
LECTURE 16: CYLINDRICAL AND SPHERICAL COORDINATES

DAGAN KARP

1. POLAR COORDINATES ON R2

Recall polar coordinates of the plane.
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FIGURE 1. Polar coordinates on R2.

We have

x = r cos θ y = r sin θ

We compute the infinitessimal area (the area form) dA by considering the area of a
small section of a circular region in the plane. See Figure 1. Therefore

dA = rdrdθ

dA

dθ
dr

rdθ

FIGURE 2. The polar form of dA.
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Example 1. The area of a disk of radius a is πa2. Indeed, we compute

A =

∫ ∫
Disk
dA

=

∫θ=2π

θ=0

∫ r=a
r=0

rdrdθ

=

∫θ=2π

θ=0

1

2
a2dθ

= 2π

(
a2

2

)
= πa2.

2. CYLINDRICAL COORDINATES ON R3

How can we generalize polar coordinates to three dimensions? Maybe the easiest way
is to do nothing. . . Well, polar coordinates already replace x and y, so we can simply do
nothing to z. This actually turns out to be rather useful, and this system of coordinates is
called cylindrical. Can you see why?

Definition 2. Cylindrical coordinates on R3 are given by (r, θ, z), where (r, θ) are polar coor-
dinates on the xy plane.
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FIGURE 3. Cylindrical coordinates on R3.

Explicitly, the relation between Cartesian and cylindrical coordinates is given as fol-
lows.

x = r cos θ z = z y = r sin θ

r =
√
x2 + y2 θ = tan−1

(y
x

)
We use the same argument as in polar coordinates to determine the volume form dV .

dV = rdrdθdz
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Example 3. Find the volume of a sphere of radius R. We compute

V =

∫θ=2π

θ=0

∫ r=R
r=0

∫√R2−r2
z=−

√
R2−r2

rdzdrdθ

=

∫θ=2π

θ=0

∫ r=R
r=0

2r
√
R2 − r2drdθ

=

∫θ=2π

θ=0

−2/3(R2 − r2)3/2|R0dθ

= 4/3πR3.

3. SPHERICAL COORDINATES ON R3

We saw that our most naive approach to generalizing polar coordinates lead to cylin-
drical coordinates. Are there alternative approaches? The geometry of polar coordinates
tells us to think of points in the plane differently. If we think of coordinates as a set of
directions, telling us how to travel from the origin to a given point, then Cartesian coordi-
nates tell us to think of points in terms of right and left and up and down (x and y). Polar
coordinates, on the other hand, tell us to first identify the correct direction (θ) and then
head directly there by going the correct distance (r).

The way to generalize this geometry, the idea of finding the correct direction and then
heading straight to our destination, is called spherical coordinates.
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FIGURE 4. Spherical coordinates on R3.

Let (x, y, z) be a point in Cartesian coordinates in R3. In spherical coordinates, we use
two angles. Let θ be the angle between the x-axis and the position vector of the point
(x, y, 0), as before. Now, let 0 6 φ 6 π be the angle between the positive z-axis and the
position vector of (x, y, z). Finally, let ρ be the length of the position vector (x, y, z), i.e.
the distance between (x, y, z) and the origin. These are the spherical coordinates on R3. See
Figure 3.
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FIGURE 5. Translating between coordinates.

To translate between coordinate systems, consider the right triangle depicted in Fig-
ure 3. We have

r = ρ cos(π/2− φ)

= ρ (cos(π/2) cosφ+ sin(π/2) sinφ)

= ρ (0+ 1 · sinφ)

= ρ sinφ

Thus x = r cos θ = ρ sinφ cos θ. We compute y and z similarly.

x = ρ sinφ cos θ ρ2 = x2 + y2 + z2

y = ρ sinφ sin θ tanφ =

√
x2 + y2

z

z = ρ cosφ tan θ =
y

x

To find the volume form dV in spherical coordinates, we consider a small spherical
region.

dρ
ρdφ

rdθ

FIGURE 6. The spherical volume form.

Then we compute

dV = ρdφ · dρ · rdθ
= ρdφ · dρ · ρ sinφdθ

= ρ2 sinφdρdφdθ.
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Therefore
dV = ρ2 sinφdρdφdθ

Example 4. Let’s compute the volume of a sphere of radius R again.

V =

∫ ∫ ∫
Sphere

dV

=

∫θ=2π

θ=0

∫φ=π

φ=0

∫ρ=R

ρ=0

ρ2 sinφdρdφdθ

=

∫θ=2π

θ=0

∫φ=2π

φ=0

R3/3 sinφdρdφdθ

=
R3

3

∫θ=2π

θ=0

(− cosπ+ cos 0)dθ

=
2R3

3
· 2π

=
4

3
πR3.
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