LECTURE 15: TRIPLE INTEGRALS AND VOLUME

DAGAN KARP

1. TRIPLE INTEGRALS AFTER F. SU

Last time we saw an introduction to triple integration – integration over three dimensional regions. The following steps are useful when considering how to find limits of integration.

- (1) Chop the region of integration into cubes, which we think of as having little volume (dV).
- (2) Stacking these cubes in one direction yields the limits of the innermost integral.
- (3) Collapse the region along this chosen direction onto its 2-dimensional shadow.
- (4) The limits of integration of the outer integral are determined by this 2D shadow as before.

Example 1. Find the volume in the first octant bounded by $x^2 + z^2 = 4$ and y = 3.

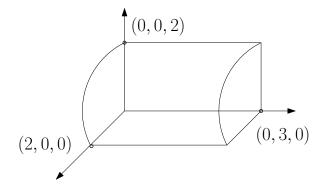


FIGURE 1. Our cylindrical region.

We then have

$$V = \iiint dV$$

= $\int_{x=0}^{x=2} \int_{y=0}^{y=3} \int_{z=0}^{z=\sqrt{4-x^2}} 1 dz dy dx$
= $\int_{x=0}^{x=2} \int_{z=0}^{z=\sqrt{4-x^2}} \int_{y=0}^{y=3} 1 dy dz dx$
= $\int_{y=0}^{y=3} \int_{z=0}^{z=2} \int_{x=0}^{x=\sqrt{4-z^2}} 1 dx dy dz$

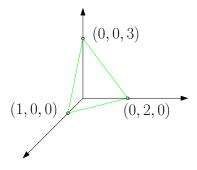


FIGURE 2. Our planar region.

Example 2. Find the volume in the first octant bounded by 6x + 3y + 2z = 6. *Then*

$$V = \iiint dV$$

= $\int_{x=0}^{x=1} \int_{y=0}^{y=2-2x} \int_{z=0}^{z=3-3x-3y/2} dz dy dx.$

Example 3. Find the volume of the region bounded by $z = y^2$, y = 0, y = -1, the xy-plane, x = 0 and x = 1.

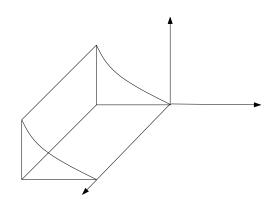


FIGURE 3. Our quarter pipe.

Date: April 21, 2009.

$$V = \iiint dV$$

= $\int_{x=0}^{x=1} \int_{y=-1}^{y=0} \int_{z=0}^{z=y^2} dz dx dy$
= $\int_{y=-1}^{y=0} \int_{x=0}^{x=1} \int_{z=0}^{z=y^2} dz dx dy$
= $\int_{y=-1}^{y=0} \int_{z=0}^{z=y^2} \int_{x=0}^{x=1} dx dz dy$
= $\int_{z=0}^{z=1} \int_{y=-1}^{y=\sqrt{z}} \int_{x=0}^{x=1} dx dy dz.$

Example 4. The volume of the region between $z = x^2 + y^2$ and z = 2y is given by

$$V = \iiint dV$$

= $\int_{y=0}^{y=2} \int_{x=-\sqrt{y^2-2y}}^{x=\sqrt{y^2-2y}} \int_{z=x^2+y^2}^{z=2y} dz dx dy.$