

y(t) = a2t+ b2

z(t) = a3t+ b3.

Definition 9. The above equations are called the parametric equations for the line L.

Remark 10. We have shown that a line L in R3 is the image of a map

r : R→ R3

r(t) = (x(t), y(t), z(t))

where x, y and z are linear functions of t!
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