LECTURE 7: THE DERIVATIVE OF F : $\mathbb{R}^N \to \mathbb{R}$

DAGAN KARP

1. LIMITS

In our last lecture, we discussed the tangent plane to the graph of a function $f(x, y)$. The differentiability of f is related to this tangent plane, and a rigorous definition of differentiability requires the notion of limit.

Definition 1. Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a multivariable function, and $\mathbf{x} = (x_1, \dots, x_n)$ be coordinates *of* \mathbb{R}^n *and* $\mathbf{a} \in \mathbb{R}^n$ *be a point. Then* the limit of f as x approaches a is equal to L *if, for every* $\epsilon > 0$ *there exists* $\delta > 0$ *such that*

 $|x - a| < \delta$

implies

$$
|f(\mathbf{x})-f(\mathbf{a})|<\varepsilon.
$$

In that case, we write

 $\lim_{\mathbf{x}\to\mathbf{a}} f(\mathbf{x}) = L.$

FIGURE 1. The idea of limit.

This definition is directly analogous to the definition of limit for a function of a single variable. Of course, in this higher dimensional version, there are (infinitely) more than two directions to check (as opposed to only left and right hand limits) for a limit to exits.

Also, we have a definition of continuity which directly generalizes the single variable case.

Definition 2. The function $f : \mathbb{R}^n \to \mathbb{R}^m$ is continuous at a if

$$
\lim_{x\to a}f(x)=f(a).
$$

If $U \subset \mathbb{R}^n$ *is a subset and* f *is continuous at* a *for all* $a \in U$ *, then* f *is* continuous on U.

Date: April 2, 2009.

2. DERIVATIVE

Using our notion of limit, we can define differentiability of our functions of two variables.

Definition 3. The function $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable *at* (a, b) if f_x *and* f_y *exist and, for*

$$
h(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b),
$$

we have

$$
\lim_{(x,y)\to(a,b)}\frac{f(x,y)-h(x,y)}{|(x,y)-(a,b)|}=0.
$$

Remark 4. We say that $h(x, y)$ is a good linear approximation of $f(x, y)$ at (a, b) in case f is differentiable at (a, b) , and the plane $z = h(x, y)$ is the tangent plane to $f(x, y)$ at (a, b) .

Example 5. Let $f(x, y) = x^2 + y^2$. What is the tangent plane to $z = f(x, y)$ at the point $(1, 2)$? *We compute*

$$
f_x = 2x \qquad \qquad f_y = 2y
$$

Thus $f_x(1, 2) = 2$ *and* $f_y(1, 2) = 4$ *. Also* $f(1, 2) = 5$ *. Thus the tangent plane at* $(1, 2)$ *is*

$$
z = h(1,2) = 5 + 2(x - 1) + 4(y - 2).
$$

Example 6. *Let's see that this* h *is in fact a good approximation for* f *in the previous example. We approximate* f(1.02, 1.95)*.*

$$
(1.02)^2 + (1.95)^2 \sim 5 + 2(.02) + 4(-.05) = 4.84.
$$

The actual value is 4.8429*.*

Proposition 7. *The function* $f(x, y)$ *is differentiable at* (a, b) *if* f_x *and* f_y *exist and are continuous in a neighborhood of* (a, b)*.*

Note that we may rewrite h as follows.

$$
h(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)
$$

= f(a,b) + $\left(\frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b)\right) \cdot ((x-a), (y-b)).$

It is useful to introduce notation for this vector $\left(\frac{\partial f}{\partial x}(a,b),\frac{\partial f}{\partial y}(a,b)\right)$. It is called the *gradient of f* and denoted ∇ f. In fact, we can define such an object for functions $\mathbb{R}^n \to \mathbb{R}$.

Definition 8. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function. The gradient of f is the vector of partial derivatives

$$
\nabla f = \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right).
$$

Using this notation, we have the following expression for our tangent plane to the graph of $f(x, y)$ at the point $(a, b, f(a, b))$,

$$
h(x,y) = f(a,b) + \nabla f(a,b) \cdot (x-a, y-b).
$$

We can now generalize our notion of differentiability to functions on \mathbb{R}^n .

Definition 9. The function $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable *at the point* $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$ if *all partial derivatives* ∂f ∂xi *exist, for* i = 1, . . . , n *and, for*

$$
h(\mathbf{x}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}),
$$

this limit vanishes,

$$
\lim_{x\to a}\frac{f(x)-h(x)}{|(x)-(a)|}=0.
$$

Remark 10. Again, this indicates that the function h is the best linear approximation of f near the point a.