
LECTURE 7: THE DERIVATIVE OF F : RN → R

DAGAN KARP

1. LIMITS

In our last lecture, we discussed the tangent plane to the graph of a function f(x, y).
The differentiability of f is related to this tangent plane, and a rigorous definition of dif-
ferentiability requires the notion of limit.

Definition 1. Let f : Rn → Rm be a multivariable function, and x = (x1, . . . , xn) be coordinates
of Rn and a ∈ Rn be a point. Then the limit of f as x approaches a is equal to L if, for every
ε > 0 there exists δ > 0 such that

|x − a| < δ

implies
|f(x) − f(a)| < ε.

In that case, we write
lim
x→a

f(x) = L.

δ ε

f(x, y)

a

L

FIGURE 1. The idea of limit.

This definition is directly analogous to the definition of limit for a function of a single
variable. Of course, in this higher dimensional version, there are (infinitely) more than
two directions to check (as opposed to only left and right hand limits) for a limit to exits.

Also, we have a definition of continuity which directly generalizes the single variable
case.

Definition 2. The function f : Rn → Rm is continuous at a if

lim
x→a

f(x) = f(a).

If U ⊂ Rn is a subset and f is continuous at a for all a ∈ U, then f is continuous on U.
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2. DERIVATIVE

Using our notion of limit, we can define differentiability of our functions of two vari-
ables.

Definition 3. The function f : R2 → R is differentiable at (a, b) if fx and fy exist and, for

h(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y− b),

we have

lim
(x,y)→(a,b)

f(x, y) − h(x, y)

|(x, y) − (a, b)|
= 0.

Remark 4. We say that h(x, y) is a good linear approximation of f(x, y) at (a, b) in case f
is differentiable at (a, b), and the plane z = h(x, y) is the tangent plane to f(x, y) at (a, b).

Example 5. Let f(x, y) = x2 + y2. What is the tangent plane to z = f(x, y) at the point (1, 2)?
We compute

fx = 2x fy = 2y

Thus fx(1, 2) = 2 and fy(1, 2) = 4. Also f(1, 2) = 5. Thus the tangent plane at (1, 2) is

z = h(1, 2) = 5+ 2(x− 1) + 4(y− 2).

Example 6. Let’s see that this h is in fact a good approximation for f in the previous example. We
approximate f(1.02, 1.95).

(1.02)2 + (1.95)2 ∼ 5+ 2(.02) + 4(−.05) = 4.84.

The actual value is 4.8429.

Proposition 7. The function f(x, y) is differentiable at (a, b) if fx and fy exist and are continuous
in a neighborhood of (a, b).

Note that we may rewrite h as follows.

h(x, y) = f(a, b) + fx(a, b)(x− a) + fy(a, b)(y− b)

= f(a, b) +

(
∂f

∂x
(a, b),

∂f

∂y
(a, b)

)
· ((x− a), (y− b)).

It is useful to introduce notation for this vector
(

∂f
∂x

(a, b), ∂f
∂y

(a, b)
)

. It is called the
gradient of f and denoted ∇f. In fact, we can define such an object for functions Rn → R.

Definition 8. Let f : Rn → R be a function. The gradient of f is the vector of partial derivatives

∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

Using this notation, we have the following expression for our tangent plane to the
graph of f(x, y) at the point (a, b, f(a, b)),

h(x, y) = f(a, b) +∇f(a, b) · (x− a, y− b).

We can now generalize our notion of differentiability to functions on Rn.
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Definition 9. The function f : Rn → R is differentiable at the point a = (a1, . . . , an) ∈ Rn if
all partial derivatives ∂f

∂xi
exist, for i = 1, . . . , n and, for

h(x) = f(a) +∇f(a) · (x − a),

this limit vanishes,

lim
x→a

f(x) − h(x)

|(x) − (a)|
= 0.

Remark 10. Again, this indicates that the function h is the best linear approximation of f
near the point a.
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