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1 Introduction

1.1 Background

Chaotic behavior is exhibited in many situations, ranging from very complex mechanical systems
to everyday occurrences. For instance, chaos can be seen in examples such as species populations,
the forced Duffing Equation, or even the weather. In fact, the theory of chaos began in the 1960s
when a meteorologist named Edward Lorenz left out a few decimal places when running a trial for
his weather simulator.

Although no formal mathematical definition of the word chaos is universally accepted, it can be
described as the long-term, aperiodic behavior of a deterministic system which displays sensitive
dependence to initial conditions. This idea of chaos is exhibited in the particular system that I
chose to study, the chaotic oscillating magnetic pendulum. In this system magnets are used to drive
the oscillation of a free moving pendulum with an essentially spherical range of motion.

1.2 The Problem

The pendulum consists of a magnet suspended from a string. The plane under the pendulum
contains a distribution of like magnets which, based on their number and placement, should affect
the dynamics of the pendulum. The orientation of all the magnets in the system, including the
magnet at the end of the pendulum, is the same. For each initial position, the trajectory of the
pendulum eventually stabilizes around one of the plane magnets. However, in the interim the
motion of the pendulum is chaotic, with basins of attraction for different magnets separated by
fractal curves in the plane.

The overall intent of this project is to investigate the dynamics of the chaotic oscillating magnetic
pendulum for various numbers of magnets. This objective will be accomplished by various means.
First, we will build a model of the magnetic pendulum in order to visually analyze the chaotic
behavior of the system. The model, however, is limited in its use because of the fractal nature of
the basins of attraction (other than a few of the larger basins, it is impossible to measure accurately
enough the initial position of the pendulum, to see if it coincides with theory for most positions in
the plane).

A more analytic approach will be used to analyze the chaotic behavior of the system. Programs
will be written in Mathematica™to investigate the chaotic attributes of trajectory behavior. But

perhaps more important to understanding the pendulum’s chaotic nature, Mathematica™is used



to plot various basins of attraction for different numbers of magnets, different parameter values,
and even different magnetic positions.

1.3 Motivation

There is a larger reason why I chose to take on this specific project. As a group project with
Owen Lewis and Jeff Hellrung, I carried out analysis on this very problem. We used several
Matlab™ programs to explore this chaotic system in the case of four magnets. Our analysis however,
was problematic. To numerically integrate in Matlab™we used ODE45 to perform the numeric
integration. This is a generally good method for most types of problems, but computationally
inadequate to deal with the intricacies of the fractal boundaries which surround the basins of
attraction in the system. As well, with a symmetric, even positioning of magnets in the plane, the
basins should theoretically be identical with respect to quadrants (disregarding color). However,
our Matlab™Troutines consistently provided us with basins that had a swirling effect throughout
the plane, as seen in Figures 1 and 2.

Figure 1:Basins of attraction on [—4,4] X [—4, 4] with Figure 2:Basins of attraction on [—8, 8] X [—8, 8] with
R=0.3,C =0.2 R=0.3,C =0.2

While the overall goal behind the project is to investigate the behavior of the pendulum for
multiple numbers and positions of magnets and various parameter values, the main motivation
behind my choosing the particular problem is to improve upon my prior work in this area and
possibly analyze the reasons for the minor shortcomings of the analysis.

Mathematica™was chosen in order to facilitate the process of determining the best numerical
integrator with which to solve the problem. However, a major benefit of applying Mathematica™to
this problem was realized through its ability to represent symbolically as well as numerically.

2 Derivation of the Governing Equations

(The following derivation was taken from Chaos and Fractals: New Frontiers of Science by Peitgen,
Heinz-Otto; Jirgens, Hartmut; and Saupe, Dietmar, Springer-Verlag New York, Inc., 1992.)
2.1 Assumptions

e The length of the pendulum is large compared to the spacing of the magnets. This allows one
to assume that the pendulum bob is confined to a plane rather than a sphere.

e The magnets are point attractors positioned in a plane a small distance below the pendulum.



e Magnetic forces follow an inverse squared law; i.e. the force is inversely proportional to the
square of the distance.

2.2 Parameters
e (x,y): the Cartesian coordinate of the pendulum bob
e (x;,9;): the Cartesian coordinates of the magnets
e d: the vertical distance from the pendulum bob to the plane in which the magnets lie.
e R: the friction force coefficient.

e (' the gravitational (spring) force coefficient

2.3 The Model

We define the origin of the Cartesian coordinate system to be the gravitational equilibrium position
of the pendulum bob, and specify coordinates of the magnets relative to this origin. The distance
between the pendulum bob and magnet i is \/(z; — 2)2 + (y; — y)2 + d2. Hence the magnetic force
is proportional to e +(1yi7y)2 —4z- However, we must ignore the vertical component of this force,
as we assume the pendulum bob is restricted to a plane. Taking this into account, it can be shown
that the x and y components of the force are
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The gravitational force that pulls the pendulum bob back to the origin is proportional to the
distance from the origin; thus, the  and y components are proportional to —x and —y respectively.
The friction force acts in opposition to the direction of motion and is proportional to the velocity
(', y).

Using Newton’s Law, we equate the sum of the above three forces to the acceleration of the
mass, and after rearranging, we arrive at our governing equations:
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3 Implementation

To investigate this problem several Mathematica™ notebooks were used. The actual notebooks are
found in Appendix A.



3.1 Documentation
3.1.1 Basin.nb: Notebook to produce basin plots

This Mathematica™notebook allows the user to first specify parameter values and the coordinates
of the magnets. It then uses, NDSolve to calculate the solution to the system of equations for a grid
of points in the plain, the size of which (and general runtime of the simulation) is governed by the
choice of n in the notebook (small n — faster, but inaccurate, large n — slower, but precise). For
each trajectory calculated by NDSolve, the resultant end value is determined to be “closest” to a
certain magnet and assigned a color value based on that magnet. The resultant Table of color values
formed is then plotted as a RasterArray (in Mathematica™ an array of values each corresponding
to some color). It should be noted that the denominator found with the style option Hue should
must be greater than or equal to the number of magnets being used in the simulation to obtain
interpretable results (i.e. two magnet’s basins will have the same color). It is also important to
note that NDSolve outputs an answer in terms of interpolating functions, thus solution is a tensor,
not a standard vector of numerical values.

3.1.2 Modified_Basins.nb: Notebook to calculate modified basins

This notebook is nearly identical to Basins.nb. The only difference is that a second vector is
defined representing the fixed points of the system (these correspond to the Cartesian coordinates
of the magnets and the origin). The calculation of minimum distance is then carried out with this
new vector which includes the origin, and the basin plot is colored accordingly. Please not that
the denominator value within the style option Hue must be strictly greater than the number of
magnets in order to obtain a sensible picture.

3.1.3 Trajectories.nb: Notebook to plot trajectories

This MathematicaT™notebook computes a numerical solution to the chaotic pendulum problem
for the specified initial condition (xg,yo) and plot the trajectory parametrically. Parameters can
be varied in the same fashion as Basins.nb. The second part of the notebook will compute and
overlay different trajectories, in order to graphically analyze the divergence. This part is essentially
identical to the first only it calculates multiple trajectories with NDSolve and then overlays the
plots.

3.1.4 Lyapunov.nb: Notebook to plot divergence of nearby trajectories (Lyapunov
Exponent)

This notebook is the same as Trajectories.nb up through the calculation of the trajectory. However,
two trajectories of interest are specifically calculated with NDSolve. Then the norm of the difference
between each of these trajectories is calculated for each time value t. The log of this norm is then
plotted against time. If the incline of this graph has an average positive slope then we know by
theoretical proof that the trajectories diverge exponentially. Furthermore, with the choice of initial
condition, by picking two very close initial conditions as input to NDSolve, one can prove through
the exponential divergence of trajectories a sensitive dependence on initial conditions.



3.2 Mathematica™

Mathematica™was chosen for to numerically solve this problem for a couple of reasons. There
are few mathematical programs available with the capability to symbolically compute. The newer
versions of MapleT™have this capability. However, MathematicaT™can symbolically compute as
well, but it has the much of the analytic power of programs like Matlab™. As well, an added
benefit to this is Mathematica’s ability to “choose” which method of numerical integration is best
suited for solving this particular problem (remember that one of the problems with the previous
project was insufficient numerical integration methods).

4 Results

4.1 Chaotic Behavior

First let us simply examine some pictures of trajectories obtained from Mathematica™ . Before
we go on however, it is important to note a few things. In all cases (except for our first example)
we assume that the pendulum swings a constant distance d = 0.2 above the plane containing the
magnets, which, in most cases, are distributed evenly around a circle of radius 2. Furthermore, in
all trials we assume that the pendulum is released from a stationary starting position. That is to
say that the initial condition (zo,yo, 2, yy) takes the form z{ = y; = 0. In Figure 3, we see four
different trajectories for a four magnet pendulum.
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Figure 3: Four Trajectories; R = .07 and C = .2
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These trajectories each have an initial z-coordinate, rg = —6.45843. Left to right, the initial
y-coordinates for each of these trajectories are yo = 0.000351,0.00035,0.000345, and 0.0003445
respectively. Notice the extremely close proximity of each of the starting positions of these four
trajectories. However, they each come to rest over an entirely different magnet. Notice that the
pendulum swings in a wildly erratic (highly nonlinear) manner, but quickly settles to an odd
decaying oscillation about one of the equilibrium points. While no single trajectory certainly seems
to be any easily defined curve, we can determine nothing about the chaotic nature of the system
from any one of them alone. However, when we view them together, we can see that the final
resting position of the pendulum is highly sensitive to initial conditions (Figure 4).
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Figure 4: Overlay Plot of Figure 3



To make this qualitatively clear, consider the function Z(t) = ||x1(t) — x2(t)|| where 24 (¢) and
x2(t) are two solutions corresponding to two different initial values. Then Z(t) is just a real valued
function representing the distance between the two trajectories at time ¢. While Z(0) is very
small for the trajectories we will be considering, we find that Z(t) grows exponentially fast as time
increases. Let us take for example the first two trajectories calculated in Figure 3 (i.e. cyan and
green; (z1,y1) = (—6.45843,0.000351) and (z2,y2) = (—6.45843,0.00035). Below we see a graph of
log Z(t) vs. time for these trajectories.
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Figure 5: Lyapunov exponent for (z1,y1) = (—6.45843,0.000351) and (z2,y2) = (—6.45843,0.00035)

The positive slope of the graph for approximately ¢ < 40 indicates a positive Lyapunov exponent,
meaning our trajectories diverge exponentially fast, and thus the system exhibits sensitive depen-
dence on initial conditions. Z(t) eventually stops growing when each trajectory settles over its
respective pendulum.

4.2 Basins of Attraction

The beauty of the chaotic behavior of the pendulum is best seen through its basins of attraction.
Each basin of attraction in the plane has a boundary defined by fractal curves and creates a beautiful
picture physically and mathematically. It is important to remember, however, that the model is
limited in its use because of the fractal nature of the basins of attraction (other than a few of the
larger basins, it is impossible to measure accurately enough the initial position of the pendulum, to
see if it coincides with theory for most positions in the plane).

4.2.1 Basins for multiple magnets

Below we see the basins of attraction for various numbers of magnets.

Figure 6: Four Basins [—6, 6] X [—6, 6]- magnets = 3, 4, 5, and 6 respectively;
R =.2and C = .2

By looking at these plots, we notice that for the same parameter values, the basins begin to
look much more complicated with the addition of more magnets. We can analytically examine this



by plotting the log of the norm of the difference between to divergent trajectories versus time for
each number of magnets. In the figure below, we see the graph of the Lyapunov exponent for 3, 4,
5, and 6 magnets, respectively.
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Figure 7: log(||x1 — x2||) vs. time for 3, 4, 5, and 6 magnets; For each graph R = .1, C = .2, Ayg = 0, Azo = 0.0003.

From Figure 7, we can see that as we increase the number of magnets, we see an increase in the
slope of the graphs on the interval ¢ = [0,20]. While this is visually apparent, it may still be slightly
analytically unclear. While there is a method for calculating the the largest Lyapunov exponent of
a system, it is not examined in this paper. For the purpose of our analysis, the visual estimation
of the systems’ Lyapunov exponents is adequate.

4.2.2 Basins for varied parameter values

The diversity of these basins does not stop at a variation of the number of magnets. We can cause
changes in basins of attraction through varying each parameter, from the friction coefficient to the
positions of the magnets. Below we see a few basins for three magnets, each with a different friction
force coeflicient.

Figure 8: Basins for 3 magnets, C = .2: 1)R = .2, 2)R = .15, 3)R = .125, and 4)R = .1, respectively

The basins become much more chaotic as we decrease our friction force coefficient. We can look
at this qualitatively in terms of a difference in Lyapunov exponents.
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Figure 7: log(||z1 — z2||) vs. time for (z1,y1) = (4.0003,8.5) and (z2,y2) = (4, 8.5): left-R = .1, right-R = .15

The exact same trajectories which diverge to different magnets for a value of R = .1 converge
to the same magnet for R = .15. This clearly demonstrates an increase in the chaotic behavior of
the system as the friction force coefficient decreases (which coincides with theory and logic). Next
we see a few basin plots for 6 magnets, each with a different friction force coefficient.



Figure 8: Basins for 6 magnets, C = .2: 1)R = .3, 2)R = .275, 3)R = .25, and 4) R = .2, respectively

There are a couple of important things to notice here. First, notice that to obtain similar
pictures (chaotically speaking) to those of the 3 magnet basins, we had to raise the value of the
friction coefficient. The qualitative reason for this is the same as before, adding magnets increases
chaos. Second, notice here that the friction force coeflicient value where larger basins are overtaken
by their more chaotic boundaries is approximately double that in the case of three basins. While
this presents an odd coincidence, more investigation would need to be done to fully quantify such
a relation.

However, R is not the only parameter which we can vary. We can vary the gravity coefficient,
the height of the pendulum bob, and even the positions of the magnets. By varying the gravity
coefficient and the height of the pendulum bob, we see a very interesting effect. If C or d is raised
enough, the unstable fixed point at the origin becomes stable. In the following figure, we see the
effect of increasing C' on the 4 magnet system.

Figure 9: Basins for 4 magnets, R = .2: left - C = .6, right - C = .7

In these figures, the red basin represents trajectories which are pulled down to the origin. It is
clearly shown from the figure that as we increase the gravity force coefficient, the origin becomes
a stronger stable fixed point. Theoretically, we can imagine this as the force of gravity eventually
overpowering the force of the magnets. As well, a similar effect is seen when increasing the height of
the pendulum bob; as the distance between between the bob and the magnets increases, the force
from each magnet grows smaller until the force of gravity is large enough to predominate parts of
the plane.

Finally, let us see some unusual basins, achieved through odd magnet placements in the plane.
In the following diagram each of the basins is created with parameter values of R = .2 and C' = .2.
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Figure 10: Basins for uneven magnet positions

In the last basin we see how a fairly “random” placement of magnets in the plane causes the
basins to interact. The yellow basin is a solitary magnet and thus has very clearly defined basins.
The red and the blue basins are placed very close to each other, in a side by side fashion, and we
can wee their basins begin to smush together. Then there are the green and purple basins, which
are placed one nearly directly behind the other from the origin. We can see how the two basins
have become almost intertwined in their location in the plain. It seems that magnet placement
has as much of an effect on the location of the basins as does the interaction with other magnets,
but this seems like a fairly hard theory to test. Then in the third basin plot, we have the normal
distribution of four magnets in the plain, and then the addition of a fifth magnet at the origin. It
is important to notice the similarity here between the gravity basins and this basin plot. It seems
to resemble a very structured gravity basin plot, which makes sense, because we are essentially
introducing the same stable fixed point which gravity does, but leaving a relatively strict parameter
set, so the basins maintain a more structured form and do not succumb to dispersion as in the case
of most extreme parameter variance.

In the first two basin plots, 3 and 4 magnets, respectively, are placed in an even distribution
around a half circle in the plane whose center is located at the origin (considering a full circle).
Notice how the uneven location of magnetic force causes a swirl in the plane in the direction of
the force. This is a very enlightening result. As I mentioned earlier, when I initially started this
project, the basins achieved through Matlab™had a swirling effect in the plot (see Figure 1).
The basins in Figure 10 help us understand this numerical result. Matlab™represents everything
numerically (i.e. float, double precision), so in defining the positions of the magnets, Matlab™ can
only represent these coordinates within a certain precision. Thus if the magnets, are not represented
as the exact same value in Matlab™ there will be a bias in the influence of the magnetic force in
some fashion, that will alter the shape of the basins of attraction. Theoretically, the basins should
be producing identical images per each quadrant (not considering color). Thus we can attribute
the original error in basin calculation to the inaccuracy of numerical approximation.



5 Conclusion

Mathematica™ and the coupling of symbolic and numeric computation were effectively able to pro-
duce theoretically sound basins of attraction, rectifying the problem of the previous computational
work done on this problem.

From the simulations run, it can be seen that the dynamics of the “chaotic oscillating magnetic
pendulum” do indeed satisfy sufficient conditions for chaotic behavior. Upon discovering a positive
Lyapunov exponent for the system, I can assert that nearby trajectories in the plane will diverge at
an exponential rate, showing very sensitive dependence to initial pendulum placement. Similarly,
no periodic behavior was witnessed in any trial. As we increase the number of magnets, the
chaotic behavior of the system becomes more extreme. As well, varying the parameters can have
interesting effects on the basins of attraction and divergence of trajectories, even causing the origin
to become the predominant stable fixed point. If I were to continue this experiment I would like to
investigate slightly perturbed magnet positions in the plane (i.e. almost evenly placed around circle)
in order to truly gage whether or not the original basin pictures can be attributed to inaccuracies
in numerical calculation. As well, I would like to actually numerically (or analytically) calculate a
largest Lyapunov exponent for each number of magnets to qualify the change in chaotic behavior of
the system by adding or subtracting magnets. As well, the difference in chaotic behavior between
symmetric and non symmetric positioning of magnets could be qualified.
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Appendix A Mathematica™Code

Appendix A.1 Basin.nb

n =250; d=0.2; R=0.15; g = 0.2; mags = {{Sqrt[3], 1}, {-Sqrt[3], 1}, {0, -2}};
flmag ] := (d"2 + (magl[1]] - x[t])"2 + (mag[[2]] - y[t])"2)"1.5;
solution =
NDSolve[{x’’ [t] == Plus @@ Map[(#[[1]] - x[t1)/f[#] &, mags] - g x[t] - R x’[t],
y’>’ [t] == Plus @@ Map[(#[[2]] - y[tl)/f[#] &, mags] - g y[t]l - R y’[t],
x[0] == x1, x’[0] == 0, y[0] == y1, y’[0] == O}, {x, y}, {t, O, 100},
MaxSteps -> 200000] ;
Show [Graphics[
RasterArray[
Table([final = {x[100], y[100]} /. solution[[1]];
radii = Map[(final - #).(final - #) &, mags]; r = Min[radii];
Hue[Position[radii, r][[1, 1]11/3], {y1, -5.0, 5.0, 10.0/n},
{x1, -5.0, 5.0, 10.0/n}]]1], AspectRatio -> 1];

Appendix A.2 Modified_Basin.nb

n=250; d=0.2; R=0.15; g = 0.2; mags = {{Sqrt[2], Sqrt[2]}, {-Sqrt[2],
Sqrt[2]}, {-Sqrt[2], -Sqrt[2]}, {Sqrt[2], -Sqrt[2]1}};
fixedpoints = {{Sqrt[2], Sqrt[2]}, {-Sqrtl2],
Sqrt[2]}, {-Sqrt[2], -Sqrt([2]}, {Sqrt[2], -Sqrt[2]}, {0, O}}
flmag_] := (d"2 + (magl[1]] - x[t])"2 + (magl[2]] - y[t]l)~"2)"1.5;
solution =
NDSolve[{x’’[t] == Plus @@ Map[(#[[1]] - x[t1)/f[#] &, mags] - g x[t] - R x’[t],
y’>’ [t] == Plus @@ Map[(#[[2]] - y[tl)/f[#] &, mags] - g y[t] - R y’[t],
x[0] == x1, x’[0] == 0, y[0] == y1, y’[0] == O}, {x, y}, {t, O, 100},
MaxSteps -> 200000] ;
Show [Graphics[
RasterArray[
Table[final = {x[100], y[100]} /. solution[[1]];
radii = Map[(final - #).(final - #) &, fixedpoints]; r = Min[radii];
Hue[Position[radii, r][[1, 1]1]1/5], {y1, -5.0, 5.0, 10.0/n},
{x1, -5.0, 5.0, 10.0/n}]]1], AspectRatio -> 1];

Appendix A.3 Trajectories.nb

d =0.25; g =0.2; R=0.07; mags = {{Sqrt([3], 1}, {-Sqrt[3], 1}, {0, -2}};
flmag_] := (d°2 + (magl[1]] - x[t])"2 + (magl[2]] - y[t])"2)"1.5;
solution =
NDSolve[{x’’[t] ==
Plus @@ Map[(#[[1]1] - x[t])/f[#] &, mags] - g x[t] - R x’[t],

y? 2 [t] ==
Plus @@ Map[(#[[2]] - y[t]1)/f[#] &, mags] - g y[t] - R y’[t],
x[0] == -6.458, x’[0] == 0, y[0] == 2.967, y’[0] == 0}, {x, y}, {t, O,
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100}, MaxSteps -> 200000] ;
plotsol = {x[t], y[t]} /. solution
ParametricPlot [Evaluate[plotsol], {t, O, 100}, PlotStyle -> RGBColor[0, O, 1],
PlotRange -> All]
ParametricPlot [Evaluate[plotsol], {t, 0, 100}]

Appendix A.4 Lyapunov.nb

d=0.2; g=0.2; R=0.1; mags = {{Sqrt[2], Sqrt[2]}, {-Sqrt[2],
Sart[2]}, {-Sqrt[2], -Sqrtl[2]}, {Sqrt[2], -Sqrt[2]}};
flmag ] := (d°2 + (magl[1]] - x[t])"2 + (magl[2]] - y[t])"2)"1.5;
solutionl =
NDSolve[{x’’ [t] ==
Plus @@ Map[(#[[1]1] - x[t])/f[#] &, mags] - g x[t] - R x’[t],
v [t] ==
Plus @@ Map[(#[[2]] - y[t]1)/f[#] &, mags] - g y[t] - R y’[t],
x[0] == 4, x’[0] == 0, y[0] == 4, y’[0] == 0}, {x, y}, {t, O, 100},
MaxSteps -> 200000] ;
solution2 =
NDSolve[{x’’[t] ==
Plus @@ Map[(#[[1]1] - x[t])/f[#] &, mags] - g x[t] - R x’[t],
y?2 [t] ==
Plus @@ Map[(#[[2]11 - y[tl1)/f[#] &, mags] - g y[t]l - R y’[t],
x[0] == 4.0003, x’[0] == 0, y[0] == 4, y’[0] == 0}, {x, y}, {t, O,
100}, MaxSteps -> 200000] ;
plotsoll = {x[t], y[tl} /. solutioni;
plotsol2 = {x[t], y[t]} /. solution2;
diff = Norm[plotsoli[[1]] - plotsol2[[1]]1];
(#fin = Sqrt[diff.diff];*)
Plot [Evaluate[Log[diff]], {t, 0, 100}, PlotStyle -> {RGBColor[0, O, 11},
PlotRange -> All]
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