
Global Optimization of Gear-Ratios for Motorsport
Applications, or How to Make a Fast Car Faster

Thomas W. Barr

May 7, 2008

Abstract

This paper describes a numerical gear-ratio optimizer for motorsport applications.
Using a simplified model of a Formula One car, performance on straight-line seg-
ments is simulated for each straight of a measured track, using both low and high
fuel models. The gear ratios of the car in this model are numerically optimized to find
a minimum average lap time, considering all the straight segments of the course. The
system was tested using torque, drag and braking curve data estimated for a Ferrari
FW2004 3.0L V10 Formula One car over the Silverstone racing circuit.

Results show that global optimization is vastly more effective than a basic evenly
spaced ratio setup, saving 0.24 seconds per lap. Optimizing for both high and low fuel
loads improves overall performance a further 0.033 seconds. Including shiftpoints
in the optimization yielded no improvement, as the optimal shift-point is always at
redline for any sensible gear ratio set.

Formula One, like motorsport in general, has become extremely popular in recent years.
Additionally, it has become extremely expensive, with top teams spending up to $500
million per year to develop and run their cars. Such money-is-no-object budgets go into
exotic material design, countless testing in exotic locales, wind tunnels, and, increasingly,
supercomputing. The BMW Sauber F1 team has lead the way in the use of supercom-
puting in Formula One with their Albert series of computer. The latest, Albert 2, has over
a thousand cores, and is one of the fastest industry computers in the world. As super-
computing continues to become more easily available, F1 will become a major player in
scientific computing, just as it has in the fields of aerodynamics and composite struc-
tures.

For this project, I wanted to develop a model of an F1 car, and optimize some parameter
of it. While the aerodynamics of the car are highly complex, and therefore outside of
the scope of a semester project, the gearbox is a critical part of the design of the car, and
optimization is a tractable problem in the time available. The current F1 season includes
both fast tracks, such as Monza, slow and twisty tracks, such as Monaco, and tracks that

1

2

are a combination of the two, such as Silverstone. The ratios of the gearbox must be
set precisely to allow maximum performance on these tracks. Therefore, I developed a
system to optimize gear ratios for an entire track, namely Silverstone.

Figure 1: Silverstone track map.

1 Physics and model development

The amount of torque that any motor, especially a high-strung race version, generates
is related to the speed that the engine is turning at. Maximum torque, and therefore
acceleration, comes at a relatively high engine speed, and in a relatively narrow band.
(It is often joked that F1 engines have “torque spikes” instead of torque curves.) I have
estimated the torque curve of a 3.0L V10 from 2004 using a spline. The peak torque comes
just before its 18,000 rev/min redline.

If a team were to simply attach the wheels to the engine, the acceleration force would be
easy to find:

f orce(v) = k1 · torque(v/k2) (1)

k1 here represents the maximum force that the engine can exert on the car, and k2 is a
combination of all the ratios, tire sizes and unit conversions between the engine and the

3

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Engine speed (rev/min)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 t

o
rq

u
e

Estimated Normalized Torque Curve

Figure 2: Estimate of a 3.0L V10 torque curve.

rear wheels. In other words, k2 is defined such that v/k2 = rpm. Clearly, this design
is problematic, since the car needs to have decent performance at all speeds. Since the
torque curve is not flat, this is impossible. At low speeds, the car will accelerate slowly
because the engine is turning slowly and can’t generate torque. What we would like to
do is to be able to vary k2 such that we can have the engine turning in the “power band”
at all speeds.

This is done with a gearbox, a set of changeable gears that connect the engine to the rear
wheels. This lets us set up a discrete set of k2 values, optimal for different speeds. This
would seemingly allow equation 1 to become

f orce(v) = k1 · torque(v/ratio[n]) (2)

where n is the currently selected gear, and ratio[n] is the value of k2 for that particular
gear. Unfortunately, remembering our grade school simple machines reminds us that
things are not this simple. Any gearing system that increases speed necessarily decreases
torque proportionally. Including this in our equation of force yields

f orce(v) = k · 1
ratio[n]

· torque(v/ratio[n]). (3)

k is now a constant for all gears, and this equation is therefore usable in a simulator.

1.1 Drag and braking 4

1.1 Drag and braking

While the engine was the main focus of my investigation, clearly this is not the only force
on the car. At 325 km/h, a car as aerodynamically slippery as a brick generates tremen-
dous drag, and the car must eventually be able to stop. I have assumed the drag on the car
to be proportional to v3 (d(v) = kdrag · v3), and that the car will be able to decelerate at a
constant 4g. (This value was derived from observing the g-meter shown during telecasts
of F1 races.) Both of these are gross simplifications, but they could be easily replaced with
correct data if it were available.

1.2 Fuel load

Intially, fuel load only affected the mass term in the differential equation of motion. How-
ever, this led to incomplete results, so the model was modified. While I assumed that
gear ratios would not affect corner speeds, and as a result could be eliminated from my
model, corner speeds are affected by mass. With increased mass, the centripetal forces
required are higher, but the available force for turning is not increased (as the majority of
the normal force on the tyre comes from aerodynamic loads, which are invariant under
mass changes).

The modified velocity through a corner is found by setting the forces in the equation for
centripetal force to be equal for varying mass and velocity, and solving for the second
velocity. Modified velocity is given as

v2 =
√

m1

m2
v2

1. (4)

1.3 Estimation of constants

Up to this point, the model for the car has been generic for any car. However, to get
realistic results, I wanted to model a particular car as closely as possible. The 2004 Ferrari
FW2004 3.0L V10 Formula One car is generally considered to be the fastest of all time, as
regulations entering into force after that date reduced speeds significantly.

At Silverstone, the track used in this investigation, the car had a top speed of 325 km/h.
It also made around 1000 horsepower with a redline of 18,000 rev/min. I have reduced
this power to 800 horsepower to account for drivetrain losses, which are around 10% in a
road car, and are likely higher in a race transmission. Assuming that the car is producing
maximum power at top speed, we can estimate k in equation 3 as well as kdrag.

1.4 Limitation of problem domain 5

Dry mass of the car is taken as the minimum legal mass, 605 kilograms. Maximum mass
is calculated as 8 “seconds” of fuel (fuel is delivered into the car by a pressurized, stan-
dardized fuel rig), at 12.5 litres/sec, yielding approximately 70kg of fuel.

1.4 Limitation of problem domain

This model estimates the performance of the car under full-throttle acceleration, however
it does not model the car for turning performance. Since corners are generally taken with-
out throttle to maximize turning force, the gear ratios are irrelevant in these sections of
the track. Therefore, I have divided the straights into independent sections with starting
and ending speeds equal to the speeds in the corners at the start and end of the segment,
respectively.

1.5 Track map

The model of Silverstone used for this project was gathered from various Internet sources.
Corner speeds were taken from a map of the track1, and straight segment distances were
measured using Google Earth2.

This data is an estimate to serve as a proof of concept. Again, a real team would have easy
access to much more accurate data.

2 Implementation

The simulator and optimizer were implemented in Python 2.5 using the SciPy and NumPy
libraries. For each car setup to be tested, the simulator begins by simulating performance
down a single, very long straight from a slow speed. This uses the differential equa-
tion

dv
dt

=
f orce(v)− drag(v)

m
=

1
m

(k · 1
ratio[gear(v)]

· torque(v/ratio[gear(v)])− kdrag · v3).

(5)

In this equation, gear(v) is a Python function that determines the proper gear for the cur-
rent speed. It does this by stepping through the ratios, and finding the first gear that will

1http://atlasf1.autosport.com/2000/bri/preview/brilap.html
2http://earth.google.com/

6

allow the engine to run below redline. Since gear(v) is recomputed for every time step, we
make the implicit assumption that gear changes take no time, and that drivers perform
them perfectly. This is actually a relatively valid assumption since the gear change in a
modern F1 car takes only a few hundred microseconds, and the reaction time of the mod-
ern F1 driver is approximately the same. The result of that simulation, calculated using a
simple Euler method3, is used for the whole-track simulation.

0 100 200 300 400 500 600 700 800 900
Distance down track (m)

20

30

40

50

60

70

80

90

S
p
e
e
d
 (

m
/s

)

Acceleration curve

Figure 3: Acceleration curve from simulator. Shift points are visible as discontinuities in
the first-derivative.

To save computation time, the acceleration curve (figure 3) is computed once, and then the
dataset (containing points for time, speed and distance) is modified to represent different
starting speeds and distances for each straight along the track. This is done by finding the
time where the car is at the desired starting velocity, cropping the entire dataset at that
time point, and then normalizing both distance and time to be zero the new initial value.
Finally, we crop the dataset when the new normalized distance equals the length of the
straight (see figure 4). This has the same effect as recalculating the DE from a new starting
velocity without actually having to do so, and as a result is much faster.

Once the acceleration curve for a particular straight is calculated, a braking curve is de-
termined using a similar method. This curve starts at high-speed, then brakes down to
the entry speed for a particular corner. These curves are overlaid in the speed/distance

3Since the optimizer is slow, a simple ODE solver is used. In a production environment, more computing
power would be available, and a more accurate solver would be practical.

7

0 100 200 300 400 500 600 700
Distance down track (m)

65

70

75

80

85

90

S
p
e
e
d
 (

m
/s

)

Cropped acceleration curve

Figure 4: Cropped acceleration curve for Hangar Straight.

graph to determine when a driver would need to brake to reach the entry speed for that
corner (see figure 5).

0 100 200 300 400 500 600 700 800 900
Distance along track (m)

50

60

70

80

90

100

S
p
e
e
d
 (

m
/s

)

Speed down Hangar Straight

Figure 5: Combined braking/acceleration curve.

2.1 Optimization 8

This intersection is found using a numerical sampled solver (see appendix A for details),
based upon a bisection method.

Once this intersection is found, the simulator sums the time spent braking and the time
spent accelerating to find the total time spent in the segment. This process is repeated for
each segment along the track to find a total lap time.

2.1 Optimization

The overall lap time serves as a fitness function for the simulator. A simple downhill sim-
plex method is used from the SciPy library is used to optimize the function. A more com-
plex solver was not selected because “creative” solutions (negative ratios, mis-ordered ra-
tios, wildly varying ratios) were more likely to be found, and would be entirely unphysi-
cal, much less driveable. Optimal ratios were found within a couple hundred invocations,
running in less than ten minutes on a dual-core, 2.2 GHz workstation.

2.2 Fuel burnout

In a race, the car will be run over a wide range of fuel loads. Since fuel accounts for more
than 10% of the wet mass of the car, fuel may have a significant impact on optimal ratios.
Therefore, the fitness function simulates the car at both low fuel and high fuel, and the
averages the results. Optimizing this average should yield reasonably optimal results for
the entire spectrum of possible fuel loads.

3 Results and analysis

The solver starts with an initial guess, optimizes from there, and returns the final, opti-
mized ratio set, the final time, and the improvement over the time for the initial guess.
This framework provides the ability to investigate various optimization schemes and ob-
serve their impact on the final result.

3.1 Whole-track optimization

My initial guess for the gear ratios was an equally spaced setup, with the ratio of the high-
est gear set to redline at maximum speed. This setup is the most reasonable possible setup
in the absence of any form of numerical optimization, and may be how teams currently
set up their cars.

3.2 Shift point optimization 9

When this setup was optimized for the entire track, lap times fell by 0.24 seconds, a highly
significant result. Interestingly, this setup is not ideal for any of the individual straights.
If the ratios are set up for the back straight alone, shift speeds are raised, improving
high-speed performance, but decreasing low-speed performance. Similarly, optimizing
for slower and shorter segments causes the car to perform poorly in fast segments. The
optimal balance is somewhere in between, and is best found numerically.

3.2 Shift point optimization

I allowed the solver to attempt to optimize the shift point (using a constrained optimiza-
tion, limited to shift before redline) along with the ratios, however this yielded identical
results to before with the shift point pegged to redline as it was before. This means that
for the torque curve found on the F1 car, shifting exactly at redline is ideal.

This result is unsurprising because when a driver shifts the car, even at redline past the
peak of the torque curve, torque at the rear wheels deceases substantially both due to the
longer gear ratio in the higher gear as well as the lower torque produced by the engine at
lower speed. Therefore, it is optimal to delay shifts as long as possible.

3.3 Fuel load optimization

Before corner speeds were adjusted for car mass in the model, the optimal setups for
high, mixed and low fuel loads were all identical. Postulating that this result was due to
the high speeds of the track, where aerodynamic loads are high, I derived a simple test
track with slow corners and short straights, imitating a track like Monaco. However, even
in this case, the optimal gear ratios were independent of fuel load.

When corner speeds were adjusted, however, the optimal ratio set did become dependent
on vehicle mass. The ratio set was optimized three times, once for low mass lap times,
once for high mass lap times, and once for mixed mass lap times. Each of these setups
was tested and timed for performance in mixed fuel load settings.

Optimization Target Time
Light fuel 56.949

Heavy fuel 56.918
Mixed fuel 56.916

There is significant advantage to including fuel loads in optimization of gear ratios. The
heavy optimization is closest to the mixed optimization, demonstrating that the heavy

10

fuel load is most sensitive to gear ratio changes. Simply optimizing for heavy fuel, instead
of light fuel would most closely approximate the ideal setup for mixed fuel.

4 Conclusions

In a large project, it may be tempting to isolate optimizations. However, in any complex
system, changing one variable impacts the optimum value of other variables in many
cases. Additionally, optimizing for one part of a task can harm another part. For ex-
ample, optimizing for the front straight decreased performance on slower sections of the
course.

In some cases, optimizations may be independent, and computation time can be reduced
by eliminating these parameters from the optimization. In this system, the shift point was
always optimum at the redline, and attempts at including it in the optimized parameter
set only increased computation time.

A Sampled solver details

The sampled solver used to find the intersection of the acceleration and braking curves is
a somewhat novel and complex algorithm.

It begins by ensuring that the graphs actually cross by inspecting both the first and last
points out of both sets. The algorithm then subdivides the acceleration set in half, and
finds the point in the braking set (using a binary search) that most closely matches the
distance of the division point in the acceleration set. By comparing the speed of that brak-
ing point with the speed of the acceleration point at the midpoint, the solver determines
which half contains the point where the two graphs cross (just as a bisection method
would), and recursively continues with that half of the graph.

