## LECTURE 7: THE DERIVATIVE OF $F:\mathbb{R}^N\to\mathbb{R}$

## DAGAN KARP

## 1. LIMITS

In our last lecture, we discussed the tangent plane to the graph of a function f(x, y). The differentiability of f is related to this tangent plane, and a rigorous definition of differentiability requires the notion of limit.

**Definition 1.** Let  $f : \mathbb{R}^n \to \mathbb{R}^m$  be a multivariable function, and  $\mathbf{x} = (x_1, \dots, x_n)$  be coordinates of  $\mathbb{R}^n$  and  $\mathbf{a} \in \mathbb{R}^n$  be a point. Then the limit of f as  $\mathbf{x}$  approaches  $\mathbf{a}$  is equal to L *if*, for every  $\varepsilon > 0$  there exists  $\delta > 0$  such that

 $|\mathbf{x} - \mathbf{a}| < \delta$ 

implies

$$|f(\mathbf{x}) - f(\mathbf{a})| < \varepsilon$$

In that case, we write

 $\lim_{\mathbf{x}\to\mathbf{a}}\mathsf{f}(\mathbf{x})=\mathsf{L}.$ 



FIGURE 1. The idea of limit.

This definition is directly analogous to the definition of limit for a function of a single variable. Of course, in this higher dimensional version, there are (infinitely) more than two directions to check (as opposed to only left and right hand limits) for a limit to exits.

Also, we have a definition of continuity which directly generalizes the single variable case.

**Definition 2.** *The function*  $f : \mathbb{R}^n \to \mathbb{R}^m$  *is* continuous at a *if* 

$$\lim_{\mathbf{x}\to\mathbf{a}}\mathsf{f}(\mathbf{x})=\mathsf{f}(\mathbf{a}).$$

*If*  $U \subset \mathbb{R}^n$  *is a subset and* f *is continuous at* **a** *for all* **a**  $\in$  U, *then* f *is* continuous on U.

Date: April 2, 2009.

## 2. DERIVATIVE

Using our notion of limit, we can define differentiability of our functions of two variables.

**Definition 3.** The function  $f : \mathbb{R}^2 \to \mathbb{R}$  is differentiable at (a, b) if  $f_x$  and  $f_y$  exist and, for

$$h(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b),$$

we have

$$\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{a},\mathbf{b})}\frac{\mathbf{f}(\mathbf{x},\mathbf{y})-\mathbf{h}(\mathbf{x},\mathbf{y})}{|(\mathbf{x},\mathbf{y})-(\mathbf{a},\mathbf{b})|}=\mathbf{0}.$$

**Remark 4.** We say that h(x, y) is a good linear approximation of f(x, y) at (a, b) in case f is differentiable at (a, b), and the plane z = h(x, y) is the tangent plane to f(x, y) at (a, b).

**Example 5.** Let  $f(x, y) = x^2 + y^2$ . What is the tangent plane to z = f(x, y) at the point (1,2)? We compute

$$f_x = 2x \qquad \qquad f_y = 2y$$

Thus  $f_x(1,2) = 2$  and  $f_u(1,2) = 4$ . Also f(1,2) = 5. Thus the tangent plane at (1,2) is

$$z = h(1,2) = 5 + 2(x-1) + 4(y-2).$$

**Example 6.** Let's see that this h is in fact a good approximation for f in the previous example. We approximate f(1.02, 1.95).

$$(1.02)^{2} + (1.95)^{2} \sim 5 + 2(.02) + 4(-.05) = 4.84.$$

The actual value is 4.8429.

**Proposition 7.** The function f(x, y) is differentiable at (a, b) if  $f_x$  and  $f_y$  exist and are continuous in a neighborhood of (a, b).

Note that we may rewrite h as follows.

$$\begin{split} h(x,y) &= f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) \\ &= f(a,b) + \left(\frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b)\right) \cdot ((x-a), (y-b)). \end{split}$$

It is useful to introduce notation for this vector  $\left(\frac{\partial f}{\partial x}(a,b), \frac{\partial f}{\partial y}(a,b)\right)$ . It is called the *gradient of* f and denoted  $\nabla f$ . In fact, we can define such an object for functions  $\mathbb{R}^n \to \mathbb{R}$ .

**Definition 8.** Let  $f : \mathbb{R}^n \to \mathbb{R}$  be a function. The gradient of f is the vector of partial derivatives

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right).$$

Using this notation, we have the following expression for our tangent plane to the graph of f(x, y) at the point (a, b, f(a, b)),

$$h(\mathbf{x},\mathbf{y}) = f(\mathbf{a},\mathbf{b}) + \nabla f(\mathbf{a},\mathbf{b}) \cdot (\mathbf{x} - \mathbf{a},\mathbf{y} - \mathbf{b}).$$

We can now generalize our notion of differentiability to functions on  $\mathbb{R}^n$ .

**Definition 9.** The function  $f : \mathbb{R}^n \to \mathbb{R}$  is differentiable at the point  $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{R}^n$  if all partial derivatives  $\frac{\partial f}{\partial x_i}$  exist, for  $i = 1, \dots, n$  and, for

$$h(\mathbf{x}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}),$$

this limit vanishes,

$$\lim_{\mathbf{x}\to\mathbf{a}}\frac{f(\mathbf{x})-h(\mathbf{x})}{|(\mathbf{x})-(\mathbf{a})|}=\mathbf{0}.$$

**Remark 10.** Again, this indicates that the function h is the best linear approximation of f near the point **a**.